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2AbstractAbstract
When training and test samples follow different input distributions 
(i.e., the situation called covariate shift), the maximum likelihood 
estimator is known to lose its consistency. For regaining 
consistency, the log-likelihood terms need to be weighted 
according to the importance (i.e., the ratio of test and training 
input densities). Thus, accurately estimating the importance is one 
of the key tasks in covariate shift adaptation. A naive approach is 
to first estimate training and test input densities and then estimate 
the importance by the ratio of the density estimates. However, 
since density estimation is a hard problem, this approach tends to 
perform poorly especially in high dimensional cases. In this paper, 
we propose a direct importance estimation method that does not 
require the input density estimates. Our method is equipped with a 
natural model selection procedure so tuning parameters such as 
the kernel width can be objectively optimized. This is an 
advantage over a recently developed method of direct importance 
estimation. Simulations illustrate the usefulness of our approach.



3

In supervised learning, we always assume

Is this assumption really true?

Training and test samples are
drawn from the same distribution

Common Assumption
in Supervised Learning
Common Assumption

in Supervised Learning

Not Always True!



4Face RecognitionFace Recognition

We tend to collect easy-to-gather 
samples for training.

Training: less women in research labs
Test: almost 50-50 in general

The Yale Face Database B



5Survey SamplingSurvey Sampling

Those who have strong opinions tend 
to reply to questionnaires.

Training: extreme opinions 
Test: most people are neutral

Excellent!NeutralPoor!



6Brain-Computer InterfaceBrain-Computer Interface
Sample generation mechanism varies.

Input: EEG signals
Output: “left” or “right” commands
Different mental conditions between training 
(sleepy…) and test (exciting!) phases may 
change the EEG signals.

Figure provided by Fraunhofer FIRST, Berlin, Germany



7Robot Control
by Reinforcement Learning

Robot Control
by Reinforcement Learning

Updating a robot’s behavior 
causes a distribution change.

Khepera Robot



8Covariate ShiftCovariate Shift
However, no chance for generalization 
if training and test samples have 
nothing in common.

Covariate shift
Input distribution changes:

Functional relation remains unchanged:

We need a (reasonable) constraint



9Illustration of Covariate ShiftIllustration of Covariate Shift
(Weak) extrapolation: 

Predict output values outside training region

Training
samples

Test
samples

True
function

Learned
function



10Bias and VarianceBias and Variance

: expectation over samples

Bias

Variance

Generalization error (expected test error):

Bias
Variance



11Model SpecificationModel Specification
Model is said to be correctly specified if

In practice, our model may not be correct.
Therefore, we need to explicitly deal with 
misspecified models!



12Ordinary Least-Squares (OLS)Ordinary Least-Squares (OLS)

If model is correct:
OLS minimizes bias 
asymptotically

If model is misspecified:
OLS does not minimize 
bias even asymptotically. 

We want to reduce bias!



13Importance-Weighted LS (IWLS)Importance-Weighted LS (IWLS)

Even for misspedified models, 
IWLS minimizes bias 
asymptotically.
We need to estimate the 
importance in practice.

:Assumed strictly positive

:Importance



14Importance EstimationImportance Estimation
Setting: training and test inputs are given

Naïve approach: estimate                and             
separately, and take the ratio of the 

density estimates
Naïve approach does not work well since 
density estimation is hard in high dimensions. 



15Modeling Importance FunctionModeling Importance Function

We use a linear model:

Test density is approximated by

Learn             so that              
approximates               well.



16Kullback-Leibler DivergenceKullback-Leibler Divergence

(constant)

(relevant)



17Learning Importance FunctionLearning Importance Function

Thus

Since                                       is density,
(objective function)

(constraint)



18KLIEP (Kullback-Leibler
Importance Estimation Procedure)

KLIEP (Kullback-Leibler
Importance Estimation Procedure)

Convexity: unique global solution is available
Sparse solution: prediction is fast!



19ExamplesExamples



20Model Selection of KLIEPModel Selection of KLIEP
How to choose tuning parameters (such as 
Gaussian width)?
Likelihood cross-validation:

Divide test samples                     into      and      .
Learn importance from      .
Estimate the likelihood using      .

This gives an unbiased                     
estimate of KL (up to                                   
an irrelevant constant).



21Illustrative Experiments: SetupIllustrative Experiments: Setup
Kernel density estimator (KDE):

Separately estimate training and test input densities.
Gaussian kernel width is chosen by likelihood 
cross-validation.

Kernel mean matching (KMM):
Direct importance estimation method using 
universal reproducing kernel Hilbert spaces
There is no model selection method for kernel 
width; we test several different widths.

Input distributions: standard Gaussian with
Training: mean (0,0,…,0)
Test: mean (1,0,…,0)

(Huang et al., NIPS2006)
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KDE: Suffers from the curse of dimensionality
KMM: Performance depends on kernel width
KLIEP: Model selection by LCV works well

Illustrative Experiments: ResultsIllustrative Experiments: Results



23Regression/ClassificationRegression/Classification
Goal: given                                           ,             
predict               .
Gaussian kernel model:

Regularized IWLS:

Importance is estimated by KLIEP with LCV.
are chosen by importance-weighted 

cross-validation. (Sugiyama et al., JMLR2007)



24ResultsResults
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