
Pool-based Agnostic Experiment Design
in Linear Regression

Masashi Sugiyama1 and Shinichi Nakajima2

1 Department of Computer Science, Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan,

sugi@cs.titech.ac.jp, http://sugiyama-www.cs.titech.ac.jp/~sugi/
2 Nikon Corporation,

201-9 Oaza-Miizugahara, Kumagaya-shi, Saitama 360-8559, Japan
nakajima.s@nikon.co.jp

Abstract. We address the problem of batch active learning (or exper-
iment design) in regression scenarios, where the best input points to
label is chosen from a ‘pool’ of unlabeled input samples. Existing active
learning methods often assume that the model is correctly specified, i.e.,
the unknown learning target function is included in the model at hand.
However, this assumption may not be fulfilled in practice (i.e., agnos-
tic) and then the existing methods do not work well. In this paper, we
propose a new active learning method that is robust against model mis-
specification. Simulations with various benchmark datasets as well as a
real application to wafer alignment in semiconductor exposure apparatus
illustrate the usefulness of the proposed method.

1 Introduction

Active learning (AL) is a problem of optimally designing the location of training
input points in supervised learning scenarios [1]. Choice of training input location
is particularly important when the sampling cost of output values is very high,
e.g., in the analysis of, medical data, biological data, or chemical data. In this
paper, we address batch AL (a.k.a. experiment dasign), where the location of all
training input points are designed in the beginning (cf. on-line AL where input
points are chosen sequentially).
Population-based vs. Pool-based AL: Depending on the situations, AL can
be categorized into two types: population-based and pool-based.

Population-based AL indicates the situation where we know the distribution
of test input points and we are allowed to locate training input points at any
desired positions [2–4]. The goal of population-based AL is to find the optimal
training input distribution from which we generate training input points.

On the other hand, in pool-based AL, the test input distribution is unknown
but samples from the test input distribution are given [5, 6]. The goal of pool-
based AL is to choose the best input samples to label from the pool of test input
samples. If we have infinitely many test input samples, the pool-based problem is

2

reduced to the population-based problem. In this paper, we address the problem
of pool-based AL and propose a new algorithm.
AL for Misspecified Models: In traditional AL research [1, 7, 8], it is often
assumed that the model used for function learning is correctly specified, i.e., it
can exactly realize the learning target function. However, such an assumption
may not be satisfied in reality (i.e., agnostic) and the violation of this assumption
can cause significant performance degradation [2–4, 6]. For this reason, we do not
assume from the beginning that our model is correct in this paper. This highly
enlarges the range of application of AL techniques.

In the AL scenarios, the distribution of training input points is generally
different from that of test input points since the location of training input points
is designed by users. Such a situation is referred to as covariate shift in statistics
[9]. When we deal with misspecified models, covariate shift has a significant
influence—for example, Ordinary Least-Squares (OLS) is no longer unbiased
even asymptotically. Therefore, we need to explicitly take into account the bias
caused by covariate shift. A standard approach to alleviating the influence of
covariate shift is to use an importance-weighting technique [10], where the term
‘importance’ refers to the ratio of test and training input densities. For example,
in parameter learning, OLS is biased, but Importance-Weighted Least-Squares
(IWLS) is asymptotically unbiased [9].
Importance Estimation in Pool-based AL: In population-based AL,
importance-weighting techniques can be employed for bias reduction in a
straightforward manner since the test input distribution is accessible by assump-
tion (and the training input distribution is also known since it is designed by
ourselves) [2–4]. However, in pool-based AL, the test and training input distri-
butions may both be unknown and therefore the importance weights cannot be
directly computed. A naive approach to coping with this problem is to estimate
the training and test input distributions from training and test input samples.
However, density estimation is known to be a hard problem particularly in high
dimensional problems. Therefore, such a naive approach may not be useful in
practice. This difficulty could be eased by employing recently developed methods
of direct importance estimation [11–13], which allow us to obtain the importance
weight without going through density estimation. However, these methods still
contain some estimation error.

A key observation in pool-based AL is that we choose training input points
from the pool of test input points. This implies that our training input distribu-
tion is defined over the test input distribution, i.e., the training input distribu-
tion can be expressed as a product of the test input distribution and a resampling
bias function. This decomposition allows us to directly compute the importance
weight based on the resampling bias function, which is more accurate and com-
putationally more efficient than the naive density estimation approach and the
direct importance estimation approaches.
Single-trial Analysis of Generalization Error: In practice, we are only given
a single realization of training samples. Therefore, ideally, we want to have an
estimator of the generalization error that is accurate in each single trial. However,

3

(a) Generalization error for training
input density pa

(b) Generalization error for training
input density pb

Fig. 1. Schematic illustrations of the conditional-expectation and full-expectation of
the generalization error.

we may not be able to avoid taking the expectation over the training output noise
since it is not generally possible to know the realized value of noise. On the other
hand, the location of the training input points is accessible by nature. Motivated
by this fact, we propose to estimate the generalization error without taking the
expectation over training input points. That is, we evaluate the unbiasedness
of the generalization error in terms of the conditional expectation of training
output noise given training input points.

To illustrate a possible advantage of this conditional expectation approach,
let us consider a simple population-based active learning scenario where only
one training sample (x, y) is gathered (see Figure 1). Suppose thatthe input x
is drawn from a user-chosen training input distribution and y is contaminated
by additive noise ϵ. The solid curves in Figure 1(a) depict Gpa(ϵ|x), the general-
ization error for a training input density pa as a function of the training output
noise ϵ given a training input point x. The three solid curves correspond to the
cases where the realizations of the training input point x are a1, a2, and a3,
respectively. The value of the generalization error for the training input density
pa in the full-expectation approach is depicted by the dash-dotted line, where

4

the generalization error is expected over both the training output noise ϵ and the
training input points x (i.e., the mean of the three solid curves). The values of
the generalization error in the conditional-expectation approach are depicted by
the dotted lines, where the generalization errors are expected only over the train-
ing output noise ϵ, given x = a1, a2, a3, respectively (i.e., the mean of each solid
curve). The graph in Figure 1(b) depicts the generalization errors for another
training input density pb in the same manner.

In the full-expectation framework, the density pa is judged to be better than
pb regardless of the realization of the training input point since the dash-dotted
line Figure 1(a) is lower than that in Figure 1(b). However, as the solid curves
show, pa is often worse than pb in single trials. On the other hand, in the
conditional-expectation framework, the goodness of the density is adaptively
judged depending on the realizations of the training input point x. For example,
pb is judged to be better than pa if a2 and b3 are realized, or pa is judged to
be better than pb if a3 and b1 are realized. That is, the conditional-expectation
framework may provide a finer choice of the training input density (and the
training input points) than the full-expectation framework.
Contributions of This Paper: We extend two population-based AL methods
proposed by [2] and [4] to pool-based scenarios. The pool-based extension of
the method proposed in [2] allows us to obtain a closed-form solution of the
best resampling bias function; thus it is computationally very efficient. However,
this method is based on the full-expectation analysis of the generalization error,
so the obtained solution is not necessarily optimal in terms of the single-trial
generalization error. On the other hand, the pool-based extension of the method
proposed in [4] can give a better solution since it is based on the conditional-
expectation analysis of the generalization error. However, it does not have a
closed-form solution and therefore some additional search strategy is needed.

To cope with this problem, we propose a practical procedure by com-
bining the above two methods—we use the analytic optimal solution of the
full-expectation method for efficiently searching for a better solution in the
conditional-expectation method. Extensive simulations show that the proposed
AL method consistently outperforms the baseline passive learning scheme and
compares favorably with other active learning methods. Finally, we apply the
proposed AL method to a real-world wafer alignment problem in semiconductor
exposure apparatus and show that the alignment accuracy can be improved.

2 A New Pool-based AL Method

In this section, we formulate the pool-based AL problem in regression scenarios
and describe our new algorithm. Derivation and justification of the proposed
algorithm are given in the next section.

2.1 Formulation of Pool-based AL in Regression

We address a regression problem of learning a real-valued function f(x) defined
on D ⊂ Rd. We are given a ‘pool’ of test input points {xte

j }nte
j=1, which are drawn

5

independently from an unknown test input distribution with strictly positive
density pte(x). From the pool, we are allowed to choose ntr (≪ nte) input points
for observing output values. Let {xtr

i }
ntr
i=1 be input points selected from the pool

and {ytr
i }ntr

i=1 be corresponding output values, which we call training samples:

{(xtr
i , ytr

i) | ytr
i = f(xtr

i) + ϵtri }
ntr
i=1,

where {ϵtri }
ntr
i=1 are i.i.d. noise with mean zero and unknown variance σ2.

The goal of the regression task is to accurately predict the output values
{f(xte

j)}nte
j=1 at all test input points3 {xte

j }nte
j=1. We adopt the squared loss as our

error metric:

1
nte

nte∑
j=1

(
f̂(xte

j) − f(xte
j)

)2

, (1)

where f̂(x) is a function learned from the training samples {(xtr
i , ytr

i)}ntr
i=1.

2.2 Weighted Least-squares for Linear Regression Models

We use the following linear regression model for learning:

f̂(x) =
t∑

ℓ=1

θℓφℓ(x), (2)

where {φℓ(x)}t
ℓ=1 are fixed linearly independent basis functions. θ =

(θ1, θ2, . . . , θt)⊤ are parameters to be learned, where ⊤ denotes the transpose
of a vector or a matrix.

We learn the parameter θ of the regression model by Weighted Least-Squares
(WLS) with a weight function w(x) (> 0 for all x ∈ D), i.e.,

θ̂W = argmin
θ

[
ntr∑
i=1

w(xtr
i)

(
f̂(xtr

i) − ytr
i

)2
]

, (3)

where the subscript ‘W’ denotes ‘Weighted’. Let X be the ntr × t matrix with
Xi,ℓ = φℓ(xtr

i), and let W be the ntr × ntr diagonal matrix with Wi,i = w(xtr
i).

Then θ̂W is given in a closed-form as

θ̂W = LWytr, (4)

where

LW = (X⊤WX)−1X⊤W ,

ytr = (ytr
1 , ytr

2 , . . . , ytr
ntr

)⊤.

3 Under the assumption that ntr ≪ nte, the difference between the prediction error at
all test input points {xte

j }nte
j=1 and the remaining test input points {xte

j }nte
j=1\{xtr

i }ntr
i=1

is negligibly small. More specifically, if ntr = o(
√

nte), all the discussions in this paper
is still valid even when the prediction error is evaluated only at the remaining test
input points.

6

2.3 Proposed AL Algorithm: P-CVW

Here we describe our AL algorithm for choosing the training input points from
the pool of test input points; its derivation and justification are provided in the
next section.

First, we prepare a candidate set of training input points {xtr
i }

ntr
i=1, which is

a subset of {xte
j }nte

j=1. More specifically, we prepare a resampling bias function
b(x) (> 0 for all x ∈ D) and choose ntr training input points from the pool of
test input points {xte

j }nte
j=1 with probability proportional to

{b(xte
j)}nte

j=1.

Later, we explain how we prepare a family of useful resampling bias functions.
We evaluate the ‘quality’ of the candidate training input points {xtr

i }
ntr
i=1 by

P-CVW = tr(ÛLWL⊤
W), (5)

where the weight function w(x) included in LW is defined as

w(xte
j) = b(xte

j)−1
.

Û is the t × t matrix with

Ûℓ,ℓ′ =
1

nte

nte∑
j=1

φℓ(xte
j)φℓ′(xte

j).

We call the above criterion pool-based CVW (P-CVW), which is a pool-based
extension of a population-based AL criterion CVW (Conditional Variance of
WLS) [4]; we will explain the meaning and derivation of P-CVW in Section 3.

We repeat the above evaluation for each resampling bias function in our can-
didate set and choose the best one with the smallest P-CVW score. Once the
resampling bias function and the training input points are chosen, we gather
training output values {ytr

i }ntr
i=1 at the chosen location and train a linear regres-

sion model (2) using WLS with the chosen weight function.
In the above procedure, the choice of the candidates of the resampling bias

function b(x) is arbitrary. As a heuristic, we propose using the following family
of resampling bias functions parameterized by a scalar γ:

bγ(x) =

 t∑
ℓ,ℓ′=1

[Û
−1

]ℓ,ℓ′φℓ(x)φℓ′(x)

γ

. (6)

The parameter γ controls the ‘shape’ of the training input distribution—when
γ = 0, the resampling weight is uniform over all test input samples. Thus the
above choice includes passive learning (the training and test distributions are
equivalent) as a special case. We seek the best γ by simple multi-point search,
i.e., we compute the value of P-CVW for several different values of γ and choose
the minimizer. In practice, we propose performing the search intensively around
γ = 1/2, e.g., Eq.(13); the reason for this will be explained in the next section.

A pseudo code of the proposed pool-based AL algorithm is described in
Figure 2.

7

Input: Test input points {xte
j }nte

j=1 and basis functions {φℓ(x)}t
ℓ=1

Output: Learned parameter b„W

Compute the t × t matrix bU with bUℓ,ℓ′ = 1
nte

Pnte
j=1 φℓ(xte

j)φℓ′(xte
j);

For several different values of γ (intensively around γ = 1/2)

Compute {bγ(xte
j)}nte

j=1 with bγ(x) =
“

Pt
ℓ,ℓ′=1[

bU
−1

]ℓ,ℓ′φℓ(x)φℓ′(x)
”γ

;

Choose X tr
γ = {xtr

i }ntr
i=1 from {xte

j }nte
j=1 with probability proportional to {bγ(xte

j)}nte
j=1;

Compute the ntr × t matrix Xγ with [Xγ]i,ℓ = φℓ(xtr
i);

Compute the ntr × ntr diagonal matrix W γ with [Wγ]i,i = bγ(xtr
i)−1;

Compute Lγ = (X⊤
γ W γXγ)−1X⊤

γ W γ ;

Compute P-CVW(γ) = tr(bULγL⊤
γ);

End
Compute bγ = argminγ P-CVW(γ);
Gather training output values {ytr

i }ntr
i=1 at X tr

bγ ;

Compute b„W = L
bγ(ytr

1 , ytr
2 , . . . , ytr

ntr)
⊤;

Fig. 2. Pseudo code of proposed pool-based AL algorithm. In practice, the best γ may
be intensively searched around γ = 1/2.

3 Derivation and Justification of Proposed AL Algorithm

The proposed P-CVW criterion (5) and our choice of candidates of the training
input distribution (6) are motivated by population-based AL criteria called CVW

(Conditional Variance of WLS; [4]) and FVW (Full Variance of WLS; [2]). In this
section, we explain how we came up with the pool-based AL algorithm given in
Section 2.

3.1 Population-based AL Criterion: CVW

Here we review a population-based AL criterion CVW.
In the population-based framework, we are given the test input density

pte(x), and the goal is to determine the best training input density ptr(x) from
which we draw training input points {xtr

i }
ntr
i=1 [8, 2–4].

The aim of the regression task in the population-based framework is to ac-
curately predict the output values for all test input samples drawn from pte(x).
Thus the error metric (often called the generalization error) is

G′ =
∫ (

f̂(xte) − f(xte)
)2

pte(xte)dxte ≡ ∥f̂ − f∥2
pte

.

Suppose the regression model (2) approximately includes the learning target
function f(x), i.e., for a scalar δ such that |δ| is small, f(x) is expressed as

f(x) = g(x) + δr(x). (7)

In the above, g(x) is the optimal approximation to f(x) by the model (2):

g(x) =
∑t

ℓ=1 θ∗ℓ φℓ(x),

8

where θ∗ = (θ∗1 , θ∗2 , . . . , θ∗t)⊤ = argminθ G′ is the unknown optimal parameter.
δr(x) in Eq.(7) is the residual function, which is orthogonal to {φℓ(x)}t

ℓ=1 under
pte(x), i.e., ⟨r, φℓ⟩pte = 0 for ℓ = 1, 2, . . . , t. The function r(x) governs the nature
of the model error, while δ is the possible magnitude of this error. In order to
separate these two factors, we further impose ∥r∥pte = 1.

Let Eϵ be the expectation over the noise {ϵtri }
ntr
i=1. Then, the generalization er-

ror expected over the training output noise can be decomposed into the (squared)
bias term B, the variance term V , and the model error δ2:

EϵG
′ = B + V + δ2,

where

B = ∥Eϵf̂ − g∥2
pte

, V = Eϵ∥f̂ − Eϵf̂∥2
pte

.

Since δ is constant which depends neither on ptr(x) nor {xtr
i }

ntr
i=1, we subtract

δ2 from G′ and define it by G.

G = G′ − δ2.

Here we use Importance-Weighted Least-Squares (IWLS) for parameter learn-
ing [9], i.e., Eq.(3) with weight function w(x) being the ratio of densities called
the importance ratio:

w(x) =
pte(x)
ptr(x)

. (8)

The solution θ̂W is given by Eq.(4).
Let GW, BW, and VW be G, B, and V for the learned function obtained by

IWLS, respectively. Let U be the t × t matrix with

Uℓ,ℓ′ =
∫

φℓ(xte)φℓ′(xte)pte(xte)dxte.

Then, for IWLS with an approximately correct model, BW and VW are expressed
as follows [4]:

BW = Op(δ2n−1
tr), VW = σ2tr(ULWL⊤

W) = Op(n−1
tr).

The above equations imply that if δ = op(1),

EϵGW = σ2tr(ULWL⊤
W) + op(n−1

tr).

The AL criterion CVW is motivated by this asymptotic form, i.e., CVW chooses
the training input density ptr(x) from the set P of all strictly positive probability
densities as

pCVW
tr = argmin

ptr∈P
CVW, CVW = tr(ULWL⊤

W).

Practically, P may be replaced by a finite set P̂ of strictly positive probability
densities and choose the one that minimizes CVW from the set P̂.

9

3.2 Extension of CVW to Pool-based Scenarios: P-CVW

Our basic idea of P-CVW is to extend CVW to the pool-based scenario, where
we do not know pte(x), but we are given a pool of test input samples {xte

i }nte
i=1

drawn independently from pte(x). Under the pool-based setting, the following
two quantities included in CVW are not accessible:

(A) The expectation over pte(x) in U ,
(B) The importance ratio pte(x)/ptr(x) at training input points {xtr

i }
ntr
i=1 in LW.

Regarding (A), we may simply approximate the expectation over pte(x) by
the empirical average over the test input samples {xte

i }nte
i=1, which is known to

be consistent.
On the other hand, approximation regarding (B) can be addressed as follows.

In pool-based AL, we choose training input points from the pool of test input
points following a resampling bias function b(x). This implies that our training
input distribution is defined over the test input distribution, i.e., the training
input distribution is expressed as a product of the test input distribution and a
resampling bias function b(x):

ptr(xte
j) ∝ pte(xte

j)b(xte
j). (9)

This immediately shows that the importance weight w(xte
j) is given by

w(xte
j) ∝ b(xte

j)−1
. (10)

Note that the scaling factor of w(x) is irrelevant in IWLS (cf. Eq.(3)), so the
above proportional form is sufficient here. By this, we can avoid density estima-
tion which is known to be very hard.

Summarizing the above results, we obtain the P-CVW criterion (5).

3.3 Population-based AL Criterion: FVW

Next, we show how we came up with the candidate set of resampling bias func-
tions given in Eq.(6). Our choice is based on a population-based AL method
proposed by [2]. First, we consider the population-based setting and briefly re-
view this method.

For IWLS, [3] proved that the generalization error expected over training
input points {xtr

i }
ntr
i=1 and training output noise {ϵtri }

ntr
i=1 is asymptotically ex-

pressed as

ExEϵGW =
tr(U−1(S + σ2T))

ntr
+ O(ntr

− 3
2), (11)

where Ex is the expectation over training input points {xtr
i }

ntr
i=1. S and T are

the t × t matrices with

Sℓ,ℓ′ = δ2

∫
φℓ(x)φℓ′(x) (r(x))2

pte(x)2

ptr(x)
dx,

Tℓ,ℓ′ =
∫

φℓ(x)φℓ′(x)
pte(x)2

ptr(x)
dx.

10

Note that 1
ntr

tr(U−1S) corresponds to the squared bias while σ2

ntr
tr(U−1T) cor-

responds to the variance.
It can be shown [3, 4] that if δ = o(1),

ExEϵGW =
σ2

ntr
tr(U−1T) + o(ntr

−1).

Based on this asymptotic form, a population-based AL criterion, which we refer
to as FVW (Full Variance of WLS), is given as follows [2]:

pFVW
tr = argmin

ptr∈P
FVW, FVW =

1
ntr

tr(U−1T).

A notable feature of FVW is that the optimal training input density pFVW
tr (x)

can be obtained in a closed-form [2]:

pFVW
tr (x) ∝ pte(x)bFVW(x), bFVW(x) =

√√√√ t∑
ℓ,ℓ′=1

[U−1]ℓ,ℓ′φℓ(x)φℓ′(x).

Note that the importance ratio for the optimal training input density pFVW
tr (x)

is given by

wFVW(x) ∝ bFVW(x)−1
.

3.4 Extension of FVW to Pool-based Scenarios: P-FVW

If the values of the function bFVW(x) at the test input points {xte
j }nte

j=1 are
available, they can be used as a resampling bias function in pool-based AL.
However, since U is unknown in the pool-based scenario, it is not possible to
directly compute the values of bFVW(x) at the test input points {xte

j }nte
j=1. To cope

with this problem, we propose simply replacing U with an empirical estimate
Û . Then, the resampling bias function {bP-FVW(xte

j)}nte
j=1 is given by

bP-FVW(xte
j) =

√√√√ t∑
ℓ,ℓ′=1

[Û
−1

]ℓ,ℓ′φℓ(xte
j)φℓ′(xte

j). (12)

The importance weight is simply given by

wP-FVW(xte
j) ∝ bP-FVW(xte

j)−1
.

3.5 Combining P-CVW and P-FVW

It was shown that P-FVW has a closed-form solution of the optimal resampling
bias function. This simply suggests using bP-FVW(xte

j) for AL. Nevertheless, we
argue that it is possible to further improve the solution.

11

The point of our argument is the way the generalization error is analyzed—
the optimality of FVW is in terms of the expectation over both training input
points {xtr

i }
ntr
i=1 and training output noise {ϵtri }

ntr
i=1, while CVW is optimal in

terms of the conditional expectation over training output noise {ϵtri }
ntr
i=1 given

{xtr
i }

ntr
i=1. However, in reality, what we really want to evaluate is the single-trial

generalization error (i.e., without any expectation; both {xtr
i }

ntr
i=1 and {ϵtri }

ntr
i=1

are given and fixed). Unfortunately, it is not possible to directly evaluate the
single-trial generalization error since the training output noise {ϵtri }

ntr
i=1 cannot

be observed directly; on the other hand, the training input points {xtr
i }

ntr
i=1 are

available. It was shown that the conditional expectation approach is provably
more accurate in the single-trial analysis than the full expectation approach: if
δ = op(n

−1/4
tr) and terms of op(n−3

tr) are ignored, the following inequality holds
[4]:

Eϵ(σ2FVW − GW)2 ≥ Eϵ(σ2CVW − GW)2.

This implies that σ2CVW is asymptotically a more accurate estimator of the
single-trial generalization error GW than σ2FVW.

This analysis suggests that using P-CVW is more suitable than P-FVW. How-
ever, a drawback of P-CVW is that a closed-form solution is not available—thus,
we may practically need to prepare candidates of training input samples and
search for the best solution from the candidates. To ease this problem, our heuris-
tic is to use the closed-form solution of P-FVW as a ‘base’ candidate and search
around its vicinity. More specifically, we consider a family of resampling bias
functions (6), which is parameterized by γ. This family consists of the optimal
solution of P-FVW (γ = 1/2) and its variants (γ ̸= 1/2); passive learning is also
included as a special case (γ = 0) in this family.

The experimental results in Section 4 show that an additional search using
P-CVW tends to significantly improve the AL performance over P-FVW.

4 Simulations

In this section, we quantitatively compare the proposed and existing AL methods
through numerical experiments.

4.1 Toy Dataset

We first illustrate how the proposed and existing AL methods behave under a
controlled setting.

Let the input dimension be d = 1 and let the learning target function be

f(x) = 1 − x + x2 + δr(x),

where r(x) = (z3 − 3z)/
√

6 with z = (x − 0.2)/0.4. r(x) defined here is a third
order polynomial and is chosen to satisfy ⟨r, φℓ⟩pte = 0 and ∥r∥pte = 1. Let us
consider three cases δ = 0, 0.03, 0.06.

12

Let the number of training examples to gather be ntr = 100 and let {ϵtri }
ntr
i=1

be i.i.d. Gaussian noise with mean zero and standard deviation σ = 0.3, where
σ is treated as unknown here. Let the test input density pte(x) be Gaussian
with mean 0.2 and standard deviation 0.4; pte(x) is also treated as unknown
here. We draw nte = 1000 test input points independently from the test input
distribution.

We use a polynomial model of order 2 for learning:

f̂(x) = θ1 + θ2x + θ3x
2.

We compare the performance of the following sampling strategies:
(A) P-CVW: We draw training input points following the resampling bias

function (6) with

γ ∈ {0, 0.1, 0.2, . . . , 1} ∪ {0.4, 0.41, 0.42, . . . , 0.6}. (13)

Then we choose the best γ from the above candidates based on P-CVW (5).
IWLS is used for parameter learning.

(B) P-FVW: We draw training input points following the resampling bias
function (12). IWLS is used for parameter learning.

(C) Q-OPT [1, 7, 8]: We draw training input points following the resam-
pling bias function (6) with Eq.(13), and choose the best γ based on

Q-OPT = tr(ÛLOL⊤
O),

where LO = (X⊤X)−1X⊤. OLS is used for parameter learning.
(D) Passive: We draw training input points uniformly from the pool of test

input samples. OLS is used for parameter learning.
In Table 1, the mean squared test error (1) obtained by each method is

described. The numbers in the table are means and standard deviations over
100 trials.

When δ = 0, Q-OPT and P-CVW are comparable to each other and are
better than P-FVW and Passive. When δ = 0.03, the performance of P-CVW

and P-FVW is almost unchanged, while the performance of Q-OPT is degraded
significantly. Consequently, P-CVW gives the best performance among all. When
δ = 0.06, the performance of P-CVW and P-FVW are still almost unchanged,
while Q-OPT performs very poorly and is outperformed even by the baseline
Passive method.

The above results show that P-CVW and P-FVW are highly robust against
model misspecification, while Q-OPT is very sensitive to the violation of the
model correctness assumption. P-CVW tends to outperform P-FVW, which
would be caused by the fact that CVW is a more accurate estimator of the
single-trial generalization error than FVW.

4.2 Benchmark Datasets

Here we use the Bank, Kin, and Pumadyn regression benchmark data families
provided by DELVE [14]. Each data family consists of 8 different datasets: The

13

input dimension is either d = 8 or 32, the target function is either ‘fairly linear’
or ‘non-linear’ (‘f’ or ‘n’), and the unpredictability/noise level is either ‘medium’
or ‘high’ (‘m’ or ‘h’). Thus we use 24 datasets in total. Each dataset includes
8192 samples, consisting of d-dimensional input and 1-dimensional output data.
For convenience, we normalize every attribute into [0, 1].

We use all 8192 input samples as the pool of test input points (i.e., nte =
8192), and choose ntr = 100 training input points from the pool when d = 8
and ntr = 300 training input points when d = 32. We use the following linear
regression model:

f̂(x) =
50∑

ℓ=1

θℓ exp
(
−∥x − cℓ∥2

2

)
,

where {cℓ}50
ℓ=1 are template points randomly chosen from the pool of test input

points. Other settings are the same as the toy experiments in Section 4.1.
Table 2 summarizes the mean squared test error (1) over 1000 trials, where

all the values are normalized by the mean error of the Passive method.
When d = 8, all 3 AL methods tend to be better than the Passive method.

Among them, P-CVW significantly outperforms P-FVW and Q-OPT. When d =
32, Q-OPT outperforms P-CVW and P-FVW for several datasets. However, the
performance of Q-OPT is highly unstable and is very poor for the kin-32fm, kin-
32fh, and pumadyn-32fm datasets. Consequently, the average error of Q-OPT
over all 12 datasets is worse than the baseline Passive method. On the other hand,
P-CVW and P-FVW are still stable and consistently outperform the Passive
method. Among these two methods, P-CVW significantly outperforms P-FVW.

From the above experiments, we conclude that P-CVW and P-FVW are more
reliable than Q-OPT, and P-CVW tends to outperform P-FVW.

5 Real-World Applications

Finally, we apply the proposed AL method to a wafer alignment problem in
semiconductor exposure apparatus (see the left picture of Figure 3).

Recent semiconductors have the layered circuit structure, which are built by
exposing circuit patterns multiple times. In this process, it is extremely impor-
tant to align the wafer at the same position with very high accuracy. To this end,
the location of markers are measured to adjust the shift and rotation of wafers.
However, measuring the location of markers is time-consuming and therefore
there is a strong need to reduce the number of markers to measure for speeding
up the semiconductor production process.

The right picture of Figure 3 illustrates a wafer, where markers are printed
uniformly over the wafer. Our goal here is to choose the most ‘informative’
markers to measure for better alignment of the wafer. A conventional choice is
to measure markers far from the center in a symmetric way (see the right picture
of Figure 3 again), which would provide robust estimation of the rotation angle.
However, this naive approach is not necessarily the best since misalignment is

14

Reticle
stage

Lens

Silicon Wafer

Alignment
microscope

Reticle

Wafer
stage

Observed Marker

Shot
Marker

Fig. 3. Exposure apparatus (left) and a wafer (right).

not only caused by affine transformation, but also by several other non-linear
factors such as a warp, a biased characteristic of measurement apparatus, and
different temperature conditions. In practice, it is not easy to model such non-
linear factors accurately, so the linear affine model or the second-order model is
often used in wafer alignment. However, this causes model misspecification and
therefore our proposed AL method would be useful in this application.

Let us consider the functions whose input x = (u, v)⊤ is the location on
the wafer and whose output is the horizontal discrepancy ∆u or the vertical
discrepancy ∆v. We learn these functions by the following second-order model.

∆u or ∆v = θ0 + θ1u + θ2v + θ3uv + θ4u
2 + θ5v

2.

We totally have 220 wafer samples and our experiment is carried out as
follows. For each wafer, we choose ntr = 20 points from nte = 38 markers and
observe the horizontal and the vertical discrepancies. Then the above model
is trained and its prediction performance is tested using all 38 markers in the
220 wafers. This process is repeated for all 220 wafers. Since the choice of the
sampling location by AL methods is stochastic, we repeat the above experiment
for 100 times with different random seeds and take the mean value.

The mean and standard deviation of the squared test error over 220 wafers
are summarized in Table 3. This shows that the proposed P-CVW works signif-
icantly better than other sampling strategies and it provides about 10-percent
reduction in the squared error from the conventional heuristic of choosing the
outer markers. We also conducted similar experiments with the first-order or the
third-order models and confirmed that P-CVW still works the best. However, the
errors were larger than the second-order model and therefore we omit the detail.

6 Conclusions

We extended a population-based AL method (FVW) to a pool-based scenario
(P-FVW) and derived a closed-form ‘optimal’ resampling bias function. This
closed-form solution is optimal within the full-expectation framework, but is not

15

Table 1. The mean squared test error for the toy dataset (means and standard devi-
ations over 100 trials). For better comparison, we subtracted the model error δ2 from
the error and multiplied all values by 103. For each δ, the best method and comparable
ones by the Wilcoxon signed-rank test at the significance level 5% are indicated with
‘◦’. P-CVW P-FVW Q-OPT Passive

δ = 0 ◦2.03±1.81 2.59±1.83 ◦1.82±1.69 3.10±3.09
δ = 0.03 ◦2.17±2.04 2.81±2.01 2.62±2.05 3.40±3.55
δ = 0.06 ◦2.42±2.65 3.19±2.59 4.85±3.37 4.12±4.71

Average ◦2.21±2.19 2.86±2.18 3.10±2.78 3.54±3.85

Table 2. The mean squared test error for the DELVE datasets (means and standard
deviations over 1000 trials). For better comparison, all the values are normalized by
the mean error of the Passive method.

P-CVW P-FVW Q-OPT Passive

bank-8fm ◦0.89±0.14 0.95±0.16 0.91±0.14 1.00±0.19
bank-8fh 0.86±0.14 0.94±0.17 ◦0.85±0.14 1.00±0.20
bank-8nm ◦0.89±0.16 0.95±0.20 0.91±0.18 1.00±0.21
bank-8nh 0.88±0.16 0.95±0.20 ◦0.87±0.16 1.00±0.21
kin-8fm ◦0.78±0.22 0.87±0.24 0.87±0.22 1.00±0.25
kin-8fh ◦0.80±0.17 0.88±0.21 0.85±0.17 1.00±0.23
kin-8nm ◦0.91±0.14 0.97±0.16 0.92±0.14 1.00±0.17
kin-8nh ◦0.90±0.13 0.96±0.16 0.90±0.13 1.00±0.17

pumadyn-8fm ◦0.89±0.13 0.95±0.16 ◦0.89±0.12 1.00±0.18
pumadyn-8fh 0.89±0.13 0.98±0.16 ◦0.88±0.12 1.00±0.17
pumadyn-8nm ◦0.91±0.13 0.98±0.17 0.92±0.13 1.00±0.18
pumadyn-8nh ◦0.91±0.13 0.97±0.14 0.91±0.13 1.00±0.17

Average ◦0.87±0.16 0.95±0.18 0.89±0.15 1.00±0.20

P-CVW P-FVW Q-OPT Passive

bank-32fm 0.97±0.05 0.99±0.05 ◦0.96±0.04 1.00±0.06
bank-32fh 0.98±0.05 0.99±0.05 ◦0.96±0.04 1.00±0.05
bank-32nm 0.98±0.06 0.99±0.07 ◦0.96±0.06 1.00±0.07
bank-32nh 0.97±0.05 0.99±0.06 ◦0.96±0.05 1.00±0.06
kin-32fm ◦0.79±0.07 0.93±0.09 1.53±0.14 1.00±0.11
kin-32fh ◦0.79±0.07 0.92±0.08 1.40±0.12 1.00±0.10
kin-32nm 0.95±0.04 0.97±0.04 ◦0.93±0.04 1.00±0.05
kin-32nh 0.95±0.04 0.97±0.04 ◦0.92±0.03 1.00±0.05

pumadyn-32fm ◦0.98±0.12 0.99±0.13 1.15±0.15 1.00±0.13
pumadyn-32fh 0.96±0.04 0.98±0.05 ◦0.95±0.04 1.00±0.05
pumadyn-32nm 0.96±0.04 0.98±0.04 ◦0.93±0.03 1.00±0.05
pumadyn-32nh 0.96±0.03 0.98±0.04 ◦0.92±0.03 1.00±0.04

Average ◦0.94±0.09 0.97±0.07 1.05±0.21 1.00±0.07

Table 3. The mean squared test error for the wafer alignment problem (means and
standard deviations over 220 wafers). ‘Conv.’ indicates the conventional heuristic of
choosing the outer markers.

P-CVW P-FVW Q-OPT Passive Conv.
◦1.93±0.89 2.09±0.98 1.96±0.91 2.32±1.15 2.13±1.08

16

necessarily optimal in the single-trial analysis. To further improve the perfor-
mance, we extended another population-based method (CVW) to a pool-based
scenario (P-CVW), which is input-dependent and therefore more accurate. How-
ever, P-CVW does not allow us to obtain a closed-form solution. To cope with
this problem, we proposed a practical procedure which efficiently searches for a
better solution around the P-FVW optimal solution. Simulations showed that the
proposed method consistently outperforms the baseline passive learning scheme
and compares favorably with other AL methods.

References

1. Fedorov, V.V.: Theory of Optimal Experiments. Academic Press, New York (1972)
2. Wiens, D.P.: Robust weights and designs for biased regression models: Least

squares and generalized M-estimation. Journal of Statistical Planning and In-
ference 83(2) (2000) 395–412

3. Kanamori, T., Shimodaira, H.: Active learning algorithm using the maximum
weighted log-likelihood estimator. Journal of Statistical Planning and Inference
116(1) (2003) 149–162

4. Sugiyama, M.: Active learning in approximately linear regression based on condi-
tional expectation of generalization error. Journal of Machine Learning Research
7 (Jan. 2006) 141–166

5. McCallum, A., Nigam, K.: Employing EM in pool-based active learning for text
classification. In: Proceedings of the 15th International Conference on Machine
Learning. (1998)

6. Bach, F.: Active learning for misspecified generalized linear models. In Schölkopf,
B., Platt, J., Hoffman, T., eds.: Advances in Neural Information Processing Systems
19. MIT Press, Cambridge, MA (2007)

7. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.
Journal of Artificial Intelligence Research 4 (1996) 129–145

8. Fukumizu, K.: Statistical active learning in multilayer perceptrons. IEEE Trans-
actions on Neural Networks 11(1) (2000) 17–26

9. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of Statistical Planning and Inference 90(2)
(2000) 227–244

10. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer-
Verlag, Berlin (1996)

11. Huang, J., Smola, A., Gretton, A., Borgwardt, K.M., Schölkopf, B.: Correcting
sample selection bias by unlabeled data. In Schölkopf, B., Platt, J., Hoffman,
T., eds.: Advances in Neural Information Processing Systems 19. MIT Press,
Cambridge, MA (2007) 601–608

12. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning for differing training
and test distributions. In: Proceedings of the 24th International Conference on
Machine Learning. (2007)

13. Sugiyama, M., Nakajima, S., Kashima, H., von Bünau, P., Kawanabe, M.: Direct
importance estimation with model selection and its application to covariate shift
adaptation. In: Advances in Neural Information Processing Systems 20, Cam-
bridge, MA, MIT Press (2008)

14. Rasmussen, C.E., Neal, R.M., Hinton, G.E., van Camp, D., Revow, M., Ghahra-
mani, Z., Kustra, R., Tibshirani, R.: The DELVE manual (1996)

