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Abstract

In order to obtain better generalization performance in supervised learning, model
parameters should be determined appropriately, i.e., they should be determined so
that the generalization error is minimized. However, since the generalization error
is inaccessible in practice, the model parameters are usually determined so that an
estimator of the generalization error is minimized. The regularized subspace infor-
mation criterion (RSIC) is such a generalization error estimator for model selection.
RSIC includes an additional regularization parameter and it should be determined
appropriately for better model selection. A meta-criterion for determining the reg-
ularization parameter has also been proposed and shown to be useful in practice. In
this paper, we show that there are several drawbacks in the existing meta-criterion
and give an alternative meta-criterion that can solve the problems. Through simu-
lations, we show that the use of the new meta-criterion further improves the model
selection performance.
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1 Introduction

Supervised learning is the problem of estimating an underlying function from samples
[23]. If the underlying function is accurately learned, the output values for unseen input
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points can be estimated. This is called the generalization capability. The level of the
generalization capability is evaluated by the ‘closeness’ between the learned function and
the underlying function, i.e., the generalization error. The goal of supervised learning
is to obtain the function with the minimum generalization error. The learned function
usually depends on model parameters such as the regularization parameter. Therefore, in
order to obtain a better function, the model parameters should be chosen appropriately,
i.e., so that the generalization error is minimized.

However, since the true learning target function is unknown, the generalization error
can not be directly calculated. For this reason, we usually determine the model parameters
such that an estimate of the generalization error is minimized [11, 1, 19]. The subspace
information criterion (SIC) is such a generalization error estimator for model selection
and is shown to be useful for model selection [19, 18]. However, the goodness of SIC is
guaranteed in the sense of unbiasedness, implying that the variance of SIC can be large,
e.g., when the noise level is very high.

To cope with this problem, the regularized subspace information criterion (RSIC) has
been proposed [17]. RSIC is no longer unbiased, but has smaller variance and is more
stable than SIC. RSIC includes an additional tuning parameter in the generalization
error estimator itself. In order to successfully perform model selection with RSIC, this
tuning parameter should be determined appropriately. The paper [17] gave a useful meta-
criterion for determining the tuning parameter. Since the meta-criterion includes the
unknown generalization error, we use an unbiased estimator of the meta-criterion for
optimizing the tuning parameter. RSIC as well as the unbiased estimator of the meta-
criterion include the noise variance, which is practically replaced by its estimator.

In this paper, we first show that there are five drawbacks in the conventional RSIC.
The problem (a) is that the meta-criterion does not directly evaluate the goodness of RSIC
used in practice (i.e., the one with the noise variance replaced by its unbiased estimator).
The problem (b) is that RSIC is not necessarily a good approximation to the single-
trial generalization error since the meta-criterion evaluates an error from the expected
generalization error. The problem (c) is that the goodness of other generalization error
estimators can not be measured since the meta-criterion is a goodness measure specialized
for RSIC. The problem (d) is that the computational cost of the estimator of the meta-
criterion could be unnecessarily large since an unnecessary constant term is also estimated
in the estimator. The problem (e) is that replacing the noise variance by its unbiased
estimator breaks the unbiasedness of the estimator of the meta-criterion. Then we propose
an alternative meta-criterion that can solve all the above problems. Through simulations,
we show that the use of the new meta-criterion further improves the model selection
performance.

2 Formulation of Supervised Learning

In this section, we formulate the supervised learning problem.
Let us consider the problem of approximating a function from training samples. Let
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Figure 1: Supervised learning problem.

f(x) be the learning target function, which is a real-valued function defined on D ⊂ Rd.
We assume that f(x) belongs to a reproducing kernel Hilbert space (RKHS) H [3, 23, 24].
Note that H is generally infinite dimensional. We denote the reproducing kernel of H by
K(x, x′). Let {(xi, yi)}n

i=1 be training samples, where xi ∈ D is an input point and yi ∈ R
is an output value. We assume that the output value yi is degraded by i.i.d. Gaussian
noise εi with mean zero and variance σ2:

yi = f(xi) + εi. (1)

The training input points {xi}n
i=1 could be either random or deterministic. The above

formulation is summarized in Figure 1.
Let f̂(x) be a learned function obtained from the training samples. The goal of

supervised learning is to obtain the best approximation to the target function. To this
end, we need to define the “goodness” measure of f̂(x). In this paper, we measure the

goodness of f̂(x) by

‖f̂ − f‖2, (2)

where ‖ · ‖ is the norm in the reproducing kernel Hilbert space H. This quantity can be
decomposed as

‖f̂ − f‖2 = ‖f̂‖2 − 2〈f̂ , f〉+ ‖f‖2, (3)

where 〈·, ·〉 denotes the inner product in H. Since the third term ‖f‖2 is a constant and

it does not depend on f̂(x), we ignore it and define the rest by G:

G = ‖f̂‖2 − 2〈f̂ , f〉. (4)

We call G the generalization error.
Now our goal is formalized: we want to learn f̂(x) from the training samples

{(xi, yi)}n
i=1 such that the generalization error G is minimized. To this end, we need

to define a search space for f̂(x). The broadest choice would be the function space H
itself, but it is hard to deal with since H is generally infinite dimensional. To alleviate
this problem, we employ the following kernel model for learning1 [9, 13, 15].

f̂(x) =
n∑

i=1

αiK(x,xi), (5)

1All the discussion in this paper is still valid if we use a subset of {K(x,xi)}n
i=1 as basis functions.
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where {αi}n
i=1 are parameters to be learned. Note that this form is known to be a mini-

mizer of some regularized functional in H [9].
Let

α = (α1, α2, . . . , αn)>, (6)

y = (y1, y2, . . . , yn)>, (7)

where > denotes the transpose. In this paper, we focus on the cases where the parameter
vector α is learned in a linear fashion, i.e., α is obtained by

α = Ly, (8)

where L is an n-dimensional matrix which is independent of the noise {εi}n
i=1. We call L

the learning matrix.
Consequently, the problem of learning f̂(x) is converted into the problem of learning

L. Since the generalization error G includes the unknown learning target function f(x),
we can not directly learn L so that G is minimized. A standard approach to coping with
this problem is to employ an accessible estimator of the unknown generalization error G.
In the next section, we review existing methods for estimating G.

3 Generalization Error Estimators

In this section, we briefly review the generalization error estimators called the subspace
information criterion (SIC) [19, 18] and its extension the regularized SIC (RSIC) [17].

3.1 Subspace Information Criterion

Let S be the subspace of H spanned by {K(x,xi)}n
i=1. Let g(x) be the orthogonal projec-

tion of f(x) onto S. Note that, in the sense of Eq.(4), g(x) is the optimal approximation
to f(x) in S. (see Figure 2). Since g(x) belongs to S, it is expressed as

g(x) =
n∑

i=1

α∗i K(x,xi), (9)

where {α∗i }n
i=1 are unknown optimal parameters. Let

α∗ = (α∗1, α
∗
2, . . . , α

∗
n)>. (10)

Then the expectation of the generalization error can be expressed as follows [18].

E�G[L] = E�〈KLy, Ly〉 − 2E�〈KLy,α∗〉, (11)

where E� is the expectation over the noise {εi}n
i=1 and K is the kernel matrix, i.e., the

(i, j)-th element is given by
Ki,j = K(xi,xj). (12)
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Figure 2: Decomposition of the learning target function f(x).

Since α∗ is unknown in Eq.(11), we replace it by a linear unbiased estimator α̂u. (see
Figure 3). Namely, with some n-dimensional matrix Ru, α̂u is given as

α̂u = Ruy, (13)

which satisfies
E�α̂u = α∗. (14)

Note that the subscript ‘u’ in the above equations stands for ‘unbiased’. It is known that
such Ru is given as follows [18].

Ru = K†, (15)

where † denotes the Moore-Penrose generalized inverse [2].
Using α̂u, we can express E�G as

E�G[L] =E�〈KLy, Ly〉 − 2E�〈KLy, Ruy〉+ 2σ2tr(KLR>
u ). (16)

The subspace information criterion (SIC) is defined as the right-hand side of Eq.(16) with
the expectation operator E� removed:

SIC[L] =〈KLy,Ly〉 − 2〈KLy,Ruy〉+ 2σ2tr(KLR>
u ). (17)

For any L, SIC is an unbiased estimator of E�G.

E�SIC[L] = E�G[L]. (18)

The papers [19, 18] proposed choosing the learning matrix L that minimizes SIC from
a set L of candidates of L:

L̂ = argmin
L∈L

SIC[L]. (19)

3.2 Regularized Subspace Information Criterion

It is reported that a good learning matrix L can be obtained by SIC [19, 18]. However,
the goodness of SIC is only guaranteed in the sense of unbiasedness. This implies that the
variance of SIC can be large, e.g., when the noise level is very high. In such cases, learning
with SIC can be unstable. To cope with this problem, the regularized SIC (RSIC) has
been proposed [17]. Below, we briefly review RSIC.
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Figure 3: Replacing unknown α∗ by an unbiased estimator α̂u (SIC) or by a regularized
estimator α̂r (RSIC).

Let α̂r be some linear regularized estimator of α∗:

α̂r = Ry, (20)

where R is an n-dimensional matrix which is independent of the noise {εi}n
i=1. We call R

the reference matrix since α̂r is used as a reference.
A major reason why SIC can have large variance would be the instability of α̂u. A

basic idea of RSIC is to replace the unbiased estimator α̂u with a biased but more stable
estimator α̂r: (see Figure 3 again):

RSIC[L; R] =〈KLy,Ly〉 − 2〈KLy,Ry〉+ 2σ2tr(KLR>), (21)

where the notation RSIC[L; R] means that it is a functional of L with a ‘parameter’
matrix R.

In RSIC, the parameter matrix R should be determined appropriately2. To this end,
we need a goodness measure of R. The paper [17] proposed using the following criterion.

J [R; L] = (RSIC[L; R]− E�G[L])2, (22)

where the notation J [R; L] means that it is a functional of R with a parameter matrix
L. Now we want to determine R so that the above J is minimized. However, J includes
unknown G so it can not be directly calculated. Let B and C be

B =2R>
u KL− 2R>KL, (23)

C =L>KL− 2R>KL. (24)

Then an unbiased estimator of E�J is given as follows [17].

Ĵ [R; L] =
{〈By,y〉 − σ2tr(B)

}2

− σ2‖(B + B>)y‖2 + σ4tr(B2 + BB>)

+ σ2‖(C + C>)y‖2 − σ4tr(C2 + CC>), (25)

2If we have a good L, it may be appropriate to use it as R. However, obtaining a good L is the goal
here and thus we need to search for a good R.
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which satisfies, for any R and L,

E�Ĵ [R; L] = E�J [R; L]. (26)

The paper [17] proposed using the above Ĵ instead of J for determining R.

Learning L based on RSIC and Ĵ is carried out as follows. First, a set L of candidates
of L and a set R of candidates of R are prepared. For each L ∈ L, R is optimized within
R:

R̂L = argmin
R∈R

Ĵ [R; L]. (27)

Then, using R̂L, we optimize L within L:

L̂ = argmin
L∈L

RSIC[L; R̂L]. (28)

3.3 Learning Methods

When we learn L using RSIC, we have to determine the set L from which L is searched
and the set R from which R is searched. The largest possible set is Rn, but it is generally
too broad to be searched from. Conventionally, we form the set L and the set R based
on some learning criterion. For example, in the case of ridge learning [8, 22, 13], the
parameter α is determined so that the regularized squared error is minimized3.

n∑
i=1

(
f̂(xi)− yi

)2

+ λ‖α‖2, (29)

where λ is a non-negative scalar called the ridge parameter. A minimizer of the above
regularized squared error is given by

L = (K2 + λI)†K, (30)

where I is the identity matrix. In the following, we focus on ridge learning. Then the
problem of choosing the learning matrix L is reduced to the problem of choosing the ridge
parameter λ.

When RSIC is employed, we have to optimize the reference matrix R in addition to
the learning matrix L. Below, we focus on using ridge learning also for R:

R = (K2 + γI)†K, (31)

where γ is a non-negative scalar. Now the problem of choosing R and L is reduced to
the problem of choosing γ and λ.

The paper [17] proposed determining the ridge parameter λ based on RSIC as follows.
First, a finite set of candidate values of λ and a finite set of candidate values of γ are
prepared. For each λ, γ is optimized based on Ĵ . Then λ is optimized based on RSIC
using the chosen γ.

3This type of learning method is also referred to as least squares support vector machines [21] or kernel
regularized least squares [4]; Kernel Fisher discriminant analysis [12] may also be regarded as the same
type.
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4 New Criterion for Determining R

In this section, we first point out the drawbacks of the conventional RSIC-based model
selection method and then propose a new method that can systematically overcome the
problems.

4.1 Drawbacks in Existing Approach

RSIC as well as Ĵ include the noise variance σ2 in their definitions. However, since the
noise variance σ2 is generally unknown, it is practically replaced by an estimator, for
example, an unbiased estimator σ̂2.

σ̂2 =
〈V y,y〉
tr(V )

, (32)

where V = I −KK†and which satisfies4

E�σ̂2 = σ2. (33)

Let Ĵ ′ be the criterion with σ2 in Ĵ replaced by σ̂2.

Ĵ ′[R; L] =
{〈By, y〉 − σ̂2tr(B)

}2

− σ̂2‖(B + B>)y‖2 + σ̂4tr(B2 + BB>)

+ σ̂2‖(C + C>)y‖2 − σ̂4tr(C2 + CC>). (34)

Similarly, let RSIC′ be the criterion with σ2 in RSIC replaced by σ̂2.

RSIC′[L; R] =〈KLy, Ly〉 − 2〈KLy,Ry〉+ 2σ̂2tr(KLR>). (35)

There are five problems in this conventional approach.

(a) J evaluates the goodness of RSIC, but RSIC′ is used for model selection in reality.

(b) Minimizing J means deciding RSIC so that it is close to the expected generalization
error E�G. This implies that in each single trial, RSIC is not necessarily a good
approximation to G.

(c) J is a goodness measure specialized for RSIC. It is nice to employ a more general
goodness measure that is applicable to a wider class of estimators of G.

4In some RKHSs such as the Gaussian RKHS, the kernel matrix always has full rank theoretically if
{xi}n

i=1 are all distinct [15]. In such cases, σ̂2 can not be defined since the denominator is zero. However,
in practice, K is numerically degenerated and σ̂2 may still be used (see also Section 5.2).
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(d) Eq.(22) can be decomposed as

J = RSIC2 − 2RSIC · E�G + (E�G)2. (36)

The third term in the right-hand side of Eq.(36) is a constant and it does not depend
on RSIC. Since the constant does not affect the choice of R, we do not need to
estimate it. This implies that the conventional method also estimates the irrelevant
term, which simply increases the computational cost (although we should admit the
difference is subtle in practice ).

(e) Replacing σ2 by σ̂2 generally breaks the unbiasedness, i.e.,

E�Ĵ ′ 6= E�J. (37)

The purpose of this paper is to systematically solve the above five problems.

4.2 Proposed Meta-Criterion

We propose an alternative method that can settle the above drawbacks.
The problem (a) can be solved by replacing RSIC with RSIC′ in J :

(RSIC′[L; R]− E�G[L])2. (38)

The problem (b) can be solved by using the squared error between RSIC′ and G, i.e., E�G
in Eq.(38) is replaced by G:

(RSIC′[L; R]−G[L])2. (39)

The problem (c) can be eased by using a general form of the estimator of G. Let G̃ be a
quadratic estimator of G:

G̃[L; R] = 〈Hy,y〉, (40)

where H is some n-dimensional matrix. Note that G̃ includes RSIC′ as a special case;
indeed putting

H = L>KL− 2R>KL +
2tr(R>KL)

tr(V )
V (41)

yields G̃ = RSIC′. For G̃, Eq.(39) is expressed as

(G̃[L; R]−G[L])2. (42)

The problem (d) can be avoided by ignoring the constant term included in Eq.(42). Thus
we propose the following criterion for measuring the goodness of R.

Jnew[R; L] = (G̃[L; R]−G[L])2 − (G[L])2. (43)
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We want to determine R so that the above Jnew is minimized. However, Jnew includes
the unknown G so it should be estimated. The remaining issue, the problem (e), could

be solved by defining Ĵnew with the estimation error of σ2 taken into account:

Ĵnew[R; L] =〈Hy,y〉2 + 2〈Hy, y〉〈(S − T )y,y〉
− 2σ̂2〈(H + H>)Sy,y〉 − 2σ̂2tr(S)〈Hy,y〉

+ 4σ̂4 tr(V (H + H>)S) + tr(S)tr(V H)

tr(V ) + 2
, (44)

where

S = 2R>
u KL, (45)

T = L>KL. (46)

Then we have the following theorem.

Theorem 1 For any R and any L, we have

E�Ĵnew[R; L] = E�Jnew[R; L]. (47)

A proof of the above theorem is given in A. The above theorem shows that Ĵnew is an
unbiased estimator of E�Jnew. Thus, the use of Ĵnew can resolve all the five problems of
the existing approach listed in Section 4.1. We propose using Ĵnew for determining R.

5 Simulations

In this section, we experimentally compare the generalization performance of the existing
and proposed methods.

5.1 Illustrative Example

Let the learning target function be

f(x) = sinc(x). (48)

We employ the Gaussian reproducing kernel Hilbert space [15] as H, where the reproduc-
ing kernel is given by

K(x, x′) = exp

(
−(x− x′)2

2c2

)
(49)

with c = 1. Note that the sinc function is included in the above Gaussian reproducing
kernel Hilbert space [5]. We draw 10 points {x′i}10

i=1 independently from the uniform
distribution on (−π, π). Let the training input points {xi}20

i=1 be xi = xi+10 = x′i for
i = 1, 2, . . . , 10, i.e., we duplicate the training input points twice5. Noise {εi}20

i=1 are drawn

5This setting guarantees that σ̂2 defined by Eq.(32) is unbiased.
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independently from the normal distribution with mean zero and variance σ2. Training
output values {yi}20

i=1 are created as

yi = sinc(xi) + εi. (50)

We test σ2 = 0.04 and 0.16. For each σ2, we repeat the simulation 500 times by changing
{xi}n

i=1 and {εi}n
i=1. In the experiments, σ2 is treated as an unknown variable and is

estimated by Eq.(32).
Among the five drawbacks of existing approach listed in Section 4.1, the problems (a),

(b), and (e) affect the generalization performance. Here, we compare the performance of
the following methods.

Existing: none of the problems (a), (b), and (e) are resolved.

Proposed: all the problems (a), (b), and (e) are resolved.

Reference (a): only the problem (a) is resolved.

Reference (b): only the problem (b) is resolved.

Reference (e): only the problem (e) is resolved.

Thus the purposes of the experiments are to numerically evaluate whether the proposed
method works better than the existing method and which improvement is the most crucial.
λ and γ are chosen from the following sets Λ and Γ:

Λ = Γ = {10−3, 10−2.5, 10−2, . . . , 103}. (51)

So far, we called G the generalization error, where ‖f‖2 is ignored (see Eq.(3)). With
some abuse, we call the following G the generalization error through this section.

G = ‖f̂ − f‖2 = G + ‖f‖2. (52)

In the simulation, we approximately compute the value of G by replacing f with f̃ , where
f̃ is an approximation of f obtained using the kernel regression model with the same
Gaussian kernel (49) and a large number of artificially generated noiseless samples. This
approximation seems to be accurate enough for the current experiments.

The mean and standard deviation of the generalization error obtained by each method
over 500 runs are described in the upper half of Table 1. All the values are normalized by
the mean generalization error of the existing method for better comparison. The better
method by the Wilcoxon signed rank test [7] at the significance level 5% is indicated by
‘∗’. The table shows that the proposed method is significantly better than the existing
method when σ2 = 0.16 and they are comparable when σ2 = 0.04. For this illustrative
simulation, the reference (b) also works very well.
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5.2 Real Data Sets

Next we investigate the effectiveness of the proposed method using real data sets. We
use 8 practical data sets provided by DELVE [14]: Kin-8fm, Kin-8nm, Kin-8fh, Kin-8nh,
Pumadyn-8fm, Pumadyn-8nm, Pumadyn-8fh, and Pumadyn-8nh.

Each of the Bank, Kin, and Pumadyn data family consists of four different data sets.
They are labeled as ‘fm’, ‘nm’, ‘fh’, and ‘nh’, where ‘f’ or ‘n’ signifies ‘fairly linear’ or
‘non-linear’, respectively, and ‘m’ or ‘h’ signifies ‘medium unpredictability/noise’ or ‘high
unpredictability/noise’, respectively. Each data set includes 8192 samples, each of which
consists of 8-dimensional input and 1-dimensional output data. For convenience, every
input attribute is normalized to [0, 1]. 100 randomly selected samples {(xi, yi)}100

i=1 are used
for training. In the real data set, we can not measure the generalization error by Eq.(52)
since the true function f is totally unknown. Instead, we evaluate the generalization
performance by the mean squared test error defined by

1

1000

1000∑
i=1

(
f̂(x′i)− y′i

)2

, (53)

where {(x′i, y′i)}1000
i=1 denote the randomly chosen test samples which are not used for

training. A Gaussian kernel with width c = 1 is again employed (see Eq.(49)). λ and γ
are chosen from the following values:

λ, γ ∈ {10−4, 10−3.5, 10−3, . . . , 104}. (54)

The simulation is repeated 500 times, randomly selecting the training set {(xi, yi)}100
i=1 in

each trial. In this simulation, the computation of the Moore-Penrose generalized inverse
was rather unstable. To avoid numerical troubles, we discarded eigenvalues less than 10−2.

The mean and standard deviation of the generalization error obtained by each method
over 500 runs are described in the lower half of Table 1. The table shows that the proposed
method tends to outperform the existing method particularly for the data sets with high
noise. None of the reference methods is comparable to the proposed method. This
implies that each single improvement is not enough, but combining all three improvements
together can result in good performance.

6 Conclusions

In this paper, we first pointed out five drawbacks of the existing meta-criterion for RSIC
and proposed an alternative one that can solve all the drawbacks. We experimentally
showed that the proposed method improves the accuracy of RSIC especially in the high
noise level cases.

The original RSIC was experimentally shown to compare favorably with cross val-
idation and an empirical Bayesian method [17] (see also the paper [16] for theoretical
discussions). Therefore, the proposed method could be regarded as a useful model se-
lection method in terms of the accuracy. However, since RSIC includes an additional



A New Meta-Criterion for Regularized Subspace Information Criterion 14

tuning parameters R, it may have higher computational costs than leave-one-out cross
validation, given the fact that the leave-one-out cross validation score can be analytically
and thus efficiently computed for kernel ridge regression [24]. Therefore, our important
future work is to improve the computational cost of the new RSIC—since the expression
of RSIC is simpler than that of the analytic form of the leave-one-out cross validation
score, we expect that the optimal L and R are analytically obtained, e.g., following the
lines of [20, 6].
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A Proof of Theorem 1

We first show three lemmas which will be used for proving Theorem 1. Let

z = (f(x1), f(x2), . . . , f(xn))>. (55)

Lemma 1 For any matrix P and Q, it holds that

E�〈Pε, ε〉〈Qε, ε〉 =σ4tr(P )tr(Q) + σ4tr(PQ + P>Q). (56)

(Proof of Lemma 1) It holds that

E�〈Pε, ε〉〈Qε, ε〉 = E�
n∑

i,j,k,l=1

Pi,jQk,lεiεjεkεl, (57)

where Pi,j and Qi,j denote the (i, j)-th elements of P and Q, respectively. It is known
that when the random variable εi is drawn from the normal distribution with mean zero
and variance σ2, it holds that E�ε4

i = 3σ4 (e.g., [10]). This implies that all terms in
E�

∑n
i,j,k,l=1 Pi,jQk,lεiεjεkεl vanish except four cases: i = j = k = l, i = j 6= k = l,

i = k 6= j = l, and i = l 6= j = k. Therefore, we have

E�〈Pε, ε〉〈Qε, ε〉 =E�
( ∑

i

Pi,iQi,iε
4
i +

∑

i6=k

Pi,iQk,kε
2
i ε

2
k +

∑

i6=j

Pi,jQi,jε
2
i ε

2
j +

∑

i6=j

Pi,jQj,iε
2
i ε

2
j

)

=3σ4
∑

i

Pi,iQi,i + σ4
∑

i6=j

Pi,iQj,j + σ4
∑

i6=j

Pi,jQi,j + σ4
∑

i6=j

Pi,jQj,i

=σ4
( ∑

i

Pi,iQi,i +
∑

i 6=j

Pi,iQj,j

)
+ σ4

( ∑
i

Pi,iQi,i +
∑

i 6=j

Pi,jQi,j

)

+ σ4
( ∑

i

Pi,iQi,i +
∑

i6=j

Pi,jQj,i

)

=σ4
∑
i,j

Pi,iQj,j + σ4
∑
i,j

Pi,jQi,j + σ4
∑
i,j

Pi,jQj,i

=σ4tr(P )tr(Q) + σ4tr(P>Q) + σ4tr(PQ), (58)

which yields Eq.(56).

Lemma 2 It holds that

σ4 = E�σ̂4 tr(V )

tr(V ) + 2
. (59)
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(Proof of Lemma 2) From the definition of V , we have V > = V , V 2 = V and
V z = 0. Then E�σ̂4 is expressed as follows.

E�σ̂4 =
E�〈V y,y〉2

tr(V )2

=
E�

(〈V z, z〉+ 〈(V + V >)z, ε〉+ 〈V ε, ε〉)2

tr(V )2

=
E�〈V ε, ε〉2

tr(V )2
. (60)

From Lemma 1, we have

E�〈V ε, ε〉2 = σ4tr(V )2 + 2σ4tr(V ). (61)

Eqs.(60) and (61) yield Eq.(59).

Lemma 3 For any matrix P , it holds that

σ2〈Pz,z〉 =E�σ̂2〈Py, y〉 − E�σ̂4 tr(V )tr(P ) + 2tr(V P )

tr(V ) + 2
. (62)

(Proof of Lemma 3) E�σ̂2〈Py,y〉 is expressed as

E�σ̂2〈Py,y〉 =
E�〈V y,y〉〈Py,y〉

tr(V )

=
E�〈V ε, ε〉〈Py, y〉

tr(V )

=σ2〈Pz,z〉+
E�〈(P + P>)z, ε〉〈V ε, ε〉

tr(V )
+
E�〈V ε, ε〉〈Pε, ε〉

tr(V )
. (63)

It holds that

E�〈(P + P>)z, ε〉〈V ε, ε〉 = E�
n∑

i,j,k,l=1

(Pi,j + Pj,i)Vk,lziεjεkεl. (64)

It holds that E�ε3
i = 0 (e.g., [10]). This implies that all terms in

E�
∑n

i,j,k,l=1 (Pi,j + Pj,i)Vk,lziεjεkεl vanish, i.e.,

E�〈(P + P>)z, ε〉〈V ε, ε〉 = 0. (65)

On the other hand, from Lemma 1, it holds that

E�〈V ε, ε〉〈Pε, ε〉 =σ4tr(V )tr(P ) + 2σ4tr(V P ). (66)

Eqs.(63), (65), (66) and (59) yield Eq.(62).
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(Proof of Theorem 1) Eq.(43) is expressed as

Jnew[R; L] =(G̃[L; R])2 − 2G̃[L; R]G[L]

=〈Hy,y〉2 + 2〈Hy,y〉〈(S − T )y, y〉 − 2〈Hy,y〉〈Sy, ε〉. (67)

From Lemmas 1, 2 and 3, we have

E�〈Hy,y〉〈Sy, ε〉 =σ2〈(H + H>)Sz,z〉+ σ2tr(S)〈Hz,z〉
+ σ4tr(H)tr(S) + σ4tr(HS + H>S)

=E�σ̂2〈(H + H>)Sy,y〉

− E�σ̂4 tr(V )tr((H + H>)S) + 2tr(V (H + H>)S)

tr(V ) + 2

+ E�σ̂2tr(S)〈Hy,y〉 − E�σ̂4 tr(S)
(
tr(V )tr(H) + 2tr(V H)

)

tr(V ) + 2

+ E�σ̂4 tr(V )tr(H)tr(S)

tr(V ) + 2
+ E�σ̂4 tr(V )tr(HS + H>S)

tr(V ) + 2

=E�σ̂2〈(H + H>)Sy,y〉+ E�σ̂2tr(S)〈Hy, y〉

− 2E�σ̂4 tr(V (H + H>)S) + tr(V H)tr(S)

tr(V ) + 2
. (68)

Eqs.(67), (68) and (44) yield Eq.(47).


