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Abstract

In order to obtain better learning results in supervised learning, it is important
to choose model parameters appropriately. Model selection is usually carried out
by preparing a finite set of model candidates, estimating a generalization error for
each candidate, and choosing the best one from the candidates. If the number of
candidates is increased in this procedure, the optimization quality may be improved.
However, this in turn increases the computational cost. In this paper, we focus on a
generalization error estimator called the regularized subspace information criterion
and derive an analytic form of the optimal model parameter over a set of infinitely
many model candidates. This allows us to maximize the optimization quality while
the computational cost is kept moderate.
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1 Introduction

The goal of supervised learning is to estimate an unknown function from training samples.
If a good approximation of the target function is obtained, we can predict output values
for unseen input points. This is called the generalization ability. The level of the gener-
alization ability is usually measured by a distance between learned and target functions,
which is referred to as the generalization error.

So far, various supervised learning methods have been developed, e.g., ridge learning
[5]. Most of the learning methods contain model parameters such as the ridge parameter
and the choice of the model parameters is crucial for better performance. Ideally, we want
to choose the model parameters so that the generalization error is minimized. However,
since the target function is unknown, we can not directly choose the model parameters as
such. In practice, we use an estimator of the generalization error instead.

The regularized subspace information criterion (RSIC) [9] is a generalization error
estimator for kernel models1 and is shown to work well in practice. However, RSIC in-
volves the optimization of additional tuning parameters, which is computationally rather
expensive. In this paper, we derive an analytic form of the optimal model and tuning
parameters over sets of infinitely many candidates. This maximally enhances the opti-
mization quality, while the computational cost is kept moderate. Through simulations
with artificial and benchmark data sets, we show that the new method tends to give
comparable generalization performances with less computational costs.

2 Formulation of Supervised Learning

In this section, we briefly formulate the supervised learning problem (see the paper [12]
for more detail).

Let us consider the problem of approximating a function from training samples. Let
f(x) be the learning target function, which is a real-valued function defined on D ⊂ Rd

and belongs to a reproducing kernel Hilbert space H [2]. We denote the reproducing
kernel of H by K(x, x′). Let {(xi, yi)}n

i=1 be training samples, where xi ∈ D is an input
point and yi ∈ R is an output value. We assume that the output value yi is degraded by
i.i.d. Gaussian noise εi with mean zero and variance σ2:

yi = f(xi) + εi. (1)

Let f̂(x) be a learned function obtained from the training samples. The goal to obtain
the best approximation to the target function in terms of the following generalization error.

G = ‖f̂ − f‖2 − ‖f‖2

= ‖f̂‖2 − 2〈f̂ , f〉, (2)

1This does not include multi-layer neural networks or radial basis function networks with adaptive
centers.
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where ‖f‖2 is subtracted for making the following discussion simple. We employ the
following kernel model for learning [6].

f̂(x) =
n∑

i=1

αiK(x,xi), (3)

where α = (α1, α2, . . . , αn)> are parameters to be learned and > denotes the transpose.
Note that this form is known to be a minimizer of some regularized functional in H [6].
We focus on learning the parameter vector α in a linear fashion, i.e., α is obtained by

α = Ly, (4)

where y = (y1, y2, . . . , yn)> and L is an n-dimensional matrix which is independent of the
noise {εi}n

i=1. We call L the learning matrix.

Consequently, the problem of learning f̂(x) is converted into the problem of learning
L. Since the generalization error G includes the unknown learning target function f(x),
we can not directly learn L such that G is minimized. A standard approach to coping
with this problem is to employ an accessible estimator of the unknown generalization
error G. In the next section, we review existing methods for estimating G.

3 Generalization Error Estimators

In this section, we briefly review the generalization error estimators called the subspace
information criterion (SIC) [11, 10] and its extension the regularized SIC (RSIC) [9].

3.1 Subspace Information Criterion

Let S be the subspace of H spanned by {K(x,xi)}n
i=1. Let g(x) be the orthogonal

projection of f(x) onto S. Since g(x) belongs to S, it is expressed as

g(x) =
n∑

i=1

α∗i K(x,xi), (5)

where α∗ = (α∗1, α
∗
2, . . . , α

∗
n)> are unknown optimal parameters. Then the expected gen-

eralization error G can be expressed as follows [10].

E�G[L] = E�〈KLy, Ly〉 − 2E�〈KLy,α∗〉, (6)

where E� is the expectation over the noise {ε}n
i=1 and Ki,j = K(xi,xj) is the kernel

matrix.
Since α∗ is unknown in Eq.(6), we replace it by a linear unbiased estimator α̂u.

Namely, with some n-dimensional matrix Ru, α̂u is given as

α̂u = Ruy, (7)
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which satisfies E�α̂u = α∗. Note that the subscript ‘u’ in the above equations stands for
‘unbiased’. It is known that such Ru is given as follows [10].

Ru = K†, (8)

where † denotes the Moore-Penrose generalized inverse [1].
Using α̂u, we can express E�G as

E�G[L] = E�〈KLy, Ly〉 − 2E�〈KLy, Ruy〉+ 2σ2tr(KLR>
u ). (9)

The subspace information criterion (SIC) is defined as the right-hand side of Eq.(9) with
the expectation operator E� removed:

SIC[L] = 〈KLy,Ly〉 − 2〈KLy,Ruy〉+ 2σ2tr(KLR>
u ). (10)

For any L, SIC is an unbiased estimator of E�G:

E�SIC[L] = E�G[L]. (11)

The papers [11, 10] proposed choosing the learning matrix L that minimizes SIC from
a set L of candidates of L:

L̂ = argmin
L∈L

SIC[L]. (12)

3.2 Regularized Subspace Information Criterion

SIC is unbiased, but can have large variance. The regularized SIC (RSIC) can ease this
problem [9].

Let α̂r be some linear regularized estimator of α∗:

α̂r = Ry, (13)

where R is an n-dimensional matrix which is independent of the noise {ε}n
i=1. We call R

the reference matrix, since α̂r is used as a reference.
A major reason why SIC can have large variance would be the instability of α̂u. A

basic idea of RSIC is to replace the unbiased estimator α̂u with a biased but more stable
estimator α̂r:

RSIC[L; R] = 〈KLy,Ly〉 − 2〈KLy,Ry〉+ 2σ2tr(KLR>), (14)

where the notation RSIC[L; R] means that it is a functional of L with a ‘parameter’
matrix R.

In RSIC, the parameter matrix R should be determined appropriately. The paper [9]
proposed using the following criterion for optimizing R:

J [R; L] = (RSIC[L; R]− E�G[L])2, (15)
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where the notation J [R; L] means that it is a functional of R with a parameter matrix
L. Now we want to determine R so that the above J is minimized. However, J includes
unknown G, so it can not be directly calculated. Let S and T be

S = 2R>
u KL− 2R>KL, (16)

T = L>KL− 2R>KL. (17)

Then an unbiased estimator of E�J is given as follows [9].

Ĵ [R; L] =
{〈Sy,y〉 − σ2tr(S)

}2

− σ2‖(S + S>)y‖2 + σ4tr(S2 + SS>)

+ σ2‖(T + T>)y‖2 − σ4tr(T 2 + TT>), (18)

which satisfies, for any R and L,

E�Ĵ [R; L] = E�J [R; L]. (19)

The paper [9] proposed using the above Ĵ instead of J for determining R. Learning L

based on RSIC and Ĵ is carried out as follows. First, a set L of candidates of L and a set
R of candidates of R are prepared. For each L ∈ L, R is optimized within R:

R̂
(L)

= argmin
R∈R

Ĵ [R; L]. (20)

Then, using R̂
(L)

, L is optimized within L:

L̂ = argmin
L∈L

RSIC[L; R̂
(L)

]. (21)

4 Existing Methods for Determining L

When we learn L using SIC or RSIC, we have to determine the set L from which L is
searched and the set R from which R is searched. The largest possible set is Rn, but it is
generally too broad to be searched from. Conventionally, we form the set L and the set
R based on some learning criterion. In this section, we briefly review popular choices of
the learning criterion.

4.1 Existing Method 1 (E1)

Ridge learning [5] determines the parameter α so that the regularized squared error is
minimized.

n∑
i=1

(
f̂(xi)− yi

)2

+ η‖α‖2, (22)
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where η is a non-negative scalar called the ridge parameter. A minimizer of the above
regularized squared error is given by

L = (K2 + ηI)−1K, (23)

where I is the identity matrix. When RSIC is employed, we have to optimize the reference
matrix R in addition to the learning matrix L. Here, we use ridge learning also for R:

R = (K2 + νI)−1K, (24)

where ν is a non-negative scalar. Now the problem of choosing R and L is reduced to
the problem of choosing the ridge parameter ν and η.

The paper [9] proposed determining the ridge parameter η based on RSIC as follows.
First, a finite set of candidate values of η and a finite set of candidate values of ν are
prepared. For each η, ν is optimized based on Ĵ . Then η is optimized based on RSIC
using the chosen ν. We refer to this procedure as E1. The computational complexity of
E1 with respect to the number of model candidates is O(|L||R|), where |L| and |R| are
the size of the sets L and R respectively. The procedure E1 has been shown to work well,
given that the sets L and R are rich enough [9].

4.2 Existing Method 2 (E2)

In the procedure E1, R and L are chosen from a finite set of candidates. In order to
improve the optimization quality of R and L, it is desirable to increase the number of
candidates. However, this in turn increases the computational complexity. To cope with
this problem, the paper [12] proposed an efficient model selection procedure based on
RSIC, where the best learning matrix L is analytically obtained under a certain condition.
This analytic approach maximally enhances the optimization quality and at the same time
it keeps the computational cost reasonable.

It appears to be difficult to have an analytic solution if the set R and L are determined
based on ridge learning (23) and (24) since the target parameters η and ν are included in
the matrix inverse. The paper [12] instead employed shrinkage learning : determine the
parameter α so that the following quantity is minimized.

n∑
i=1

(
f̂(xi)− yi

)2

+ δ‖Kα‖2, (25)

where δ is a non-negative scalar called the shrinkage parameter. A minimizer of the above
quantity is given by the following learning matrix.

L =
1

1 + δ
K†. (26)

We also employ shrinkage learning for R:

R =
1

1 + κ
K†, (27)
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where κ is a non-negative scalar. Now the problem of choosing R and L is reduced to
the problem of choosing κ and δ. Let κ̂(δ) and δ̂ be

κ̂(δ) = arginf
κ∈[0,∞)

Ĵ(κ; δ), (28)

δ̂ = arginf
δ∈[0,∞)

RSIC(δ; κ̂(δ)), (29)

and let

v1 = 〈K†y,y〉, (30)

v2 = σ2tr(K†), (31)

v3 = 2σ2〈(K†)2y,y〉 − σ4tr((K†)2). (32)

Then δ̂ is given as follows [12].

δ̂ =





(v1 − v2)v2

(v1 − v2)2 − 2 max(0, v3)
if v1 > v2 and v3 <

(v1 − v2)
2

2
,

arbitrary value in [0,∞) if v1 = v2 = 0,

∞ otherwise.

(33)

By this expression, we can compute the optimal value of δ analytically. We refer to this
procedure as E2. The computational complexity of E2 is O(1) with respect to |L| and
|R|.

5 Proposed Method for Determining L

In the previous section, we reviewed existing RSIC-based methods of determining L. As
we experimentally show in Section 6, E1 works excellently in terms of the generalization
error, but it is computationally less efficient. On the other hand, E2 is computationally
very efficient, but it works poorly in terms of the generalization error. A reason for the
poor performance of E2 is shrinkage learning—its regularization effect is rather limited.
Although ridge learning works better, it is hard to derive an analytic form of the optimizer
since the ridge parameter is included in the matrix inverse. In this section, we propose a
new learning method that is more powerful than ridge learning, but it still allows us to
obtain an analytic form of the optimizer.

5.1 Adaptive Ridge Learning in Kernel Eigenspace

Let d1, d2, . . . , dn be the eigenvalues of K and let u1,u2, . . . , un be the associated nor-
malized eigenvectors. Let

D = diag(d1, d2, . . . , dn), (34)

U = (u1,u2, . . . , un), (35)

β = (β1, β2, . . . , βn)> = U>α, (36)



Analytic Optimization of Adaptive Ridge Parameters 8

where diag(d1, d2, . . . , dn) denotes the diagonal matrix with diagonal elements
d1, d2, . . . , dn. Adaptive ridge learning in kernel eigenspace determines the parameter
α so that the following criterion is minimized.

n∑
i=1

(f̂(xi)− yi)
2 +

n∑
j=1

λjβj, (37)

where {λj}n
j=1 are non-negative scalars. Adaptive ridge learning in kernel eigenspace

contains n independent ridge parameters {λj}n
j=1. If λ1 = λ2 = · · · = λn = λ, adaptive

ridge learning in kernel eigenspace is reduced to ordinary ridge learning; if λi = λd2
i , it

agrees with shrinkage learning. Thus, adaptive ridge learning in kernel eigenspace includes
ridge learning and shrinkage learning as special cases and is substantially more general.
Let

Λ = diag(λ1, λ2, . . . , λn). (38)

Then a minimizer of Eq.(37) is given by

L = (K2 + UΛU>)†K. (39)

5.2 Proposed Method (P)

Here, we derive an analytic form of the optimal {λi}n
i=1 that minimize RSIC for any fixed

R.
Let s, t, W , and pi be

s = (s1, s2, . . . , sn)> = U>y, (40)

t = (t1, t2, . . . , tn)> = U>Ry, (41)

W = (Wi,j) = U>R>U , (42)

pi = σ2Wi,i − siti. (43)

Then we have the following theorem.

Theorem 1 Let

(λ̂
(R)
1 , λ̂

(R)
2 , . . . , λ̂(R)

n ) = arginf
(λ1,λ2,...,λn)∈[0,∞)n

RSIC(λ1, λ2, . . . , λn; R). (44)

Then λ̂
(R)
i is given by

λ̂
(R)
i =





max

(
0,−dis

2
i

pi

− d2
i

)
if di > 0 and pi < 0, (45a)

arbitrary value in [0,∞) if di = 0, (45b)

arbitrary value in [0,∞) if di > 0 and si = pi = 0, (45c)

∞ otherwise. (45d)
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A proof of this theorem is given in A. By Theorem 1, the optimal value of {λi}n
i=1 can be

analytically calculated for any fixed R.
To further optimize R, we employ shrinkage learning for R:

R =
1

1 + γ
K†, (46)

where γ is a non-negative scalar. Then we have the following corollary.

Corollary 1 When Eq.(46) is used for R, Eq.(45) can be expressed as

λ̂
(γ)
i =





d2
i (γs2

i + σ2)

s2
i − σ2

if di > 0 and s2
i > σ2, (47a)

arbitrary value in [0,∞) if di = 0, (47b)

arbitrary value in [0,∞) if di > 0 and si = σ = 0, (47c)

∞ otherwise. (47d)

A proof of this corollary is given in B.
Now we derive an analytic form of the optimal γ. Let

Λ̂(γ) = diag(λ̂
(γ)
1 , λ̂

(γ)
2 , · · · , λ̂(γ)

n ), (48)

L̂
(γ)

= (K2 + UΛ̂(γ)U>)†K. (49)

Ĵ defined by Eq.(18) is a criterion which measures the goodness of γ for a fixed L.

However, L̂
(γ)

given above depends on γ. Therefore, determining γ by Ĵ(γ; L̂
(γ)

) may not

be appropriate. Here, we propose using the following ĴE(γ) for measuring the goodness
of γ.

ĴE(γ) =

∫ ∞

0

Ĵ(γ; L̂
(γ′)

)dγ′, (50)

which is the average of Ĵ over L̂
(γ′)

.
Let Ai,j, Bi, A, and B be

Ai,j =





(s2
i − σ2)2(s2

j − σ2)2

didjs2
i s

2
j

if di, dj > 0 and s2
i , s

2
j > σ2,

0 otherwise,

(51)

Bi =





σ2(3s2
i + σ2)(s2

i − σ2)2(2s2
i − σ2)

2d2
i s

6
i

if di > 0 and s2
i > σ2,

0 otherwise,

(52)

A =
n∑

i=1

n∑
j=1

Ai,j, (53)

B =
n∑

i=1

Bi. (54)
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Then we have the following theorem.

Theorem 2 Let
γ̂ = arginf

γ∈[0,∞)

ĴE(γ). (55)

Then γ̂ is given by

γ̂ =





max

(
0,

B

A−B

)
if A−B > 0,

arbitrary value in [0,∞) if A = B = 0,

∞ otherwise.

(56)

A proof of this theorem is given in C. By Eqs.(47) and (56), we can analytically

compute the optimal ridge parameters {λ̂(bγ)
i }n

i=1. We refer to this procedure as P. The
computational complexity of P is O(1) with respect to |L| and |R|.

6 Simulations

In this section, we experimentally compare the accuracy and computation time of the
existing and proposed methods.

6.1 Toy Data Set

First, we illustrate how the proposed method works using a simple artificial simulation.
Let f(x) = sinc(x) and we employ the Gaussian reproducing kernel Hilbert space [8]

as H, where the reproducing kernel is given by

K(x, x′) = exp

(
−(x− x′)2

2

)
. (57)

Note that the sinc function is included in the above Gaussian reproducing kernel Hilbert
space [3]. We take training input points {xi}n

i=1 independently following the uniform
distribution on (−π, π). Noise {εi}n

i=1 are taken independently following the normal dis-
tribution with mean zero and variance σ2. Training output values {yi}n

i=1 are created as
yi = sinc(xi) + εi. We consider the following four cases.

(n, σ2) =(50, 0.01), (50, 0.09),

(100, 0.01), (100, 0.09). (58)

That is, small/large samples and low/high noise level. For each of the above case, we
repeat the simulation 1000 times by changing {xi}n

i=1 and {εi}n
i=1. In the experiments, σ2
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is treated as unknown variable and is estimated by2

σ̂2 =
‖KK†y − y‖2

n− tr(KK†)
. (59)

With some abuse, we call the following Ḡ the generalization error through this section.

Ḡ = ‖f̂ − f‖2. (60)

η and ν in the method E1 are chosen from the set of 10 equidistant values in log-
scale in the range [10−4, 104]. Therefore, |L| = |R| = 10. Note that all matrices L, R,
and K appeared in the current setting have common eigenvectors. This means that all
the methods can be implemented quite efficiently, i.e., once eigendecomposition of K is
carried out in advance, all the methods can be computed very efficiently. We implemented
all the methods in this way. The computation of the Moore-Penrose generalized inverse
was often numerically unstable, so we discarded eigenvalues less than 0.02.

Mean and standard deviation of the generalization error obtained by each method are
described in the upper area of Table 1. The ratio of mean generalization error among
the methods is also described in the table for better comparison. ‘+’ (‘−’) signifies that
P gives a significantly better (worse) result by the t-test [4] at the significance level 1%.
The table also contains the ratio of mean computation time among the methods.

The computational complexity of E1 is O(|L||R|) while that of P is O(1). Thus P
is theoretically 100 times faster than E1 in computation. Table 1 shows that practical
computation time of P is approximately 20 times faster than E1, which is rather consistent
with the theoretical value. The generalization error of P is comparable to that of E1.

The computational complexity of P and E2 are bothO(1). Table 1 shows that although
they have the same computational complexity, P required a few times more computation
time than E2. We conjecture that this is mainly due to the computation of Eqs.(47) and
(56). The generalization error of P is better than E2 in all case. Especially, when the
noise level is high (σ2 = 0.09), the generalization error is highly improved.

The above results show that, in this illustrative simulations, P is much faster than E1
while the generalization performance is comparable; compared with E2, P is a few times
slower but the generalization performance is much better.

6.2 Benchmark Data Sets

Here, we apply the proposed method to more realistic data sets and evaluate their behav-
ior. We use 10 benchmark data sets provided by DELVE [7]: Abalone, Boston, Bank-8fm,
Bank-8nm, Bank-8fh, Bank-8nh, Kin-8fm, Kin-8nm, Kin-8fh, and Kin-8nh.

For convenience, every attribute is normalized to [0,1]. n randomly selected samples
{(xi, yi)}n

i=1 are used for training. We evaluate the generalization performance by the

2Note that the current setting theoretically yields KK† = I (i.e., K−1 exists) with probability one
[8]. However, in practice, K is almost always degenerated numerically and therefore Eq.(59) is still valid.
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mean squared test error:

Test Error =
1

n′

n′∑
i=1

(
f̂(x′i)− y′i

)2

, (61)

where {(x′i, y′i)}n′
i=1 denote the test samples which are not used for training. Other setting

is the same as Section 6.1. The simulation is repeated 100 times, randomly selecting the
training set {(xi, yi)}n

i=1 in each trial. We test n = 100 and 800 (400 for the Boston data
set since it contains only 506 samples).

Mean and standard deviation of the generalization error obtained by each method are
described in the lower half of Table 1. The table shows that, irrespective of n, E1 gives
the best performance for most of the data sets; P is slightly inferior to E1 in terms of the
generalization performance, but is much better than E2. When n = 100, the computation
time of P is approximately 20 times faster than E1 and is a few times slower than E2.
However, when n = 800, the computation time of P gets relatively slow. Therefore, P
would be particularly useful in small sample cases.

7 Conclusions

In this paper, we proposed a new learning method called adaptive ridge learning in kernel
eigenspace and derived an analytic form of the optimal ridge parameters. We experimen-
tally showed that for some toy and benchmark data sets, the proposed method is computa-
tionally more efficient than the existing method with grid search, while the generalization
performance is kept rather comparable. In particular, our experiments highlighted that
the proposed method is useful when the number of training samples is small.
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A Proof of Theorem 1

By Eqs.(14), and (39), RSIC(λ1, λ2, . . . , λn; R) is expressed as

RSIC(λ1, λ2, . . . , λn; R) =

〈{(D2 + Λ)†}2D3s, s〉 − 2〈(D2 + Λ)†D2s, t〉
+ 2σ2tr

(
W (D2 + Λ)†D2

)

=
n∑

i=1

hi(λi), (62)
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Table 2: Cases in proof of Theorem1.

Conditions Results

di = 0 (A) λ̂
(R)
i ∈ [0,∞)

di > 0
si = 0

pi > 0 (B) λ̂
(R)
i = ∞

pi = 0 (C) λ̂
(R)
i ∈ [0,∞)

pi < 0 (D) λ̂
(R)
i = 0

si 6= 0
pi ≥ 0 (E) λ̂

(R)
i = ∞

pi < 0 (F) λ̂
(R)
i = max(0, λ̃i)

where
hi(λ) = d3

i s
2
i {(d2

i + λ)†}2 + 2d2
i pi(d

2
i + λ)†. (63)

This implies that the minimizer of RSIC(λ1, λ2, . . . , λn; R) with respect to λi is the min-
imizer of hi(λ). When di 6= 0, the first derivative of hi(λ) is given by

h′i(λ) = −2d2
i

di(s
2
i + dipi) + piλ

(d2
i + λ)3

. (64)

Below, we give a proof depending on di, si and pi (see Table 2).

(A) If di = 0, hi(λ) = 0 for any λ ∈ [0,∞). So λ̂
(R)
i is an arbitrary value in [0,∞).

(B) If di > 0, si = 0 and pi > 0, Eq.(64) yields h′i(λ) < 0 for any λ ∈ [0,∞). This

implies that hi(λ) is monotone decreasing and thus λ̂
(R)
i = ∞.

(C) If di > 0, si = 0 and pi = 0, Eq.(64) yields h′i(λ) = 0 for any λ ∈ [0,∞). This

implies that hi(λ) is constant so λ̂
(R)
i is an arbitrary value in [0,∞).

(D) If di > 0, si = 0 and pi < 0, Eq.(64) yields h′i(λ) > 0 for any λ ∈ [0,∞). This

implies that hi(λ) is monotone increasing and thus λ̂
(R)
i = 0.

(E) If di > 0, si 6= 0 and pi ≥ 0, Eq.(64) yields h′i(λ) < 0 for any λ ∈ [0,∞). This

implies that hi(λ) is monotone decreasing and thus λ̂
(R)
i = ∞.

(F) If di > 0, si 6= 0, pi < 0 and s2
i + dipi < 0, Eq(64) yields h′i(λ) > 0 for any

λ ∈ [0,∞). This implies that hi(λ) is monotone increasing and thus λ̂
(R)
i = 0. On the

other hand, if s2
i + dipi ≥ 0, Eq(64) implies that h′i(λ̃i) = 0, where

λ̃i = −di(s
2
i + dipi)

pi

(≥ 0). (65)

Since

hi(λ)− hi(λ̃i) =
dip

2
i (λ− λ̃i)

2

s2
i (d

2
i + λ)2

≥ 0, (66)

where strict equality holds if and only if λi = λ̃i, we have λ̂
(R)
i = λ̃i. Then we can express

λ̂
(R)
i as

λ̂
(R)
i = max(0, λ̃i). (67)

By summarizing the above results (see Table 2), we have Eq.(45).
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B Proof of Corollary 1

When R is of the form of Eq.(46), pi is expressed as

pi =
d†i (σ

2 − s2
i )

(1 + γ)
. (68)

Since pi < 0 implies s2
i > σ2, Eq.(45a) is expressed as

max

(
0,−dis

2
i

pi

− d2
i

)
=

d2
i (γs2

i + σ2)

s2
i − σ2

> 0. (69)

si = pi = 0 implies si = σ = 0, which concludes the proof.

C Proof of Theorem 2

Let

Q1 = K†KL, (70)

Q2 = L>KL, (71)

q1 = 〈Q1y,y〉 − σ2tr (Q1) , (72)

q2 = σ2
{‖(Q1 + Q>

1 )y‖2 − σ2tr
(
Q2

1 + Q>
1 Q1

)}
, (73)

q3 = σ2
{〈(Q1 + Q>

1 )Q2y, y〉 − σ2tr (Q1Q2)
}

. (74)

When R is of the form of Eq.(46), Eqs.(16) and (17) are expressed as

S =
2γ

1 + γ
Q1, (75)

T = Q2 −
2

1 + γ
Q1. (76)

Using Eqs.(72)—(76), we can express Eq.(18) as

Ĵ(γ; L) =4(q2
1 − q2)

(
γ

1 + γ

)2

+ q2
4

(1 + γ)2

− q3
8

1 + γ
+ σ2{4‖Q2y‖2 − 2σ2tr

(
Q2

2

)}. (77)
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When L is of the form of Eq.(49), q1, q2 and q3 depend on γ. So we denote them as q
(γ)
1 ,

q
(γ)
2 and q

(γ)
3 , which are expressed as

q
(γ)
1 = 〈(D2 + Λ̂

(γ)
)†Ds, s〉 − σ2tr

(
(D2 + Λ̂

(γ)
)†D

)

=
n∑

i=1

r
(γ)
1,i , (78)

q
(γ)
2 = σ2

{
4‖U (D2 + Λ̂

(γ)
)†Ds‖2 − 2σ2tr

(
{(D2 + Λ̂

(γ)
)†}2D2

)}

=
n∑

i=1

r
(γ)
2,i , (79)

q
(γ)
3 = σ2

{
2〈{(D2 + Λ̂

(γ)
)†}3D4s, s〉 − σ2tr

(
{(D2 + Λ̂

(γ)
)†}3D4

)}

=
n∑

i=1

r
(γ)
3,i , (80)

where

r
(γ)
1,i = di(s

2
i − σ2)(d2

i + λ̂
(γ)
i )†, (81)

r
(γ)
2,i = 2σ2d2

i (2s
2
i − σ2){(d2

i + λ̂
(γ)
i )†}2, (82)

r
(γ)
3,i = σ2d4

i (2s
2
i − σ2){(d2

i + λ̂
(γ)
i )†}3. (83)

Let A, B and C be

A =

∫ ∞

0

(q
(γ′)
1 )2dγ′, (84)

B =

∫ ∞

0

(q
(γ′)
2 − q

(γ′)
3 )dγ′, (85)

C =

∫ ∞

0

q
(γ′)
3 dγ′. (86)

Then Eq.(50) is expressed as

ĴE(γ) =4

(
γ

1 + γ

)2

(A−B − C) +
4

(1 + γ)2
(B + C)

− 8

1 + γ
C + const., (87)

where “const.” denotes a constant that does not depend on γ. The first derivative of
ĴE(γ) is given by

Ĵ ′E(γ) =
8{(A−B)γ −B}

(1 + γ)3
. (88)
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Let Ai,j and Bi be

Ai,j =

∫ ∞

0

r
(γ′)
1,i r

(γ′)
1,j dγ′, (89)

Bi =

∫ ∞

0

(r
(γ′)
2,i − r

(γ′)
3,i )dγ′. (90)

When λ̂
(γ′)
i and λ̂

(γ′)
j are expressed as Eqs.(47b), (47c) or (47d), Ai,j = 0. When λ̂

(γ′)
i and

λ̂
(γ′)
j are expressed as Eq.(47a),

Ai,j =
(s2

i − σ2)2(s2
j − σ2)2

didjs2
i s

2
j

∫ ∞

0

1

(1 + γ′)2
dγ′

=
(s2

i − σ2)2(s2
j − σ2)2

didjs2
i s

2
j

. (91)

Similarly, when λ̂
(γ′)
i is expressed as Eqs.(47b), (47c) or (47d), Bi = 0. When λ̂

(γ′)
i are

expressed as Eq.(47a),

Bi =
2σ2(s2

i − σ2)2(2s2
i − σ2)

d2
i s

4
i

∫ ∞

0

1

(1 + γ′)2
dγ′

− σ2(s2
i − σ2)3(2s2

i − σ2)

d2
i s

6
i

∫ ∞

0

1

(1 + γ′)3
dγ′

=
σ2(3s2

i + σ2)(s2
i − σ2)2(2s2

i − σ2)

2d2
i s

6
i

. (92)

Then we can express A and B as

A =
n∑

i=1

n∑
j=1

Ai,j, (93)

B =
n∑

i=1

Bi. (94)

Below, we give a proof depending on A and B (see Table 3).

(A) If A > B and B < 0, Eq.(88) yields Ĵ ′E(γ) > 0 for any γ ∈ [0,∞). This implies

that ĴE(γ) is monotone increasing and thus γ̂ = 0.

(B) If A > B ≥ 0, Eq.(88) implies that Ĵ ′E(γ) = 0, where

γ̃ =
B

A−B
(≥ 0). (95)

Since

ĴE(γ)− ĴE(γ̃) =
4A(γ − γ̃)2

(1 + γ)2(1 + γ̃)2
≥ 0, (96)
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Table 3: Cases in proof of Theorem2.

Conditions Results

A > B
B < 0 (A) γ̂ = 0
B ≥ 0 (B) γ̂ = γ̃

A < B (C) γ̂ = ∞
A = B

B 6= 0 (D) γ̂ = ∞
B = 0 (E) γ̂ ∈ [0,∞)

where strict equality holds if and only if γ = γ̃, we have γ̂ = γ̃.
(C) If A < B, we have B > 0 since A ≥ 0. Then Eq.(88) yields Ĵ ′E(γ) < 0 for any

γ ∈ [0,∞). This implies that ĴE(γ) is monotone decreasing and thus γ̂ = ∞.

(D) If A = B 6= 0, we have B > 0 since A > 0. Then Eq.(88) yields Ĵ ′E(γ) < 0 for any

γ ∈ [0,∞). This implies that ĴE(γ) is monotone decreasing and thus γ̂ = ∞.

(E) If A = B = 0, Eq.(88) yields Ĵ ′E(γ) = 0. This implies that Ĵ(γ) is constant so γ̂
is an arbitrary value in [0,∞).

By summarizing the above results (see Table 3), we have Eq.(56).

References

[1] A. Albert, Regression and the Moore-Penrose Pseudoinverse, Academic Press, New
York and London, 1972.

[2] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American Math-
ematical Society, vol.68, pp.337–404, 1950.

[3] F. Girosi, “An equivalence between sparse approximation and support vector ma-
chines,” Neural Computation, vol.10, no.6, pp.1455–1480, 1998.

[4] R.E. Henkel, Tests of Significance, SAGE Publication, Beverly Hills, 1979.

[5] A.E. Hoerl and R.W. Kennard, “Ridge regression: Biased estimation for nonorthog-
onal problems,” Technometrics, vol.12, no.3, pp.55–67, 1970.

[6] G.S. Kimeldorf and G. Wahba, “Some results on Tchebycheffian spline functions,”
Journal of Mathematical Analysis and Applications, vol.33, no.1, pp.82–95, 1971.

[7] C.E. Rasmussen, R.M. Neal, G.E. Hinton, D. van Camp, M. Revow, Z. Ghahramani,
R. Kustra, and R. Tibshirani, “The DELVE manual,” 1996.

[8] B. Schölkopf and A.J. Smola, Learning with Kernels, MIT Press, Cambridge, MA,
2002.



Analytic Optimization of Adaptive Ridge Parameters 19

[9] M. Sugiyama, M. Kawanabe, and K.R. Müller, “Trading variance reduction with un-
biasedness: The regularized subspace information criterion for robust model selection
in kernel regression,” Neural Computation, vol.16, no.5, pp.1077–1104, 2004.

[10] M. Sugiyama and K.R. Müller, “The subspace information criterion for infinite di-
mensional hypothesis spaces,” Journal of Machine Learning Research, vol.3, pp.323–
359, Nov. 2002.

[11] M. Sugiyama and H. Ogawa, “Subspace information criterion for model selection,”
Neural Computation, vol.13, no.8, pp.1863–1889, 2001.

[12] M. Sugiyama and K. Sakurai, “Analytic optimization of shrinkage parameters based
on regularized subspace information criterion,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol.E89-A, no.8, pp.2216–
2225, 2006.


