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Abstract

Optimally designing the location of training input points (active learning) and
choosing the best model (model selection) are two important components of su-
pervised learning and have been studied extensively. However, these two issues
seem to have been investigated separately as two independent problems. If training
input points and models are simultaneously optimized, the generalization perfor-
mance would be further improved. In this paper, we propose a new approach called
ensemble active learning for solving the problems of active learning and model selec-
tion at the same time. We demonstrate by numerical experiments that the proposed
method compares favorably with alternative approaches such as iteratively perform-
ing active learning and model selection in a sequential manner.
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Nomenclature

f(x) : learning target function
D : domain of f(x)
xi : i-th training input point
yi : i-th training output value
ϵi : i-th noise
(xi, yi) : i-th training sample
n : the number of training samples
p(x) : training input density
q(x) : test input density
φi(x) : i-th basis function
αi : i-th parameter
b : the number of basis functions
G : generalization error
X : design matrix
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1 Introduction

When we are allowed to choose the location of training input points in supervised learning,
we want to optimize them so that the generalization error is minimized. This problem
is called active learning (AL) and has been studied extensively (Fedorov, 1972; MacKay,
1992b; Cohn et al., 1996; Fukumizu, 2000; Wiens, 2000; Kanamori & Shimodaira, 2003;
Sugiyama, 2006). On the other hand, model selection (MS) is another important issue in
supervised learning: a model (e.g., the type and number of basis functions, regularization
parameter, etc.) is optimized so that the generalization error is minimized (Akaike, 1974;
Rissanen, 1978; Schwarz, 1978; Craven & Wahba, 1979; Shimodaira, 2000; Sugiyama &
Müller, 2005).

Although AL and MS share a common goal of minimizing the generalization error, they
seem to have been studied separately as two independent problems. If AL and MS are
performed at the same time, the generalization performance would be further improved.
We call the problem of simultaneously optimizing training input points and models active
learning with model selection (ALMS). However, ALMS can not be directly solved by
simply combining standard AL methods and MS methods in a batch manner due to the
AL/MS dilemma: In order to select training input points by an existing AL method,
a model must be fixed (i.e., MS has been performed). On the other hand, in order to
select the model by a standard MS method, the training input points must be fixed and
corresponding training output values must be gathered (i.e., AL has been performed).

A standard approach to coping with the AL/MS dilemma is the sequential approach,
i.e., iteratively performing AL and MS in an online manner (MacKay, 1992a). Although
this approach is intuitive, it can perform poorly due to the model drift—the chosen model
varies through the online learning process. Since the location of optimal training input
points depends on the model, the training input points chosen in early stages could be
less useful for the model selected in the end of the learning process.

An alternative approach to solving the ALMS problems is to choose all the training
input points for an initially chosen model, which we refer to as the batch approach. Since
the target model is fixed through the learning process, this approach does not suffer from
the model drift and it works optimally (in terms of AL) if the initially chosen model agrees
with the finally chosen model. However, choosing an appropriate initial model before
having any single training sample may not be possible without prior knowledge—which
is usually unavailable. For this reason, it may be difficult to obtain a good performance
by the batch approach.

The weakness of the batch approaches actually lies in the fact that the training input
points chosen by an AL method are overfitted to the initially chosen model; the training
input points optimized for the initial model could be poor if a different model is cho-
sen later. To alleviate this problem, we propose a new approach called ensemble active
learning (EAL). The main idea of EAL is to perform AL not for a single model, but for
all models at hand. This allows us to hedge the risk of overfitting to a single (possibly
inferior) model. We experimentally show the EAL method significantly outperforms other
approaches.
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Figure 1: Regression problem.

2 Problem Formulation

In this section, we formulate the supervised learning problem.

2.1 Linear Regression

Let us consider the regression problem of learning a real-valued function f(x) defined on
D(⊂ Rd) from training samples

{(xi, yi) | yi = f(xi) + ϵi}n
i=1, (1)

where d is the dimension of the input vector x, n is the number of training samples,
and {ϵi}n

i=1 are independent and identically distributed (i.i.d.) noise with mean zero and
unknown variance σ2 (see Figure 1). We draw the training input points {xi}n

i=1 from a
distribution with density p(x), which we would like to optimize by an AL method.

We employ the following linear regression model for learning:

f̂(x) =
b∑

i=1

αiφi(x), (2)

where {φi(x)}b
i=1 are fixed linearly independent functions, α = (α1, α2, . . . , αb)

⊤ are pa-
rameters to be learned, and ⊤ denotes the transpose of a vector/matrix. We define the

generalization error G of a learned function f̂(x) by the expected squared error for test
input points. We assume that the test input points are drawn independently from a
distribution with density q(x). Then G is expressed as

G =

∫
D

(
f̂(x) − f(x)

)2

q(x)dx. (3)

As in the AL literature (Fukumizu, 2000; Wiens, 2000; Kanamori & Shimodaira, 2003;
Sugiyama, 2006), we assume that q(x) is known or its reasonable estimate is available.

Since we discuss the MS problem, i.e., choosing the number and type of the basis
functions {φi(x)}b

i=1, we can not generally assume that the model is correctly specified.
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Figure 2: Orthogonal decomposition of f(x).

Thus, the target function f(x) is not necessarily of the form (2), but is expressed as
follows (see Figure 2):

f(x) = g(x) + δr(x), (4)

where g(x) is the optimal approximation to f(x) within the model (2):

g(x) =
b∑

i=1

α∗
i φi(x). (5)

α∗ = (α∗
1, α

∗
2, . . . , α

∗
b)

⊤ is the unknown optimal parameter under G:

α∗ = argmin
α

G. (6)

δr(x) in Eq.(4) is the residual, which is orthogonal to {φi(x)}b
i=1 under q(x): for i =

1, 2, . . . , b, ∫
D

r(x)φi(x)q(x)dx = 0. (7)

The function r(x) governs the nature of the model error, and δ is the possible magnitude
of this error. In order to separate these two factors, we further impose the following
normalization condition on r(x): ∫

r2(x)q(x)dx = 1. (8)

Under this setting, the expected generalization error can be decomposed into the model
error δ2, bias B, and variance V :

E
ϵ

G = δ2 + B + V, (9)

where Eϵ denotes the expectation over the noise {ϵi}n
i=1 and

B =

∫
D

(
E
ϵ

f̂(x) − g(x)

)2

q(x)dx, (10)

V = E
ϵ

∫
D

(
f̂(x) − E

ϵ
f̂(x)

)2

q(x)dx. (11)
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2.2 Parameter Learning

A standard parameter learning method in the regression scenario would be ordinary least
squares (OLS). OLS is asymptotically unbiased and efficient in standard cases. However,
the AL scenario is a typical case of covariate shift (Shimodaira, 2000)—the training input
distribution is different from the test input distribution: p(x) ̸= q(x). Under covari-
ate shift, OLS is not asymptotically unbiased anymore; instead, the following adaptive
importance-weighted least-squares (AIWLS)1 is shown to work well (Shimodaira, 2000):

min
α

[
n∑

i=1

(
q(xi)

p(xi)

)λ (
f̂(xi) − yi

)2
]

, (12)

where λ (0 ≤ λ ≤ 1) is a tuning parameter. λ is called the flattening parameter since it
flattens the importance weights.

AIWLS has the following property: When λ = 0, AIWLS is reduced to OLS; thus it
is biased but has smaller variance. When λ = 1, AIWLS is asymptotically unbiased but
has a larger variance. In practice, an intermediate λ often produces good results since it
can control the tradeoff between the bias and variance. Therefore, we have to choose λ
appropriately by an MS method for improving generalization performance (Shimodaira,
2000; Sugiyama & Müller, 2005; Sugiyama et al., 2007).

Let X be the design matrix, i.e., X is the n × b matrix with the (i, j)-th element

Xi,j = φj(xi). (13)

Let D be the diagonal matrix with the i-th diagonal element being the importance weight
of the i-th sample:

Di,i =
q(xi)

p(xi)
. (14)

Then the AIWLS estimator α̂ is analytically given by

α̂ = Ly, (15)

where

L = (X⊤DλX)−1X⊤Dλ, (16)

y = (y1, y2, . . . , yn)⊤. (17)

2.3 Active Learning (AL)

AL is the problem of optimizing the training input density p(x) so that the generalization
error is minimized2:

min
p

G(p). (18)

1We may further add a regularizer to AIWLS.
2Precisely, this is the batch active learning problem where all training input points are designed at

once in the beginning.
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In order to perform AL, the inaccessible generalization error G has to be estimated. Note
that in batch AL, we have to estimate G before training samples is observed (cf. MS in
Section 2.4). Since our model (2) could be misspecified (see Section 2.1), we can not
reliably use the traditional OLS-based AL method (Fedorov, 1972; Cohn et al., 1996;
Fukumizu, 2000).

Recently, a novel generalization error estimator Ĝ(AL) for AL has been developed,
which is shown to be reliable even if the model (2) is not correctly specified (Sugiyama,
2006):

Ĝ(AL) = tr(ULL⊤), (19)

where U is the b-dimensional square matrix with the (i, j)-th element

Ui,j =

∫
D

φi(x)φj(x)q(x)dx. (20)

Note that σ2Ĝ(AL) corresponds to the variance term V (see Eq.(11)). When the model is
approximately correct (i.e., the model error δ asymptotically vanishes) and λ → 1 (i.e., α̂

is asymptotically unbiased), Ĝ(AL) is shown to be a consistent estimator of the expected
generalization error (up to the model error δ2):

σ2Ĝ(AL) = E
ϵ

G − δ2 + op(n
−1), (21)

where op(·) denotes the asymptotic order in probability. A sketch of its proof is reviewed
in Appendix A. This justifies the use of Eq.(19) as an AL criterion.

2.4 Model Selection (MS)

MS is the problem of optimizing a model M so that the generalization error is minimized:

min
M

G(M). (22)

In the current setting, the model M refers to the number and type of the basis functions
{φi(x)}b

i=1; the flattening parameter λ in Eq.(12) is also included in the model. In order to
perform MS, the inaccessible generalization error G has to be estimated. Note that in the
MS problem, it is usually assumed that the training samples {(xi, yi)}n

i=1 have already
been observed (Akaike, 1974; Rissanen, 1978; Schwarz, 1978; Craven & Wahba, 1979;
Shimodaira, 2000; Sugiyama & Müller, 2005). Thus {(xi, yi)}n

i=1 are used for estimating
the generalization error.

The current situation contains a shift in input distributions, i.e. p(x) ̸= q(x). There-
fore, standard MS methods such as Akaike’s information criterion (Akaike, 1974) and
cross-validation (Craven & Wahba, 1979) have strong bias and thus are not reliable
(Zadrozny, 2004; Sugiyama & Müller, 2005; Sugiyama et al., 2007). Recently, a novel
generalization error estimator for MS has been proposed, which possesses proper unbi-
asedness even under covariate shift (Sugiyama & Müller, 2005):

Ĝ(MS) = ⟨ULy, Ly⟩ − 2⟨ULy,L1y⟩ + 2σ̂2tr(ULL⊤
1 ), (23)
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where

σ̂2 =
∥y − XL0y∥2

n − b
. (24)

L0 and L1 denote L computed with λ = 0 and λ = 1, respectively. Ĝ(MS) is shown to
satisfy

E
ϵ

Ĝ(MS) = E
ϵ

G − C + Op(δn
− 1

2 ), (25)

where

C =

∫
D

f(x)2q(x)dx. (26)

A sketch of its proof is reviewed in Appendix B. This means that, Ĝ(MS) is an exact
unbiased estimator of the expected generalization error (up to the constant C) if the
model is correctly specified (i.e., the model error δ is zero); for misspecified models, it is
an asymptotic unbiased estimator in general, where the asymptotic error is proportional
to the model error δ. This justifies the use of Eq.(23) as an MS criterion.

2.5 Active Learning with Model Selection (ALMS)

The problems of AL and MS share the common goal—minimizing the generalization error
(see Eqs.(18) and (22)). However, they have been studied separately as two independent
problems so far. If AL and MS are performed at the same time, the generalization
performance would be further improved. We call the problem of simultaneously optimizing
training input points and models active learning with model selection (ALMS):

min
p,M

G(p,M). (27)

This is the problem we would like to solve in this paper.

3 Existing Approaches to ALMS

In this section, we discuss strengths and limitations of existing approaches to solving the
ALMS problem (27).

3.1 Direct Approach and the AL/MS Dilemma

A naive and direct solution to the ALMS problem would be to simultaneously optimize
p(x) and M . However, this direct approach may not be possible by simply combining
existing AL methods and MS methods in a batch manner due to the AL/MS dilemma:
when selecting the training input density p(x) with existing AL methods, the model M
must have been fixed (Fedorov, 1972; MacKay, 1992b; Cohn et al., 1996; Fukumizu, 2000;
Wiens, 2000; Kanamori & Shimodaira, 2003; Sugiyama, 2006). On the other hand, when
choosing the model M with existing MS methods, the training input points {xi}n

i=1 (or the
training input density p(x)) must have been fixed and the corresponding training output
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(a) Diagram (b) Transition of chosen models

Figure 3: Sequential approach.

values {yi}n
i=1 must have been gathered (Akaike, 1974; Rissanen, 1978; Schwarz, 1978;

Craven & Wahba, 1979; Shimodaira, 2000; Sugiyama & Müller, 2005). For example, the
AL criterion (19) can not be computed without fixing the model M and the MS criterion
(23) can not be computed without fixing the training input density p(x).

If training input points that are optimal for all model candidates exist, it is possible
to perform AL and MS at the same time without regard to the AL/MS dilemma: choose
the training input points {xi}n

i=1 for some model M by a standard AL method (e.g.,
Eq.(19)), gather corresponding output values {yi}n

i=1, and perform MS using a standard
method (e.g., Eq.(23)). It is shown that such common optimal training input points exist
for a class of correctly specified trigonometric polynomial regression models (Sugiyama
& Ogawa, 2003). However, the common optimal training input points may not exist in
general and thus the range of application of this approach is limited.

3.2 Sequential Approach

A standard approach to coping with the above AL/MS dilemma for arbitrary models
would be the sequential approach (MacKay, 1992a), i.e., in an iterative manner, a model
is chosen by an MS method and the next input point (or a small portion) is optimized
for the chosen model by an AL method (see Figure 3(a)).
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In the sequential approach, the chosen model Mi varies through the online learning
process (see the dashed line in Figure 3(b)). We refer to this phenomenon as the model
drift. The model drift phenomenon could be a weakness of the sequential approach since
the location of optimal training input points depends on the target model in AL; thus
a good training input point for one model could be poor for another model (see Sec-
tion 5.1 for illustrative examples). Depending on the transition of the chosen models, the
sequential approach can work very well. For example, when the transition of the model
is the solid line in Figure 3(b), most of the training input points are chosen for the finally
selected model Mn and the sequential approach has an excellent performance. However,
when the transition of the model is the dotted line in Figure 3(b), the performance be-
comes poor since most of the training input points are chosen for other models. Note that
we can not control the transition of the model properly since we do not know a priori
which model will be chosen in the end. Therefore, the performance of the sequential
approach is unstable.

Another issue that needs to be taken into account in the sequential approach is that
the training input points are not i.i.d. in general—the choice of the (i+1)-th training input
point xi+1 depends on the previously gathered samples {(xj, yj)}i

j=1. Since standard AL
and MS methods require the i.i.d. assumption for establishing their statistical properties
such as consistency or unbiasedness, they may not be directly employed in the sequential
approach (Bach, 2007). The AL criterion (19) and MS criterion (23) also suffer from the
violation of the i.i.d. condition, and loose their consistency and unbiasedness. However,
this problem can be settled by slightly modifying the criteria, which is an advantage of the
AL criterion (19) and MS criterion (23): Suppose we draw u input points from p(i)(x) in
each iteration (let n = uv, where v is the number of iterations). If u tends to be infinity,

simply redefining the diagonal matrix D as follows makes Ĝ(AL) and Ĝ(MS) still consistent
and asymptotically unbiased:

Dk,k =
q(xk)

p(i)(xk)
, (28)

where k = (i − 1)u + j, i = 1, 2, . . . , v, and j = 1, 2, . . . , u.

3.3 Batch Approach

An alternative approach to ALMS is to choose all the training input points for an initially
chosen model M0. We refer to this approach as the batch approach (see Figure 4(a)). Due
to the batch nature, this approach does not suffer from the model drift (cf. Figure 3(b));
the batch approach can be optimal in terms of AL if an initially chosen model M0 agrees
with the finally chosen model Mn (see the solid line in Figure 4(b)).

In order to choose the initial model M0, we may need a generalization error estimator
that can be computed before observing training samples—for example, the generalization
error estimator (19). However, this does not work well since Eq.(19) only evaluates the
variance of the estimator (see Eq.(11)); thus using Eq.(19) for choosing the initial model
M0 simply results in always selecting the simplest model from the candidates. Note that
this problem is not specific to the generalization error estimator (19), but is common to
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(a) Diagram (b) Transition of chosen models

Figure 4: Batch approach.

most generalization error estimators since it is generally not possible to estimate the bias
of the estimator (see Eq.(10)) before observing training samples. Therefore, in practice,
we may have to choose the initial model M0 randomly. If we have some prior preference
of models, P (M), we may draw the initial model according to it; otherwise we just have
to choose the initial model M0 randomly from the uniform distribution.

Due to the randomness of the initial model choice, the performance of the batch
approach may be unstable (see the dashed line in Figure 4(b)).

4 Proposed Approach: Ensemble Active Learning

(EAL)

In the previous section, we pointed out potential limitations of existing approaches. In
this section, we propose a new ALMS method that can cope with the above limitations.

The weakness of the batch approach lies in the fact that the training input points
chosen by an AL method are overfitted to the initially chosen model—the training input
points optimized for the initial model could be poor if a different model is chosen later.

We may reduce the risk of overfitting by not optimizing the training input distribution
specifically for a single model, but by optimizing it for all model candidates (see Figure 5).
This allows all the models to contribute to the optimization of the training input distri-
bution and thus we can hedge the risk of overfitting to a single (possibly inferior) model.
Since this approach could be viewed as applying a popular idea of ensemble learning to
the problem of AL, we refer to the proposed approach as ensemble active learning (EAL).

This idea could be realized by determining the training input density p(x) so that the
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(a) Diagram (b) Transition of chosen models

Figure 5: The proposed ensemble approach.

expected generalization error over all model candidates is minimized:

min
p

Ĝ(EAL)(p), (29)

where
Ĝ(EAL)(p) =

∑
M

Ĝ
(AL)
M (p)P (M). (30)

Ĝ
(AL)
M denotes the value of Ĝ(AL) for a model M and P (M) is the prior preference of the

model M . If no prior information on the goodness of the models is available, the uniform
prior may be simply used. In Section 5, we experimentally show that this ensemble
approach significantly outperforms the sequential and batch approaches.

5 Numerical Experiments

In this section, we quantitatively compare the proposed EAL method with other ap-
proaches through numerical experiments.

5.1 Toy Datasets

Here we illustrate how the ensemble (Section 4), batch (Section 3.3), and sequential
(Section 3.2) methods behave using a toy one-dimensional dataset.

Let the input dimension be d = 1 and the target function f(x) be the following third
order polynomial (see the top graph of Figure 6):

f(x) = 1 − x + x2 + r(x), (31)
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Figure 6: Target function, training input density pc(x), and test input density q(x).

where, for δ = 0.05,

r(x) = δ
z3 − 3z√

6
with z =

x − 0.2

0.4
. (32)

Let the test input density q(x) be the Gaussian density with mean 0.2 and standard
deviation 0.4, which is assumed to be known in this illustrative simulation. We choose the
training input density p(x) from a set of Gaussian densities with mean 0.2 and standard
deviation 0.4c, where

c = 0.8, 0.9, 1.0, . . . , 2.5. (33)

These density functions are illustrated in the bottom graph of Figure 6. We add
i.i.d. Gaussian noise with mean zero and standard deviation 0.3 to the training output
values.

Let the number of basis functions be b = 3 and the basis functions be

φi(x) = xi−1 for i = 1, 2, . . . , b. (34)

Note that the target function f(x) is not realizable since the model is the second order
polynomial. For illustration purposes, we use the above fixed basis functions and focus
on choosing the flattening parameter λ by MS; λ is selected from

λ = 0, 0.5, 1. (35)

First, we investigate the dependency between the goodness of the training input den-
sity (i.e., c) and the model (i.e., λ). For each λ and each c, we draw training input points
{xi}100

i=1 and gather output values {yi}100
i=1. Then we learn the parameter α̂ by AIWLS

and compute the generalization error G. The mean G over 500 trials as a function of c
for each λ is depicted in Figure 7(a). This graph underlines that the best training input
density c could strongly depend on the model λ, implying that a training input density
that is good for one model could be poor for others. For example, when the training input
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Figure 7: Simulation results for the toy dataset.

density is optimized for the model λ = 0, c = 1.1 would be an excellent choice. However,
c = 1.1 is not so suitable for other models λ = 0.5, 1. This figure illustrate a possible
weakness of the batch method: when an initially chosen model is significantly different
from the finally chosen model, the training input points optimized for the initial model
could be less useful for the final model and the performance is degraded.

Next, we investigate the behavior of the sequential approach. In our implementation,
10 training input points are chosen at each iteration. Figure 7(b) depicts the transition
of the frequency of chosen λ in the sequential learning process over 500 trials. It shows
that the choice of models varies over the learning process; a smaller λ (which has smaller
variance thus low complexity) is favored in the beginning, but a larger λ (which has larger
variance thus higher complexity) tends to be chosen as the number of training samples
increases. Figure 7 illustrates a possible weakness of the sequential method: the target
model drifts during the sequential learning process (from small λ to large λ) and the
training input points designed in an early stage (for λ = 0) could be poor for the finally
chosen model (λ = 1).

Finally, we investigate the generalization performance of each method when the num-
ber of training samples to gather is

n = 50, 100, 150, 200, 250. (36)

Table 1 describes the means and standard deviations of the generalization error obtained
by the sequential, batch, and ensemble methods; as a baseline, we also included the result
of passive learning, i.e., the training input points {xi}n

i=1 are drawn from the test input
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Table 1: Means and standard deviations of generalization error for the toy dataset when
the number of basis functions b is fixed at 3 and the flattening parameter λ is chosen from
{0, 0.5, 1} by MS. All values in the table are multiplied by 103. The best method in terms
of the mean generalization error and comparable methods according to the Wilcoxon
signed rank test at the significance level 5% are marked by ‘◦’.

n Passive Sequential Batch Ensemble

50 10.63± 8.33 7.98± 4.57 8.04± 4.39 ◦7.59± 4.27

100 5.90± 3.42 5.66± 2.75 5.73± 3.01 ◦5.15± 2.49

150 4.80± 2.38 4.40± 1.74 4.61± 1.85 ◦4.13± 1.56

200 4.21± 1.66 3.97± 1.54 4.26± 1.63 ◦3.73± 1.25

250 3.79± 1.31 3.46± 1.00 3.88± 1.41 ◦3.35± 0.95

Table 2: Means and standard deviations of generalization error for the toy dataset when
the flattening parameter λ is fixed at 1 and the number of basis functions b is chosen from
{2, 3, 4} by MS. All values in the table are multiplied by 103. The best method in terms of
the mean generalization error and comparable methods according to the Wilcoxon signed
rank test at the significance level 5% are marked by ‘◦’.

n Passive Sequential Batch Ensemble

50 26.82± 30.60 18.97± 24.08 16.36± 21.43 ◦16.24± 21.54

100 11.59± 17.41 12.91± 21.19 7.99± 14.59 ◦7.21± 13.50

150 9.38± 16.23 ◦9.44± 18.32 5.67± 12.16 ◦5.60± 12.18

200 6.90± 13.75 6.92± 15.77 ◦3.37± 7.39 ◦3.78± 8.75

250 4.01± 8.49 5.40± 13.89 2.43± 4.50 ◦2.40± 4.49

density q(x) (or equivalently c = 1). The table shows that all three ALMS methods tend
to outperform passive learning. However, the improvement of the sequential method is
not so significant, which would be caused by the model drift phenomenon (see Figure 7).
The batch method also does not provide significant improvement due to the overfitting
to the randomly chosen initial model (see Figure 7(a)). On the other hand, the proposed
ensemble method does not suffer from these problems and works significantly better than
the other methods—the best method in terms of the mean generalization error and com-
parable methods by the Wilcoxon signed rank test at the significance level 5% (Henkel,
1979) are marked by ‘◦’ in the table.

We also conducted similar experiments when the flattening parameter is fixed at λ = 1
and the maximum order of polynomials b is chosen by MS; b is selected from

b = 2, 3, 4. (37)

The results are summarized in Table 2, showing that the proposed EAL method still
works well.
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5.2 Benchmark Datasets

Finally, we evaluate whether the advantages of the proposed method are still valid un-
der more realistic settings. For this purpose, we use regression benchmark datasets
provided by DELVE (Rasmussen et al., 1996): Bank-8fm, Bank-8fh, Bank-8nm, Bank-
8nh, Kin-8fm, Kin-8fh, Kin-8nm, Kin-8nh, Pumadyn-8fm, Pumadyn-8fh, Pumadyn-8nm,
Pumadyn-8nh, Abalone and Boston. Let N be the number of samples: N = 8192 for the
Bank, Kin, and Pumadyn datasets, N = 4177 for the Abalone dataset, and N = 596 for
the Boston dataset. Each sample consists of d-dimensional input points and 1-dimensional
output values, where d = 8 for the Bank, Kin, and Pumadyn datasets, d = 7 for the
Abalone dataset, and d = 13 for the Boston dataset. For convenience, every attribute is
normalized into [0, 1].

Suppose we are given all N input points (i.e., unlabeled samples). Note that output
values are kept unknown at this point. From this pool of unlabeled samples, we choose
n = 200 input points {xi}n

i=1 for training and observe the corresponding output values
{yi}n

i=1. The task is to predict the output values of all N samples.
In this experiment, the test input density q(x) is unknown. So we estimate it using

the uncorrelated multi-dimensional Gaussian model:

q(x) =
1

(2πγ̂2
MLE)

d
2

exp

(
−∥x − µ̂MLE∥2

2γ̂2
MLE

)
, (38)

where µ̂MLE and γ̂MLE are the maximum likelihood estimates of the mean and standard
deviation obtained from all N unlabeled samples. We select the training input density
p(x) from the set of uncorrelated multi-dimensional Gaussian densities with mean µ̂MLE

and standard deviation cγ̂MLE, where

c = 0.5, 0.6, 0.7, . . . , 1.5. (39)

Let the basis functions be Gaussian functions with center ti and width h: for i =
1, 2, . . . , b,

φi(x) = exp

(
−∥x − ti∥2

2h2

)
. (40)

The centers {ti}b
i=1 are randomly chosen from the pool of unlabeled samples. In this

experiment, we fix the number of basis functions at b = 100 and choose λ from

λ = 0, 0.5, 1. (41)

For the Bank, Pumadyn, Abalone, and Boston datasets, the standard deviation h of
Gaussian basis functions is chosen from from

h = 0.4, 0.8, 1.2, 1.6, 2.0, (42)

and for the Kin datasets, h is chosen from

h = 2, 3, 4. (43)
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Table 3: Means and standard deviations of the generalization error for the DELVE
datasets. All values are normalized by the mean generalization error of the passive learn-
ing method. The best method in terms of the mean generalization error and comparable
methods according to the Wilcoxon signed rank test at the significance level 5% are
marked by ‘◦’.

Dataset Passive Sequential Batch Ensemble

Bank-8fm 1.0000± 1.2545 .5162± .4892 .4139± .0797 ◦.4059± .0742

Bank-8fh 1.0000± .4054 .5473± .2111 .4495± .1354 ◦.4391± .0945

Bank-8nm 1.0000± .6972 .6375± .1618 .5676± .1187 ◦.5572± .1128

Bank-8nh 1.0000± .2976 .6153± .1574 .5326± .1196 ◦.5202± .1010

Kin-8fm 1.0000± .3488 .8228± .2067 ◦.7654± .1634 ◦.7596± .1570

Kin-8fh 1.0000± .3922 .7759± .2011 .7217± .1530 ◦.7164± .1494

Kin-8nm 1.0000± .2380 .8495± .1673 .7756± .1158 ◦.7710± .1138

Kin-8nh 1.0000± .3629 .8676± .2165 ◦.8094± .1537 ◦.8053± .1409

Pumadyn-8fm 1.0000± .2540 ◦.8273± .4020 .9332± .7677 .9320± .7998

Pumadyn-8fh 1.0000± .1999 .8059± .1703 .7440± .2154 ◦.7169± .2058

Pumadyn-8nm 1.0000± .2044 .8286± .1545 .7963± .1913 ◦.7768± .1824

Pumadyn-8nh 1.0000± .2062 .8399± .1393 .7744± .1546 ◦.7634± .1626

Abalone 1.0000± 5.0032 .2089± .9677 ◦.0974± .7885 ◦.0552± .2810

Boston 1.0000± 13.1612 .0141± .1738 ◦.0008± .0048 ◦.0007± .0035

We again compare the proposed ensemble method with the batch, sequential, and
passive methods. In this simulation, we can not create the training input points in an
arbitrary location because we only have N samples in the pool. Here, we first create
provisional input points following the determined training input density, and then choose
the input points from the pool of unlabeled samples that are closest to the provisional
input points. In this simulation, the expectation over the test input density q(x) in the
matrix U (see Eq.(20)) is calculated by the empirical average over all N unlabeled samples
since the true test error is also calculated as such. For each dataset, we run this simulation
500 times, by changing the template points {ti}b

i=1 in each run (thus the choice of training
input points is also changed in each trial).

Table 3 describes the mean and standard deviation of the generalization error by each
method. All the values are normalized by the mean generalization error of the passive
learning method for better comparison. In the table, the best method in terms of the
mean generalization error and comparable methods according to the Wilcoxon signed
rank test at the significance level 5% (Henkel, 1979) are marked by ‘◦’. This shows that
all three ALMS methods perform better than the passive learning method. Among them,
the proposed ensemble method tends to work significantly better than the other methods.

Based on the simulation results, we conclude that the proposed ensemble approach
is useful in ALMS scenarios; thus it could be a promising alternative to the sequential
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approach, which used to be de facto standard.

6 Conclusions

So far, the problems of active learning (AL) and model selection (MS) have been studied
as two independent problems, although they both share a common goal of minimizing
the generalization error. We suggested that by simultaneously performing AL and MS—
which we called active learning with model selection (ALMS), a better generalization
capability could be achieved. We pointed out that the sequential approach, which would
be a common approach to ALMS, can perform poorly due to the model drift phenomenon
(Section 3.2). A batch approach does not suffer from the model drift problem, but it is
hard to choose the initial model appropriately and therefore we argued that the batch
approach is not reliable in practice (Section 3.3). To overcome the limitations of the
sequential and batch approaches, we proposed a new approach called ensemble active
learning (EAL), which performs AL not only for a single model, but for an ensemble of
models (Section 4). We have demonstrated through simulations that the proposed EAL
method compares favorably with other approaches (Section 5).

In theory, IWLS is asymptotically unbiased as long as the support of training and test
input distributions are equivalent. However, in practical situations with finite samples,
IWLS may not work properly if these two distributions are less overlapped. It is important
to theoretically investigate how robust IWLS is when training and test input distributions
are significantly different.

In real applications, we are often given unlabeled samples and want to choose the
best samples to label. Such a situation is referred to as pool-based scenarios. In our
experiments, we estimated the input density from the unlabeled samples and showed
that the proposed approach significantly outperforms passive learning. However, it would
be more promising to develop a method that can directly deal with a finite number of
unlabeled samples.

Although we focused on regression problems in this paper, the idea of EAL is ap-
plicable in any supervised learning scenarios, given that a suitable batch AL method is
available. This implies that, in principle, it is possible to extend the proposed EAL
method to classification problems. However, to the best of our knowledge, there is no
reliable batch AL method in classification tasks. Therefore, developing an ALMS method
for classification is still a challenging open problem, which needs to be investigated.

In this paper, we focused on a linear regression model, which is categorized as a regular
model in statistics (White, 1982). On the other hand, a lot of attention has been paid to
non-regular models such as neural networks (Watanabe, 2001). Fukumizu (2000) proposed
an active learning method for neural networks which prunes irrelevant components during
the on-line learning process. An interesting future direction to pursue along this line is
how to cope with the model drift issues in neural network learning.
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A Proof of Eq.(21)

First, we show the consistency (21) when λ = 1. A simple calculation yields that the bias
B and the variance V can be expressed as

B = ⟨U (E
ϵ

α̂ − α∗), E
ϵ

α̂ − α∗⟩, (44)

V = E
ϵ
⟨U (α̂ − E

ϵ
α̂), α̂ − E

ϵ
α̂⟩. (45)

Let

zg = (g(x1), g(x2), . . . g(xn))⊤, (46)

zr = (r(x1), r(x2), . . . r(xn))⊤. (47)

By definition, it holds that
zg = Xα∗. (48)

Then we have

E
ϵ

α̂ − α∗ = L(zg + δzr) − α∗

= ( 1
n
X⊤DX)−1 1

n
X⊤D(Xα∗ + δzr) − α∗

= δ( 1
n
X⊤DX)−1 1

n
X⊤Dzr. (49)

By the law of large numbers (Rao, 1965), we have

lim
n→∞

[ 1
n
X⊤DX]i,j = lim

n→∞

(
1

n

n∑
k=1

q(xk)

p(xk)
φi(xk)φj(xk)

)

=

∫
D

q(x)

p(x)
φi(x)φj(x)p(x)dx

= Op(1). (50)

Furthermore, by the central limit theorem (Rao, 1965), it holds for sufficiently large n,

[ 1
n
X⊤Dzr]i =

1

n

n∑
k=1

r(xk)φi(xk)
q(xk)

p(xk)

=

∫
D

r(x)φi(x)
q(x)

p(x)
p(x)dx + Op(n

− 1
2 )

= Op(n
− 1

2 ), (51)
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where the last equality follows from Eq.(7). Given U = Op(1), we have

B = Op(δ
2n−1). (52)

Since

LL⊤ = ( 1
n
X⊤DX)−1 1

n2 X
⊤D2X( 1

n
X⊤DX)−1

= Op(n
−1), (53)

we have

V = σ2tr(ULL⊤)

= Op(n
−1). (54)

Thus, if δ = op(1),

E
ϵ

G = B + V + δ2

= op(n
−1) + σ2Ĝ(AL) + δ2, (55)

which results in Eq.(21). We may establish the same argument if λ is asymptotically one.

B Proof of Eq.(25)

We show the asymptotic unbiasedness (25). A simple calculation yields that the general-
ization error G is expressed as

G = ⟨Uα̂, α̂⟩ − 2⟨Uα̂,α∗⟩ + C. (56)

Since

E
ϵ
⟨Uα̂, α∗⟩ = ⟨UL(zg + δzr),L1zg⟩, (57)

E
ϵ
⟨Uα̂, L1y⟩ = ⟨UL(zg + δzr),L1(zg + δzr)⟩ + σ2tr(ULL⊤

1 ), (58)

we have

E
ϵ

G − C − E
ϵ

Ĝ(MS) = 2⟨UL(zg + δzr), δL1zr⟩ + 2(E
ϵ

σ̂2 − σ2)tr(ULL⊤
1 ). (59)

Eqs.(50) and (51) imply

L1zr = Op(n
− 1

2 ). (60)

Thus the first term in the right-hand side of Eq.(59) is of Op(δn
− 1

2 ). Since

tr(ULL⊤
1 ) = Op(n

−1), (61)

E
ϵ

σ̂2 = σ2 +
δ2∥Gzr∥2

tr(G)
, (62)

where G = I −XL0 and I is the identity matrix, the second term in the right-hand side
of Eq.(59) is of Op(δ

2n−1). This establishes Eq.(25).
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