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Abstract

Off-policy reinforcement learning is aimed at efficiently
reusing data samples gathered in the past, which is an
essential problem for physically grounded AI as ex-
periments are usually prohibitively expensive. A com-
mon approach is to use importance sampling techniques
for compensating for the bias caused by the difference
between data-sampling policies and the target policy.
However, existing off-policy methods do not often take
the variance of value function estimators explicitly into
account and therefore their performance tends to be un-
stable. To cope with this problem, we propose using an
adaptive importance sampling technique which allows
us to actively control the trade-off between bias and
variance. We further provide a method for optimally
determining the trade-off parameter based on a variant
of cross-validation. We demonstrate the usefulness of
the proposed approach through simulations.

Introduction
Policy iteration is a reinforcement learning setup where the
optimal policy is obtained by iteratively performing policy
evaluation and improvement steps (Sutton & Barto 1998).
When policies are updated, many popular policy iteration
methods require the user to gather new data samples fol-
lowing the updated policy and the new samples are used for
value function approximation. However, this approach is in-
efficient particularly when the sampling cost is high since
previously gathered data samples are simply discarded; it
would be more efficient if we could reuse the data collected
in the past. A situation where the sampling policy (a pol-
icy used for gathering data samples) and the current policy
are different is called off-policy reinforcement learning (Sut-
ton & Barto 1998) with few notable exceptions such as Q-
learning (Watkins 1989) and policy search by dynamic pro-
gramming (Bagnell et al. 2003).

In the off-policy situation, simply employing a standard
policy iteration method such as least-squares policy itera-
tion (Lagoudakis & Parr 2003) does not lead to the optimal
policy as the sample distribution is determined by the poli-
cies. Therefore, the sampling policy can introduce bias into
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the sample distribution. This distribution mismatch prob-
lem could be eased by the use of importance sampling tech-
niques (Fishman 1996), which cancel the bias asymptoti-
cally. However, the approximation error is not necessar-
ily small when the bias is reduced by importance sampling;
the variance of estimators should also be taken into account
since the approximation error is the sum of squared bias and
variance. Due to large variance, existing importance sam-
pling techniques tend to be unstable (Sutton & Barto 1998;
Precup, Sutton, & Singh 2000).

To overcome the instability problem, we propose using
an adaptive importance sampling technique used in statis-
tics (Shimodaira 2000). The proposed adaptive method,
which smoothly bridges the ordinary estimator and the
importance-weighted estimator, allows us to control the
trade-off between bias and variance. Thus, given that the
trade-off parameter is determined carefully, the optimal per-
formance can be achieved in terms of both bias and vari-
ance. However, the optimal value of the trade-off parameter
is heavily dependent on data samples and policies. For this
reason, using a prefixed parameter value may not be always
effective in practice.

In order to optimally choose the value of the trade-off pa-
rameter, we reformulate the value function approximation
problem as a supervised regression problem and propose us-
ing an automatic model selection method based on a variant
of cross-validation (Sugiyama, Krauledat, & Müller 2007).
The method called importance-weighted cross-validation
enables us to estimate the approximation error of value func-
tions in an almost unbiased manner even under off-policy
situations. Thus we can actively determine the trade-off pa-
rameter based on data samples at hand. We demonstrate the
usefulness of the proposed approach through simulations.

Background and Notation
In this section, we formulate the reinforcement learning
problem.

Markov Decision Processes. Let us consider a Markov
decision process (MDP) (S,A, PT, R, γ), where S is a set
of states, A is a set of actions, PT(s′|s, a) (∈ [0, 1]) is the
transition probability density from state s to next state s′
when action a is taken, R(s, a, s′) (∈ R) is a reward for



transition from s to s′ by taking action a, and γ (∈ [0, 1)) is
the discount factor for future rewards. Let π(a|s) (∈ [0, 1])
be a stochastic policy which is the conditional probability
density of taking action a given state s. Let Qπ(s, a) (∈ R)
be a state-action value function for policy π which is the ex-
pected discounted sum of rewards the agent will obtain when
taking action a in state s and following policy π thereafter.

Qπ(s, a) ≡ E
π,PT

[ ∞∑
n=1

γn−1R(sn, an)
∣∣∣s1 = s, a1 = a

]
,

where Eπ,PT denotes the expectation over {sn, an}∞n=1 fol-
lowing π(an|sn) and PT(sn+1|sn, an), and R(s, a) is the
expected reward when the agent takes action a in state s:

R(s, a) = E
PT(s′|s,a)

[R(s, a, s′)] .

The goal of reinforcement learning is to obtain the pol-
icy which maximizes the sum of future rewards; the optimal
policy may be expressed as

π∗(a|s) ≡ δ(a− arg max
a′

Q∗(s, a′)),

where δ(·) is the delta function and Q∗(s, a) is the optimal
state-action value function defined by

Q∗(s, a) ≡ max
π

Qπ(s, a).

Policy Iteration. Computing the value function Qπ(s, a)
is called policy evaluation. Using Qπ(s, a), we can find a
better policy π′(a|s) by

π′(a|s) = δ(a− arg max
a′

Qπ(s, a′)).

This is called (greedy) policy improvement. It is known that
repeating policy evaluation and policy improvement results
in the optimal policy π∗(a|s) (Sutton & Barto 1998). This
entire process is called policy iteration. For technical rea-
sons, we assume that all policies are strictly positive (i.e., all
actions have non-zero probabilities). In order to guarantee
this, we update a policy by softmax:

π′(a|s) =
exp(Qπ(s, a)/τ)∫

A exp(Qπ(s, a′)/τ)da′
, (1)

where τ is a positive parameter which determines the ran-
domness of new policy π′.

Value Function Approximation. Although policy itera-
tion is guaranteed to produce the optimal policy, it is of-
ten computationally intractable since |S|× |A| is very large;
|S| or |A| becomes infinity when the state space or action
space is continuous. To overcome this problem, the refer-
ences (Sutton & Barto 1998; Precup, Sutton, & Dasgupta
2001; Lagoudakis & Parr 2003) proposed approximating the
state-action value function Qπ(s, a) using the following lin-
ear model:

Q̂π(s, a;θ) ≡
B∑

b=1

θbφb(s, a) = θ>φ(s, a),

where φ(s, a) = (φ1(s, a), φ2(s, a), . . . , φB(s, a))> are the
fixed basis functions, > denotes the transpose, B is the

number of basis functions, and θ = (θ1, θ2, . . . , θB)> are
model parameters. Note that B is usually chosen to be much
smaller than |S| × |A|. For N -step transitions, we ideally
want to learn the parameters θ so that the approximation er-
ror G is minimized:

θ∗ ≡ arg min
θ

G,

G ≡ E
PI,π,PT

[
1
N

N∑
n=1

g(sn, an; θ)

]
, (2)

g(s, a; θ) ≡
(
Q̂π(s, a; θ)−Qπ(s, a)

)2

,

where g(s, a; θ) is a cost function corresponding to the ap-
proximation error of Q̂π for each pair (s, a) and EPI,π,PT

denotes the expectation over {sn, an}N
n=1 following the ini-

tial probability density PI(s1), the policy π(an|sn), and
the transition probability PT(sn+1|sn, an). A fundamen-
tal problem of the above formulation is that the target
function Qπ(s, a) cannot be observed directly. To cope
with this problem, we use the Bellman residual cost func-
tion (Schoknecht 2003; Lagoudakis & Parr 2003) defined
by

gBR(s, a;θ)

≡
(
Q̂π(s, a; θ)−R(s, a)− γ E

π(a′|s′)
PT(s′|s,a)

[
Q̂π(s′, a′; θ)

] )2

.

On-policy vs. Off-policy. We suppose that a data set con-
sisting of M episodes of N steps is available. The agent ini-
tially starts from a randomly selected state s1 following the
initial probability density PI(s) and chooses an action based
on a sampling policy π̃(an|sn). Then the agent makes a
transition following PT(sn+1|sn, an) and receives a reward
rn (= R(sn, an, sn+1)). This is repeated for N steps—thus
the training data Dπ̃ is expressed as

Dπ̃ ≡ {dπ̃
m}M

m=1,

where each episodic sample dπ̃
m consists of a set of 4-tuple

elements as

dπ̃
m ≡ {(sπ̃

m,n, aπ̃
m,n, rπ̃

m,n, sπ̃
m,n+1)}N

n=1.

We use two types of policies which have different pur-
poses: the sampling policy π̃(a|s) for collecting data sam-
ples and the current policy π(a|s) for computing the value
function Q̂π. If π̃(a|s) is equal to π(a|s), just replacing
the expectation contained in the error G by sample averages
gives a consistent estimator (i.e., the estimated parameter
converges to the optimal value as the number M of episodes
goes to infinity):

θ̂NIW ≡ arg min
θ

ĜNIW,

ĜNIW ≡ 1
MN

M∑
m=1

N∑
n=1

ĝm,n,

ĝm,n ≡ ĝBR(sπ̃
m,n, aπ̃

m,n, rπ̃
m,n; θ,D),



ĝBR(s, a, r; θ,D)

≡
(
Q̂π(s, a;θ)−r− γ

|D(s,a)|
∑

s′∈D(s,a)

E
π(a′|s′)

[Q̂π(s′, a′;θ)]
)2

,

where D(s,a) is a set of 4-tuple elements containing state
s and action a in the training data D, and ‘NIW’ denotes
‘No Importance Weight’ (explained later). This situation is
called on-policy.

However, π̃(a|s) is usually different from π(a|s) since the
current policy is updated in policy iteration. The situation
where π̃(a|s) is different from π(a|s) is called off-policy. In
the off-policy setting, θ̂NIW is no longer consistent. This
inconsistency problem could be avoided by gathering new
samples, i.e., when the current policy is updated, new sam-
ples are gathered following the updated policy and the new
samples are used for policy evaluation. However, when
the data sampling cost is high, this is not cost-efficient—it
would be more cost-efficient if we could reuse the previously
gathered samples.

In the following sections, we address the issue of efficient
sample reuse in the off-policy setting.

Importance Weighting Techniques
In this section, we review existing off-policy reinforcement
learning techniques.

Importance Sampling. Importance sampling is a general
technique for dealing with the off-policy situation. Suppose
we have i.i.d. (independent and identically distributed) sam-
ples {xm}M

m=1 from a strictly positive probability density
function P̃ (x). Using these samples, we would like to com-
pute the expectation of a function g(x) over another proba-
bility density function P (x). A consistent approximation of
the expectation is given by the importance-weighted average
as follows:

1
M

M∑
m=1

g(xm)
P (xm)

P̃ (xm)
M→∞−→ E

P̃ (x)

[
g(x)

P (x)

P̃ (x)

]

=
∫

g(x)
P (x)

P̃ (x)
P̃ (x)dx =

∫
g(x)P (x)dx = E

P (x)
[g(x)] .

However, applying the importance sampling technique in
off-policy reinforcement learning is not that straightforward
since our training samples of state s and action a are not
i.i.d. due to the sequential nature of MDPs. Below, we re-
view existing importance weighting techniques in MDPs.

Episodic Importance Weights. In a setting with episodic
restarts, the independence of the episodes can be employed
resulting into the episodic importance weight (EIW) (Sutton
& Barto 1998). More specifically, the error G defined by (2)
can be rewritten as

G = E
PI,π̃,PT

[
1
N

M∑
n=1

g(sn, an;θ)
Pπ(d)
Pπ̃(d)

]
,

where Pπ(d) is the probability density of observing episodic
data d under policy π:

Pπ(d) ≡ PI(s1)
N∏

n=1

π(an|sn)PT(sn+1|sn, an).

We note that the importance weights can be computed with-
out explicitly knowing PI and PT as

Pπ(d)
Pπ̃(d)

=
∏N

n=1 π(an|sn)∏N
n=1 π̃(an|sn)

.

Using the training data Dπ̃, we can construct a consistent
estimator of G as

ĜEIW ≡ 1
MN

M∑
m=1

N∑
n=1

ĝm,nwm,N ,

where

wm,N ≡
∏N

n′=1 π(aπ̃
m,n′ |sπ̃

m,n′)∏N
n′=1 π̃(aπ̃

m,n′ |sπ̃
m,n′)

.

Per-decision Importance Weights. The paper (Precup,
Sutton, & Singh 2000) proposed a more efficient impor-
tance sampling technique called the per-decision impor-
tance weight (PDIW) method. A crucial observation in
PDIW is that the error at the n-th step does not depend on
the samples after the n-th step, i.e., G can be rewritten as

G = E
PI,π̃,PT

[
1
N

N∑
n=1

g(sn, an; θ)wm,n

]
.

Using the training data Dπ̃, we can construct a consistent
estimator as

ĜPDIW ≡ 1
MN

M∑
m=1

N∑
n=1

ĝm,nwm,n.

Based on this, the parameter θ is estimated by

θ̂PDIW ≡ arg min
θ

ĜPDIW.

Policy Iteration with Adaptive Importance
Weights

The importance weighted estimator θ̂PDIW is guaranteed to
be consistent. However, it is not efficient in the statistics
sense (Shimodaira 2000), i.e., it can have large variance in
finite sample cases and therefore learning with PDIW could
be unstable in practice. In this section, we propose a new
importance-weighting method that is more stable than exist-
ing methods.

Adaptive Per-Decision Importance Weights. In order to
improve the estimation accuracy, it is important to control
the trade-off between consistency and efficiency (or simi-
larly bias and variance) based on the training data. Here,
we introduce a flattening parameter ν (0 ≤ ν ≤ 1) to
control the trade-off by slightly ‘flattening’ the importance
weights (Shimodaira 2000; Sugiyama, Krauledat, & Müller
2007):

ĜAPDIW ≡ 1
MN

M∑
m=1

N∑
n=1

ĝm,n

(
wm,n

)ν

, (3)



where APDIW means Adaptive PDIW. Based on this, the
parameter θ is estimated by

θ̂APDIW ≡ arg min
θ

ĜAPDIW. (4)

When ν = 0, θ̂APDIW is reduced to the ordinary estimator
θ̂NIW. Therefore, it has large bias but has relatively small
variance. On the other hand, when ν = 1, θ̂APDIW is re-
duced to the importance-weighted estimator θ̂PDIW. There-
fore, it has small bias but has relatively large variance. Gen-
erally, the best ν tends to be large (small) when the num-
ber of training samples is large (small). However, this gen-
eral trend is not enough to fine-tune the flattening parameter
since the best value of ν would depend on training samples,
sampling and current policies etc.

Automatic Selection of the Flattening Parameter. Here,
we show how we determine the value of the flattening pa-
rameter ν automatically from the training data and policies.
We estimate the approximation error G using importance-
weighted cross validation (IWCV) (Sugiyama, Krauledat, &
Müller 2007). A basic idea of IWCV is to divide the training
data Dπ̃ into a ‘training part’ and a ‘validation part’. Then
the parameter θ is learned from the training part and the ap-
proximation error is estimated using the validation part. Be-
low we explain in more detail how we apply IWCV to the
selection of the flattening parameter ν in the current context.

Let us divide M episodic training data Dπ̃ into K subsets
{Dπ̃

k}K
k=1 of the same size (typically K = 5). For simplicity,

we assume that M/K is an integer. Let θ̂
k

APDIW be the
parameter learned from {Dπ̃

k′}k′ 6=k with APDIW (3). Then,
the approximation error G is estimated by

ĜIWCV =
1
K

K∑

k=1

Ĝk
IWCV, (5)

where
Ĝk

IWCV =
K

MN

×
∑

dπ̃
m∈Dπ̃

k

N∑
n=1

ĝBR(sπ̃
m,n,aπ̃

m,n,rπ̃
m,n;θ̂

k

APDIW,Dπ̃
k )wm,n. (6)

We estimate the approximation error by the above K-fold
IWCV method for all model candidates (in the current set-
ting, several different values of the flattening parameter ν)
and choose the best one that minimizes the estimated error:

ν̂IWCV = arg min
ν

ĜIWCV. (7)

One may think that, for model selection, ĜAPDIW could
be directly used, instead of ĜIWCV. However, it can be
proved that ĜAPDIW is heavily biased (or in other words,
over-fitted) since the same training samples are used twice
for learning the parameters and estimating the approxima-
tion error. On the other hand, we can prove that ĜIWCV is an
almost unbiased estimator of G, where ‘almost’ comes from
the fact that the number of training samples is reduced due
to data splitting in the cross validation procedure (Sugiyama,
Krauledat, & Müller 2007). Note that ordinary CV is heav-
ily biased due to the off-policy setting.

Sample-Reuse Policy Iteration (SRPI). Finally we show
how the above methods can be applied to policy iteration.
Let us denote the policy at the l-th iteration by πl and the
maximum number of iterations by L. In general policy-
iteration methods, after the current policy is improved, new
data samples Dπl are collected following the new policy πl

to evaluate the policy πl. Thus, previously-collected data
samples {Dπ1 ,Dπ2 , ...,Dπl−1} are not used:

π1
E:{Dπ1}→ Q̂π1 I→ π2

E:{Dπ2}→ Q̂π2 I→ · · · I→ πL,

where E:{D} and I indicate policy evaluation using the data
sample D and policy improvement respectively. It would be
more efficient if we could reuse previously collected data
samples to perform policy evaluation as:

π1
E:{Dπ1}→ Q̂π1 I→ π2

E:{Dπ1 ,Dπ2}→ Q̂π2 I→ · · · I→ πL.

However, reusing previously-collected data samples
causes the off-policy situation because previous policies and
the current policy are different unless the current policy
is converged to the optimal one. Here we propose using
APDIW and IWCV in policy iteration. To this purpose, we
extend the definition of ĜAPDIW (3) so that multiple sam-
pling policies {π1, π2, . . . , πl} are taken into account:

θ̂
l

APDIW ≡ arg min
θ

Ĝl
APDIW, (8)

Ĝl
APDIW ≡ 1

lMN

l∑

l′=1

M∑
m=1

N∑
n=1

ĝBR(sπl′
m,n, aπl′

m,n, rπl′
m,n;

θ, {Dπl′}l
l′=1)

( ∏n
n′=1 πl(a

πl′
m,n′ |sπl′

m,n′)∏n
n′=1 πl′(a

πl′
m,n′ |sπl′

m,n′)

)νl

,

where Ĝl
APDIW is the approximation error estimated at the

l-th policy evaluation with APDIW. The flattening parame-
ter νl is chosen based on IWCV before performing policy
evaluation.

Experiments
In this section, we evaluate the performance of our proposed
method.

Chain walk. First, we illustrate how the flattening param-
eter ν influences the estimator θ̂APDIW. The MDP (see
Fig.1) consists of 10 states S = {s(i)}10i=1 and two actions
A = {L,R}. The reward +1 is given when visiting s(1)

and s(10). The transition probability PT is indicated by the
numbers attached to the arrows in the figure. The Gaus-
sian kernel with standard deviation σ = 10 is used as a basis
function and kernel centers are located at s(1), s(5) and s(10).
We note that the total number of basis functions is 6 since
each kernel is copied over the action space. The discount
factor is set at 0.9. θ̂APDIW is computed from the training
samples Dπ̃ using (4) with several different numbers M of
episodes; the number N of steps is fixed at 10. The sam-
pling policy π̃(a|s) and the target policy π(a|s) are chosen
randomly at every trial such that π̃ 6= π. Fig.2 depicts the
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Figure 1: 10-state chain walk MDP.
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Figure 2: Average true error G over 50 trials as a function of
the flattening parameter ν in the 10-state chain walk problem.
The trend of G differs depending on the number of episodes.
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Figure 3: Average error estimated by 5-fold IWCV (ĜAPDIW)
as a function of the flattening parameter ν in the 10-state chain
walk problem. IWCV nicely captures the trend of the true
error G in Fig.2

true error G averaged over 50 trials as functions of the flat-
tening parameter ν. Note that the true error G is used only
for illustration purposes and is not available in reality.

Fig.2(a) shows that when the number of episodes is large
(M = 200), the true error G tends to decrease as the flatten-
ing parameter increases. This would be a natural result due
to consistency of θ̂APDIW when ν = 1. On the other hand,
Fig.2(b) shows that when the number of episodes is not large
(M = 50), ν = 1 performs rather poorly. This implies that
the consistent estimator tends to be unstable when the num-
ber of episodes is not large enough; ν = 0.7 works the best
in this case. Fig.2(c) shows the results when the number of
episodes is further reduced (M = 10). This illustrates that
the consistent estimator with ν = 1 is even worse than the
ordinary estimator (ν = 0) because the bias is dominated by
large variance. In this case, the best ν is even smaller and is
achieved at ν = 0.3.

Next, we illustrate how IWCV works. Fig.3 depicts the
error estimated by 5-fold IWCV averaged over 50 trials as
a function of the flattening parameter ν. The figures show
that IWCV nicely captures the trend of the true error G for
all three cases (cf Fig.2). Fig.4 describes, as functions of the
number M of episodes, the average true error G obtained
by NIW (ν = 0), PDIW (ν = 1), and APDIW+IWCV
(ν ∈ {0.0, 0.1, 0.2, ..., 0.9, 1.0} is adaptively selected in
each trial using IWCV). This result shows that the improve-
ment of the performance by NIW saturates when M ≥ 30,
implying that the bias caused by NIW is not negligible.
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Figure 4: Average true error G over 50 trials in the 10-state
chainwalk MDP.
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Figure 5: The performance of policies measured by the av-
erage sum of discounted rewards over 30 trials as a function
of the total number of episodes in the 10-state chain walk
problem.

The performance of PDIW is worse than the baseline NIW
method when M ≤ 30 which is caused by the large variance
of PDIW. On the other hand, APDIW+IWCV consistency
gives the best performance for all M , illustrating the high
adaptation ability of the proposed method.

Finally, we illustrate how SRPI works. We consider three
scenarios: ν is fixed at 0, ν is fixed at 1 and SRPI (ν is cho-
sen by IWCV). The agent collects samples Dπl (M = 5
and N = 10) at every policy iteration following the current

policy πl and computes θ̂
l

APDIW from all collected samples
{Dπ1 ,Dπ2 , . . . ,Dπl} by (8). We use 3 Gaussian kernels
with standard deviation σ = 10 as basis functions and place
the center of kernels on a randomly selected state (∈ S).
Fig.5 depicts the average sum of discounted rewards com-
puted from the test samples. The initial policy π1 is chosen
randomly. Policy improvement is carried out by softmax (1)
with τ = 2l. Fig.5 shows that SRPI can outperform the cases
with ν = 0 and ν = 1. This indicates that SRPI effectively
reuse previously collected samples throughout the iterations
by choosing the flattening parameter appropriately.

Mountain Car. We consider the mountain car task (Sut-
ton & Barto 1998) illustrated in Fig.6, consisting of a car
and landscape described by sin(3x). The goal of the task is
to guide the car to the goal. The action space A consists of
three different values of the force {0.2,−0.2, 0}[kg ·m/s2].
We note that the force itself is not strong enough for the car
to climb the right hill up. The state space S is continuous
and consists of the horizontal position x[m] (∈ [−1.2, 0.5])
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Figure 6: Illustration of the mountain car task.
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Figure 7: The performance of policies measured by the av-
erage sum of discounted rewards over 30 trials as a function
of the total number of episodes in the mountain car task.

and the velocity ẋ[m/s] (∈ [−1.5, 1.5]). The equation of
motion of the car is

ẍ =
(
− 9.8w cos(3x) +

a

w
− kẋ

)
, (9)

where a is an action (∈ A), w (= 0.2[kg]) is the mass of the
car, k (= 0.3) is the friction coefficient. We set the time step
at ∆t = 0.1[s]. We define the reward function R(s, a, s′) as

R(s, a, s′) =
{

1 if xs′ ≥ 0.5,
−0.01 otherwise.

We use 10 Gaussian kernels with standard deviation σ = 1
as basis functions and place kernel centers randomly on the
state space (∈ S). The initial policy π1(a|s) and the initial-
state probability density PI(s) are set to be uniform. The
agent collects data samples Dπl (M = 5 and N = 50)
following the current policy πl. The discounted factor γ is
set at 0.9 and the policy is improved by softmax (1) with
τ = l. Fig.7 describes the performance of learned policies
measured by the average sum of discounted rewards using
independent test samples. The graph shows that SRPI works
very well; the performance of the policy learned with ν = 1
improves quickly in the beginning but saturates in the mid-
dle. ν = 0 performs relatively well, but progress of learning
tends to be behind SRPI. Thus the proposed method SRPI is
shown to efficiently reuse the previously-collected samples.

Conclusions and Outlook
Instability has been one of the critical limitations of impor-
tance sampling techniques, which often makes off-policy
methods impractical. To overcome this weakness, we intro-
duced an adaptive importance sampling technique for con-
trolling the trade-off between consistency and efficiency in
value function approximation. We further provided an au-
tomatic model selection method for actively choosing the

flattening parameter. We also proposed using the adaptive
importance sampling technique in policy iteration for effi-
ciently reusing previously collected data samples. The ex-
perimental results showed that the proposed method com-
pares favorably with existing approaches.

The method presented in this paper can easily be extended
to policy gradient methods where the need for reusing past
experience is even more urgent as small gradient-descent
steps result into an underutilization of the data. While im-
portance sampling has been applied in the settings of pol-
icy gradient methods (Shelton 2001; Peshkin 2002), pol-
icy gradient methods tend to be unstable when used with
standard importance-sampling methods (Kakade 2002)—
the proposed methods would offer an alternative.
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