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Abstract

Estimating the generalization error is one of the key ingredients of supervised learn-
ing since a good generalization error estimator can be used for model selection. An
unbiased generalization error estimator called the subspace information criterion
(SIC) is shown to be useful for model selection, but its range of application is lim-
ited to linear learning methods. In this paper, we extend SIC to be applicable to
non-linear learning.
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1 Introduction

The goal of supervised learning is to estimate an unknown input-output relation from
samples, which is mathematically formulated as a function approximation problem. If
the learning target function is accurately learned, the output values for unlearned input
points can be estimated. This is called the generalization capability. The level of general-
ization capability is evaluated by the ‘closeness’ between the learned function and the true
function, i.e., the generalization error. We want to obtain the learned function that mini-
mizes the generalization error. In order to obtain a better function, the model (e.g., type
of basis functions, etc.) should be chosen appropriately, i.e., so that the generalization
error is minimized.

However, since the true learning target function is unknown, the generalization error
is not accessible. A standard approach to coping with this problem is to determine the
model so that an estimator of the generalization error is minimized. The subspace infor-
mation criterion (SIC) is one of the generalization error estimators for linear regression
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[13]. SIC was shown to be a useful model selection criterion [14] and its theoretical prop-
erties from various aspects have been elucidated [11, 15]; in particular, SIC is shown to be
a better estimator of the generalization error than standard estimators such as Akaike’s
information criterion or cross-validation in approximate linear regression [12]. However,
the range of application of SIC was limited to linear learning methods—there are sev-
eral useful learning methods that are non-linear, e.g., Huber’s robust learning [7], sparse
learning [18, 16, 2], or the support vector learning [17, 9]. In this paper, we extend SIC so
that it can be used for estimating the generalization error of non-linear learning methods.

2 Problem Formulation

In this section, we formulate the linear regression problem.
Let us consider the regression problem of learning a real-valued function f(x) defined

on D(⊂ Rd) from training samples

{(xi, yi) | yi = f(xi) + ϵi}n
i=1, (1)

where d is the dimension of the input vector x, n is the number of training samples, and
{ϵi}n

i=1 are i.i.d. noise with mean zero and variance σ2. We employ the following linear
regression model for learning:

f̂(x) =

p∑
i=1

αiφi(x), (2)

where {φi(x)}p
i=1 are fixed linearly independent functions, α = (α1, α2, . . . , αp)

⊤ are pa-
rameters to be learned, and ⊤ denotes the transpose of a vector/matrix. In practice, the
above linear model may not be correctly specified, i.e., the learning target function f(x)
can not be expressed by the model (2). We define the generalization error of a learned

function f̂(x) by the expected squared error for test input points. We assume that the
test input points are drawn independently from a distribution with density q(x). Then
the generalization error is expressed as∫

D

(
f̂(x) − f(x)

)2

q(x)dx. (3)

For making the following discussion simple, we subtract a constant C from the above
quantity and define it as the generalization error G.

G =

∫
D

(
f̂(x) − f(x)

)2

q(x)dx − C, (4)

where

C =

∫
D

f(x)2q(x)dx. (5)

In the following theoretical discussions, we assume that q(x) is known. Note that
the generalization error G is still inaccessible even when q(x) is known since the learning
target function f(x) is unknown. When q(x) is unknown in practice, it may be estimated
from unlabeled samples which are often abundantly available in some application domains.
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Figure 1: Orthogonal decomposition of f(x).

3 Subspace Information Criterion

Model selection is the problem of optimizing the model (e.g., the number and type of
the basis functions {φi(x)}p

i=1) so that the generalization error is minimized. In order to
perform model selection, the inaccessible generalization error G has to be estimated. The
subspace information criterion (SIC) [13] is one of the generalization error estimators. In
this section, we derive SIC in a slightly generalized way.

Given that our linear regression model (2) is misspecified, the target function f(x) is
expressed as follows (see Figure 1):

f(x) = g(x) + δr(x), (6)

where g(x) is the optimal approximation to f(x) within the model (2):

g(x) =

p∑
i=1

α∗
i φi(x). (7)

α∗ = (α∗
1, α

∗
2, . . . , α

∗
p)

⊤ is the unknown optimal parameter vector under G:

α∗ = argmin
α

G. (8)

r(x) in Eq.(6) is the residual, which is orthogonal to {φi(x)}p
i=1 under q(x):∫

D
r(x)φi(x)q(x)dx = 0 for i = 1, 2, . . . , p. (9)

Without loss of generality, we assume that r(x) is normalized in the following sense:∫
D

r2(x)q(x)dx = 1. (10)

Thus the function r(x) governs the nature of the model error and δ is the possible mag-
nitude of this error.

Given that f̂(x) and r(x) are orthogonal, G is written as

G =

∫
D

f̂(x)2q(x)dx − 2

∫
D

f̂(x)g(x)q(x)dx

= ∥α̂∥2
U − 2⟨α̂, α∗⟩U , (11)
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where ∥α∥2
U = α⊤Uα, ⟨α′,α⟩U = α⊤Uα′, and U is the p-dimensional square matrix

with the (i, j)-th element

Ui,j =

∫
D

φi(x)φj(x)q(x)dx. (12)

A basic idea of SIC is to replace the unknown α∗ in Eq.(11) by the following linear
estimator α̂u:

α̂u = L̂uy, (13)

where

L̂u = (X⊤X)−1X⊤, (14)

y = (y1, y2, . . . , yn)⊤. (15)

X is the n × p matrix with the (i, j)-th element

Xi,j = φj(xi). (16)

However, simply replacing α∗ by α̂u causes a bias. Noting that y can be expressed as

y = Xα∗ + δr + ϵ, (17)

where
r = (r(x1), r(x2), . . . , r(xn))⊤, (18)

the bias can be expressed as

Eϵ [⟨α̂, α̂u⟩U − ⟨α̂,α∗⟩U ] = Eϵ⟨α̂, L̂uϵ⟩U + δEϵ⟨α̂, L̂ur⟩U , (19)

where Eϵ denotes the expectation over the noise {ϵi}n
i=1 and

ϵ = (ϵ1, ϵ2, . . . , ϵn)⊤. (20)

Based on this, we define ‘preSIC’ as follows.

preSIC = ∥α̂∥2
U − 2⟨α̂, L̂uy⟩U + 2Eϵ⟨α̂, L̂uϵ⟩U , (21)

i.e., δEϵ⟨α̂, L̂ur⟩U is ignored. If the third term Eϵ⟨α̂, L̂uϵ⟩U can be computed (or approx-
imated) from the training samples {(xi, yi)}n

i=1, we can use preSIC for model selection.
Let us focus on linear learning, i.e., the learned parameter vector α̂ is given by

α̂ = Ly, (22)

where L is a p×n matrix which is independent of the noise {ϵi}n
i=1. This includes popular

ℓ2-norm regularization learning [6, 5]:

min
α

[
n∑

i=1

(
f̂(xi) − yi

)2

+ λ∥α∥2

]
, (23)

where λ (≥ 0) is a tuning parameter. The learned parameter vector α̂ is given by Eq.(22)
with

L = (X⊤X + λI)−1X⊤, (24)

where I is the identity matrix.
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Proposition 1 ([13]) For linear learning (22), we have

Eϵ⟨α̂, L̂uϵ⟩U = σ2tr(ULL̂
⊤
u ). (25)

Based on this proposition, SIC for a linear learning method is given by

SIC = ∥α̂∥2
U − 2⟨α̂, L̂uy⟩U + 2σ2tr(ULL̂

⊤
u ). (26)

SIC is shown to satisfy1

EϵSIC = EϵG + Op(δn
− 1

2 ), (27)

where Op denotes the asymptotic order in probability [12]. This means that, SIC is
an exact unbiased estimator of the expected generalization error if the model is correctly
specified (i.e., the model error δ is zero); otherwise, it is an asymptotic unbiased estimator
in general, where the bias is proportional to the model error δ.

The goal of this paper is to extend SIC so that it can be used for estimating the
generalization error of non-linear learning methods.

4 Extension to Non-Linear Learning

In this section, we extend the range of application of SIC to non-linear learning methods.

4.1 Affine Learning

We start from a simple non-linear learning method called affine learning, i.e., for a p× n
matrix L and a p-dimensional vector c, both of which are independent of the noise {ϵi}n

i=1,
the learned parameter vector α̂ is given by

α̂ = Ly + c. (28)

This includes additive regularization learning [8]:

min
α

[
n∑

i=1

(
f̂(xi) − yi − λi

)2

+ ∥α∥2

]
, (29)

where λ = (λ1, λ2, . . . , λn)⊤ is tuning parameters. The learned parameter vector α̂ is
given by Eq.(28) with

L = (X⊤X + I)−1X⊤, (30)

c = (X⊤X + I)−1X⊤λ. (31)

1Under some kernel regression scenarios, SIC becomes exactly unbiased with finite samples irrespective
of the model error δ [11]. Since this paper includes the kernel regression setting of the reference [11] as a
special case, we can enjoy this excellent property.
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Lemma 1 For affine learning (28), we have

Eϵ⟨α̂, L̂uϵ⟩U = σ2tr(ULL̂
⊤
u ). (32)

Proof : Given that Eϵϵ = 0 and Eϵ[ϵϵ⊤] = σ2I, we have Eq.(32).
This lemma implies that we can still use the same SIC (26) for affine learning without

any performance degradation.

4.2 Smooth Non-Linear Learning

Let us consider a smooth non-linear learning method, i.e., using an almost differentiable
[10] operator L, α̂ is given by

α̂ = L(y). (33)

This includes Huber’s robust estimation [7]:

min
α

[
n∑

i=1

ρτ (f̂(xi) − yi)
2

]
, (34)

where τ (> 0) is a tuning parameter and

ρτ (y) =

{
y2/2 (|y| ≤ τ),

τ |y| − y2/2 (|y| > τ).
(35)

Note that ρτ (y) is twice almost differentiable, which yields a once almost differentiable
operator L.

Lemma 2 Let H be the n-dimensional square matrix with the (i, j)-th element

∇i[L̂
⊤
u UL]j(y), (36)

where ∇i is the partial derivative operator with respect to the i-th element and [L̂
⊤
u UL]j(y)

denotes the j-th element of the vector-valued function [L̂
⊤
u UL](y). Suppose the noise

{ϵi}n
i=1 is Gaussian. Then, for smooth non-linear learning (33), we have

Eϵ⟨α̂, L̂uϵ⟩U = σ2Eϵtr(H). (37)

Proof : For an n-dimensional centered i.i.d. Gaussian vector ϵ and for any almost differ-
entiable function h(ϵ) defined on Rn, the following Stein’s identity holds [10]:

Eϵ[ϵih(ϵ)] = σ2Eϵ[∇ih(ϵ)]. (38)

Let h(ϵ) = [L̂
⊤
u UL](y). Since L(y) is almost differentiable, h(ϵ) is also almost differ-

entiable. Then an element-wise application of Eq.(38) to a vector-valued function h(ϵ)
establishes Eq.(37).
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Based on this lemma, we define SIC for smooth non-linear learning as

SIC = ∥α̂∥2
U − 2⟨α̂, L̂uy⟩U + 2σ2tr(H), (39)

which still maintains the same unbiasedness property (27). It is easy to confirm that
Eq.(39) is reduced to the original SIC (26) when α̂ is obtained by linear learning (22).
Therefore, the above SIC may be regarded as a natural extension of the original one.

4.3 General Non-Linear Learning

Finally, let us consider general non-linear learning methods, i.e., for a general non-linear
operator L, the learned parameter vector α̂ is given by

α̂ = L(y). (40)

This includes ℓ1-norm regularization learning [18, 16, 2]:

min
α

[
n∑

i=1

(
f̂(xi) − yi

)2

+ λ∥α∥1

]
, (41)

where

∥α∥1 =

p∑
i=1

|αi|. (42)

For general non-linear learning, we estimate the third term Eϵ⟨α̂, L̂uϵ⟩U in preSIC
(21) using the bootstrap method [3, 4]:

Eϵ⟨α̂, L̂uϵ⟩U ≈ Eb
ϵ⟨α̂

b, L̂uϵ̂
b⟩U , (43)

where Eb
ϵ denotes the expectation over the bootstrap replication and α̂b and ϵ̂b are the

learned parameter vector and the noise vector estimated from the bootstrap samples,
respectively. More specifically, we compute Eb

ϵ⟨α̂
b, L̂uϵ̂

b⟩U by bootstrapping residuals as
follows.

1. Obtain the learned parameter vector α̂ using the training samples {(xi, yi)}n
i=1 as

usual.

2. Estimate the noise by {ϵ̂i | ϵ̂i = yi − f̂(xi)}n
i=1.

3. Create bootstrap noise samples {ϵ̂b
i}n

i=1 by sampling with replacement from {ϵ̂i}n
i=1.

4. Obtain the learned parameter vector α̂b using the bootstrap samples {(xi, y
b
i ) | yb

i =

f̂(xi) + ϵ̂b
i}n

i=1.

5. Calculate ⟨α̂b, L̂uϵ̂
b⟩U .

6. Repeat 3. to 5. for a number of times and output the mean of ⟨α̂b, L̂uϵ̂
b⟩U .

Based on this procedure, bootstrap-approximated SIC (BASIC) is defined as

BASIC = ∥α̂∥2
U − 2⟨α̂, L̂uy⟩U + 2Eϵb⟨α̂b, L̂uϵ̂

b⟩U , (44)

which may give an approximately unbiased estimate of the expected generalization error.
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5 Conclusions and Future Prospects

We extended the range of application of SIC so that the generalization error of various
useful non-linear learning methods can be estimated. Currently, the range of application
of Lemma 2 is restricted to Gaussian noise. An important future direction is to alleviate
the condition using a generalized Stein’s identity (e.g., [1]). Also, theoretical analysis of
the approximation quality of BASIC is still open currently.
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