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Abstract
A common assumption in supervised learning is that the input points in the training set follow
the same probability distribution as the input points that will be given in the future test phase.
However, this assumption is not satisfied, for example, when the outside of the training region is
extrapolated. The situation where the training input points and test input points follow different
distributions while the conditional distribution of output values given input points is unchanged
is called the covariate shift. Under the covariate shift, standard model selection techniques such
as cross validation do not work as desired since its unbiasedness is no longer maintained. In this
paper, we propose a new method called importance weighted cross validation (IWCV), for which
we prove its unbiasedness even under the covariate shift. The IWCV procedure is the only one
that can be applied for unbiased classification under covariate shift, whereas alternatives to IWCV
exist for regression. The usefulness of our proposed method is illustrated by simulations, and
furthermore demonstrated in the brain-computer interface, where strong non-stationarity effects
can be seen between training and test sessions.
Keywords: covariate shift, cross validation, importance sampling, extrapolation, brain-computer
interface

1. Introduction

The goal of supervised learning is to infer an unknown input-output dependency from training
samples, by which output values for unseen test input points can be estimated. When developing
a method of supervised learning, it is commonly assumed that the input points in the training set
and the input points used for testing follow the same probability distribution (e.g., Wahba, 1990;
Bishop, 1995; Vapnik, 1998; Duda et al., 2001; Hastie et al., 2001; Schölkopf and Smola, 2002).
However, this common assumption is not fulfilled, for example, when we extrapolate outside of
the training region1 or when training input points are designed by an active learning (experimental
design) algorithm. The situation where the training input points and test input points follow different

1. The term ‘extrapolation’ could have been defined in a narrow sense as prediction in regions with no training samples.
On the other hand, the situation we are considering here is ‘weak’ extrapolation; prediction is carried out in the region
where only a small number of training samples is available.
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probability distributions but the conditional distributions of output values given input points are
unchanged is called the covariate shift (Shimodaira, 2000). For data from many applications such
as off-policy reinforcement learning (Shelton, 2001), spam filtering (Bickel and Scheffer, 2007),
bioinformatics (Baldi et al., 1998; Borgwardt et al., 2006) or brain-computer interfacing (Wolpaw
et al., 2002), the covariate shift phenomenon is conceivable. Sample selection bias (Heckman, 1979)
in economics may also include a form of the covariate shift. Illustrative examples of covariate shift
situations are depicted in Figures 1 and 3.

In this paper, we develop a new learning method and prove that we can alleviate misestimation
due to covariate shift. From the beginning, we note that all the theoretical discussions will be made
under the assumption that the ratio of test and training input densities at training input points is
known; in experimental studies, the density ratio will be replaced by their empirical estimates and
the practical performance of our approach will be evaluated.

Model selection is one of the key ingredients in machine learning. However, under the covariate
shift, a standard model selection technique such as cross validation (CV) (Stone, 1974; Wahba,
1990) does not work as desired; more specifically, the unbiasedness that guarantees the accuracy
of CV does not hold under the covariate shift anymore. To cope with this problem, we propose a
novel variant of CV called importance weighted CV (IWCV). We prove that IWCV gives an almost
unbiased estimate of the risk even under the covariate shift. Model selection under the covariate
shift has been studied so far only by few researchers (e.g., Shimodaira, 2000; Sugiyama and Müller,
2005)—existing methods have a number of limitations, for example, in the loss function, parameter
learning method, and model. In particular, the existing methods can not be applied to classification
scenarios. On the other hand, the proposed IWCV overcomes these limitations: it allows for any
loss function, parameter learning method, and model; even non-parametric learning methods can
be employed. To the best of our knowledge, the proposed IWCV is the first method that can be
successfully applied to model selection in covariate-shifted classification tasks. The usefulness of
the proposed method is demonstrated in the brain-computer interface applications, in which existing
methods for covariate shift compensation could not be employed.

2. Problem Formulation

In this section, we formulate the supervised learning problem with the covariate shift, and review
existing learning methods.

2.1 Supervised Learning under Covariate Shift

Let us consider the supervised learning problem of estimating an unknown input-output depen-
dency from training samples. Let T = {(xi,yi)}

n
i=1 be the training samples, where xi ∈ X ⊂ R

d is
an i.i.d. training input point following a probability distribution Ptrain(x) and yi ∈ Y ⊂ R is a corre-
sponding training output value following a conditional probability distribution P(y|x). P(y|x) may
be regarded as the sum of true output f (x) and noise.

Let `(x,y, ŷ) : X ×Y ×Y → [0,∞) be the loss function, which measures the discrepancy between
the true output value y at an input point x and its estimate ŷ. Let us employ a parametric model
f̂ (x;θ) for estimating the output value y, where θ ∈ Θ ⊂ R

b. Note that the range of application
of our proposed method given in Section 3 includes non-parametric methods, but we focus on a
parametric setting for simplicity. A model f̂ (x;θ) is said to be correctly specified if there exists a
parameter θ∗ such that f̂ (x;θ∗) = f (x); otherwise the model is said to be misspecified. In practice,
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the model used for learning would be misspecified to a greater or lesser extent. For this reason,
we do not assume that the model is correct in this paper. The goal of supervised learning is to
determine the value of the parameter θ so that output values for unlearned test input points are
accurately estimated.

Let us consider a test sample, which is not given to the user in the training phase, but will be
given in the test phase in the future. We denote the test sample by (t,u), where t ∈ X is a test input
point and u ∈ Y is a corresponding test output value. The test error expected over test samples is
expressed as

Et,u

[
`(t,u, f̂ (t; θ̂))

]
, (1)

where E denotes the expectation. Note that the learned parameter θ̂ generally depends on the train-
ing set T = {(xi,yi)}

n
i=1. In the following, we consider the expected test error over the training

samples, which is called the risk or the generalization error:

R(n) ≡ E{xi,yi}
n
i=1,t,u

[
`(t,u, f̂ (t; θ̂))

]
. (2)

In standard supervised learning theories, the test sample (t,u) is assumed to follow P(u|t)Ptrain(t),
which is the same probability distribution as for the training samples {(xi,yi)}

n
i=1 (e.g., Wahba,

1990; Bishop, 1995; Vapnik, 1998; Duda et al., 2001; Hastie et al., 2001; Schölkopf and Smola,
2002). On the other hand, in this paper, we consider the situation under the covariate shift, that is,
the conditional distribution P(u|t) remains unchanged, but the test input point t follows a different
probability distribution Ptest(x). Illustrative examples of covariate shift situations are depicted in
Figures 1 and 3.

Let ptrain(x) and ptest(x) be the probability density functions corresponding to the input distri-
butions Ptrain(x) and Ptest(x), respectively. In the following theoretical discussions, we assume that
the ratio of test and training input densities at training input points,

ptest(xi)

ptrain(xi)
, (3)

is finite and known. We refer to the expression (3) as importance à la importance sampling (Fish-
man, 1996). In practical situations where the importance is unknown, we may replace them by
empirical estimates (see Sections 4 and 5).

2.2 Empirical Risk Minimization and Its Importance Weighted Variants

A standard method to learn the parameter θ would be empirical risk minimization (ERM) (e.g.,
Vapnik, 1998; Schölkopf and Smola, 2002):

θ̂ERM ≡ argmin
θ∈Θ

[
1
n

n

∑
i=1

`(xi,yi, f̂ (xi;θ))

]
.

If Ptrain(x) = Ptest(x), ERM provides a consistent estimator2 (Shimodaira, 2000). However, under
the covariate shift where Ptrain(x) 6= Ptest(x), ERM is not generally consistent anymore3 (Shimodaira,

2. For a correctly specified model, an estimator is said to be consistent if it converges in probability to the true parameter.
For a misspecified model, we say that an estimator is consistent if it converges in probability to the optimal parameter
in the model (i.e., the optimal approximation of the learning target under the risk (2) within the model).

3. If the model is correct, ERM is still consistent even under the covariate shift.
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2000):

lim
n→∞

(
θ̂ERM

)
6= θ∗,

where
θ∗ ≡ argmin

θ∈Θ

(
Et,u

[
`(t,u, f̂ (t;θ))

])
.

Under the covariate shift, the following importance weighted ERM (IWERM) is consistent (Shi-
modaira, 2000):

θ̂IWERM ≡ argmin
θ∈Θ

[
1
n

n

∑
i=1

ptest(xi)

ptrain(xi)
`(xi,yi, f̂ (xi;θ))

]
,

which satisfies even for a misspecified model

lim
n→∞

(
θ̂IWERM

)
= θ∗.

Although IWERM is consistent, it is not efficient and can be rather unstable (Shimodaira, 2000).
Therefore, IWERM may not be optimal in practical finite sample cases; a slightly stabilized variant
of IWERM could be practically better than plain IWERM. The trade-off between consistency and
stability could be controlled, for example, by weakening the weight (Adaptive IWERM; AIWERM)
or by adding a regularizer to the empirical risk (Regularized IWERM; RIWERM):

θ̂AIWERM ≡ argmin
θ∈Θ

[
1
n

n

∑
i=1

(
ptest(xi)

ptrain(xi)

)λ
`(xi,yi, f̂ (xi;θ))

]
, (4)

θ̂RIWERM ≡ argmin
θ∈Θ

[
1
n

n

∑
i=1

ptest(xi)

ptrain(xi)
`(xi,yi, f̂ (xi;θ))+ γR(θ)

]
,

where 0 ≤ λ ≤ 1, γ ≥ 0, and R(θ) is some regularization functional.
The above AIWERM and RIWERM methods are just examples; there may be many other possi-

bilities of controlling the trade-off between consistency and stability. We note that the methodology
we propose in this paper is valid for any parameter learning method; this means that, e.g., an im-
portance weighted variant of support vector machines (Vapnik, 1998; Schölkopf and Smola, 2002;
Huang et al., 2007) or graph regularization techniques (Bousquet et al., 2004; Belkin and Niyogi,
2004; Hein, 2006) can also be employed.

2.3 Cross Validation Estimate of Risk

The value of the tuning parameter, say λ in Eq. (4), controls the trade-off between the consistency
and stability. Therefore, we need to perform model selection for determining the value of λ. Cross
validation (CV) is a popular method for model selection (Stone, 1974; Wahba, 1990). A basic idea
of CV is to divide the training set into ‘training part’ and ‘validation part’—a learning machine is
trained using the training part and is tested using the validation part, by which the risk is estimated.
Below, we give a slightly more formal description of the CV procedure, which will be used in the
next section.

Let us randomly divide the training set T = {(xi,yi)}
n
i=1 into k disjoint non-empty subsets

{Ti}
k
i=1. Let f̂T j

(x) be a function learned from {Ti}i6= j. Then the k-fold CV (kCV) estimate of
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the risk R(n) is given by

R̂(n)
kCV ≡

1
k

k

∑
j=1

1
|T j|

∑
(x,y)∈T j

`(x,y, f̂T j
(x)),

where |T j| is the number of samples in the subset T j. When k = n, kCV is particularly called
leave-one-out cross validation (LOOCV).

R̂(n)
LOOCV ≡

1
n

n

∑
j=1

`(x j,y j, f̂ j(x j)),

where f̂ j(x) is a function learned from {(xi,yi)}i6= j.

It is known that, if Ptrain(x) = Ptest(x), LOOCV gives an almost unbiased estimate of the risk;
more precisely, LOOCV gives an unbiased estimate of the risk with n − 1 samples (Luntz and
Brailovsky, 1969; Schölkopf and Smola, 2002):

E{xi,yi}
n
i=1

[
R̂(n)

LOOCV

]
= R(n−1) ≈ R(n).

However, this useful property is no longer true under the covariate shift. In the following section,
we give a novel modified cross validation method which still maintains the ‘almost unbiasedness’
property even under the covariate shift.

3. Importance Weighted Cross Validation

To compensate for the effect of the covariate shift in the CV procedure, we propose the following
importance weighted CV (IWCV):

R̂(n)
kIWCV ≡

1
k

k

∑
j=1

1
|T j|

∑
(x,y)∈T j

ptest(x)
ptrain(x)

`(x,y, f̂T j
(x)),

or

R̂(n)
LOOIWCV ≡

1
n

n

∑
j=1

ptest(x j)

ptrain(x j)
`(x j,y j, f̂ j(x j)).

That is, the validation error in the CV procedure is weighted according to the importance.

The following lemma shows that LOOIWCV gives an almost unbiased estimate of the risk even
under the covariate shift.

Lemma 1

E{xi,yi}
n
i=1

[
R̂(n)

LOOIWCV

]
= R(n−1).
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Proof Since the conditional distribution P(y|x) does not change between the training and test
phases, we have, for any j ∈ {1, . . . ,n},

E{xi,yi}
n
i=1

[
ptest(x j)

ptrain(x j)
`(x j,y j, f̂ j(x j))

]

= E{xi,yi}i6= j,x j,y j

[
ptest(x j)

ptrain(x j)
`(x j,y j, f̂ j(x j))

]

= E{xi,yi}i6= j,y j

[
Z

X

ptest(x j)

ptrain(x j)
`(x j,y j, f̂ j(x j))ptrain(x j)dx j

]

= E{xi,yi}i6= j,y j

[
Z

X
ptest(x j)`(x j,y j, f̂ j(x j))dx j

]

= E{xi,yi}i6= j,u

[
Z

X
`(t,u, f̂ j(t))ptest(t)dt

]

= E{xi,yi}i6= j,t,u

[
`(t,u, f̂ j(t))

]

= R(n−1).

Then we have

E{xi,yi}
n
i=1

[
R̂(n)

LOOIWCV

]
= E{xi,yi}

n
i=1

[
1
n

n

∑
j=1

ptest(x j)

ptrain(x j)
`(x j,y j, f̂ j(x j))

]

=
1
n

n

∑
j=1

E{xi,yi}
n
i=1

[
ptest(x j)

ptrain(x j)
`(x j,y j, f̂ j(x j))

]

=
1
n

n

∑
j=1

R(n−1)

= R(n−1),

which concludes the proof.

As proved above, the simple variant of LOOCV called LOOIWCV provides an unbiased esti-
mate of the risk with n−1 samples even under the covariate shift. A similar proof is also possible
for kIWCV, although its bias may be larger than LOOIWCV. Note that we did not assume any con-
dition on the loss function in the above proof. This means that the almost unbiasedness is valid
for any loss function including non-smooth losses such as the 0/1-loss. Also, we did not make a
model-specific assumption in the proof. Therefore, the almost unbiasedness holds for any model;
even non-identifiable models (Watanabe, 2001) such as multi-layer perceptrons or Gaussian mixture
models are included. Furthermore, the above proof does not depend on the method of parameter
learning. This means that the almost unbiasedness is valid for any parameter learning method; even
non-parametric learning methods are allowed.

4. Numerical Examples

In this section, we illustrate how IWCV works using toy regression and classification data sets.
More simulation results can be found in a separate technical report (Sugiyama et al., 2006).
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4.1 Toy Regression Problem

Here we illustrate the behavior of the proposed and existing generalization error estimators using a
simple one-dimensional regression data set.

We use the following linear model for learning:

f̂ (x;θ) = θ0 +
d

∑
i=1

θix
(i), (5)

where x(i) is the ith element of x and d is the input dimensionality. The parameter vector θ is learned
by adaptive importance weighted least-squares (AIWLS):

θ̂AIWLS ≡ argmin
θ

[
1
n

n

∑
i=1

(
ptest(xi)

ptrain(xi)

)λ (
f̂ (xi;θ)− yi

)2
]

, (6)

where 0 ≤ λ ≤ 1; λ is chosen later by a model selection method. For the linear model (5), the above
minimizer θ̂AIWLS is given analytically by

θ̂AIWLS = (X>DλX)−1X>Dλy,

where

X ≡




1 x>1
1 x>2

...
1 x>n


 ,

which is assumed to have rank d +1; D is the diagonal matrix with the ith diagonal element Di,i =
ptest(xi)/ptrain(xi) and y = (y1,y2, . . . ,yn)

>.
Let the learning target function be f (x) = sinc(x) and let the training and test input densities be

ptrain(x) = φ(x;1,(1/2)2),

ptest(x) = φ(x;2,(1/4)2),

where φ(x;µ,σ2) is the normal density with mean µ and variance σ2. This setting implies that we
are considering an extrapolation problem (see Figure 1(A)). We create the training output value yi

(i = 1,2, . . . ,n) as yi = f (xi) + εi, where {εi}
n
i=1 have density φ(ε;0,(1/4)2). Let the number of

training samples be n = 150.
Figure 1 (B)–(D) illustrate the true function, a realization of training samples, learned functions

by AIWLS (6) with λ = 0,0.5,1, and a realization of test samples. For this particular realization,
λ = 0.5 appears to work very well. However, the best choice of λ depends on the realization of
samples and λ needs to be carefully chosen by a model selection method. We randomly create
{xi,εi}

n
i=1 and calculate the scores of 10-fold IWCV and 10-fold CV for λ = 0,0.1,0.2, . . . ,1. This

procedure is repeated 1000 times.
Top graphs in Figure 2 depicts the mean and standard deviation of the test error and its estimate

by each method, as functions of the tuning parameter λ in AIWLS (6). Note that the mean of the test
error corresponds to the true risk (see Eqs. 1 and 2). The graphs show that IWCV gives reasonably
good unbiased estimates of the risk, while CV is heavily biased.
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(B) Learned Function by OLS (AIWLS with λ=0)
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(C) Learned Function by AIWLS with λ=0.5

x
−0.5 0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

(D) Learned Function by IWLS (AIWLS with λ=1)

x

Figure 1: An illustrative regression example of extrapolation by fitting a linear function. (A) The
probability density functions of the training and test input points and their ratio. (B)–
(D) The learning target function f (x) (the solid line), training samples (‘◦’), a learned
function f̂ (x) (the dashed line), and test samples (‘×’). Note that the test samples are not
given in the training phase; they are plotted in the graph for illustration purposes.

Next we investigate the model selection performance: λ is chosen from {0,0.1,0.2, . . . ,1} so
that the score of each method is minimized. Bottom graphs in Figure 2 depict the histogram of the
minimizer of each score. The mean and standard deviation of the test error when λ is chosen by
each method are described below the graphs. The numbers show that IWCV gives much smaller
test errors than CV (the difference is significant by the t-test at the significance level 1%).

We also carried out the same simulation under unknown training and test densities; they are
estimated by maximum likelihood fitting of a single Gaussian model or a Gaussian kernel density
estimator with variance determined by Silverman’s rule-of-thumb bandwidth selection rule (Sil-
verman, 1986; Härdle et al., 2004). For estimating the test input density, we draw 100 unlabeled
samples following Ptest(x). The simulation results had very similar trends to the case with known
densities (therefore we omit the detail), although the error gets slightly larger. This implies that, for
this toy regression problem, estimating the densities from data does not significantly degrade the
quality of learning.

The above simulation results illustrate that IWCV performs quite well in covariate-shifted re-
gression tasks.
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Figure 2: Top graphs: Test error and its estimates as functions of the tuning parameter λ in AIWLS
(6). Dashed curves in the middle and right graphs depict the mean test error (i.e., the mean
of the left graph) for clear comparison. Bottom graphs: Histograms of the minimizer. The
numbers below the graphs are the means and standard deviations of the test error when λ
is selected by each method.

4.2 Toy Classification Problem

Through the above regression examples, we found that IWCV works quite well. Here, we apply
IWCV to a toy classification problem where the 0/1-loss is used for computing the test error.

Let us consider a binary classification problem on the two-dimensional input space. We define
the class posterior probabilities given input x by

p(y = +1|x) =
1+ tanh

(
x(1) +min(0,x(2))

)

2
,

where x = (x(1),x(2))> and p(y =−1|x) = 1− p(y = +1|x). The optimal decision boundary, that is,
a set of all x such that p(y = +1|x) = p(y = −1|x), is illustrated in Figure 3(b).

Let the training and test input densities be

ptrain(x) =
1
2

φ
(

x;

(
−2
3

)
,

(
1 0
0 2

))
+

1
2

φ
(

x;

(
2
3

)
,

(
1 0
0 2

))
,

ptest(x) =
1
2

φ
(

x;

(
0
−1

)
,

(
1 0
0 1

))
+

1
2

φ
(

x;

(
4
−1

)
,

(
1 0
0 1

))
,

where φ(x;µ,Σ) is the multivariate normal density with mean µ and covariance matrix Σ. This setting
implies that we are considering an extrapolation problem. Contours of the training and test input
densities are illustrated in Figure 3(a).
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(a) Contours of training and test input densities.
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(b) Optimal decision boundary (solid line) and
learned boundaries (dashed lines). ‘◦’ and ‘×’
denote the positive and negative training samples,
while ‘�’ and ‘+’ denote the positive and nega-
tive test samples. Note that the test samples are
not given in the training phase; they are plotted in
the figure for illustration purposes.

Figure 3: Toy classification problem.

Let n = 500 and we create training input points {xi}
n
i=1 following Ptrain(x) and training output

labels {yi}
n
i=1 following P(y|xi). Similarly, we create 500 test input points {t i}

500
i=1 following Ptest(x)

and test output labels {ui}
500
i=1 following P(u|t i).

We use the linear model (5) combined with AIWLS (6) for learning. The classification result û
of a test sample t is obtained by the sign of the output of the learned function:

û = sgn
(

f̂ (t; θ̂AIWLS)
)

,

where sgn(·) denotes the sign of a scalar. Note that, if Ptrain(x) = Ptest(x), this classification method
is equivalent to linear discriminant analysis (LDA) (Fisher, 1936; Duda et al., 2001), given that the
class labels are yi ∝ {1/n+,−1/n−}, where n+ and n− are the numbers of positive and negative
training samples, respectively. In the following, we rescale the training output values {yi}

n
i=1 as

such, and refer to AIWLS as adaptive importance weighted LDA (AIWLDA). Figure 3(b) shows an
example of realizations of training and test samples, and decision boundaries obtained by AIWLDA
with λ = 0,0.5,1. In this particular realization, λ = 0.5 or 1 seems to work better than λ = 0.
However, the best value of λ depends on the realization of samples and λ needs to be optimized by
a model selection method.

Top graphs in Figure 4 depicts the mean and standard deviation of the test error (i.e., misclassi-
fication rate) and its estimate by each method over 1000 runs, as functions of the tuning parameter λ
in AIWLDA. The graphs clearly show that IWCV gives much better estimates of the risk than CV.

Next we investigate the model selection performance: λ is chosen from {0,0.1,0.2, . . . ,1} so
that the score of each method is minimized. Bottom graphs in Figure 4 depict the histograms of
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Figure 4: Top graphs: Test error (misclassification rate) and its estimates as functions of the tuning
parameter λ in AIWLDA. Dashed curves in the bottom graphs depict the mean test error
(i.e., the mean of the left graph) for clear comparison. Bottom graphs: Histograms of the
minimizer. The numbers below the graphs are the means and standard deviations of the
test error when λ is selected by each method.

the minimizer of each score. The mean and standard deviation of the test error when λ is chosen
by each method are described below the graphs. The numbers show that IWCV gives much smaller
test errors than CV (the difference is significant by the t-test at the significance level 1%).

We also carried out the same simulation except that the training and test densities are unknown;
they are estimated by maximum likelihood fitting of a single Gaussian model or a Gaussian kernel
density estimator with variance determined by Silverman’s rule-of-thumb bandwidth selection rule.
For estimating the test input density, we draw 500 unlabeled samples following Ptest(x). The sim-
ulation results were almost identical to the known-density case with a small increase in the error
(therefore we omit the detail). This implies that, for this toy classification problem, estimating the
densities from data does not significantly degrade the quality of learning.

This simulation result illustrated that IWCV is useful also in covariate-shifted classification
tasks.

5. Application to Brain-Computer Interface

The previous section showed that IWCV is promising in both regression and classification tasks
with covariate shift. In particular, IWCV is the only method which can be successfully applied
in covariate-shifted classification scenarios. In this section, we apply IWCV to the classification
tasks in brain-computer interfaces (BCIs), which attracts a lot of attention these days in biomedical
engineering.
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A BCI is a system which allows for a direct communication from man to machine (Wolpaw
et al., 2002; Dornhege et al., 2007). Cerebral electric activity is recorded via the electroencephalo-
gram (EEG): electrodes attached to the scalp measure the electric signals of the brain. These signals
are amplified and transmitted to the computer, which translates them into device control commands.
The crucial requirement for the successful functioning of BCI is that the electric activity on the
scalp surface already reflects motor intentions, that is, the neural correlate of preparation for hand
or foot movements. A BCI can detect the motor-related EEG changes and uses this information, for
example, to perform a choice between two alternatives: the detection of the preparation to move the
left hand leads to the choice of the first control command, whereas the right hand intention would
lead to the second alternative. By this means, it is possible to operate devices which are connected
to the computer.

For classification of bandpower estimates of appropriately preprocessed EEG signals (Ramoser
et al., 2000; Pfurtscheller and da Silva, 1999; Lemm et al., 2005), LDA has shown to work very
well (Wolpaw et al., 2002; Dornhege et al., 2004; Babiloni et al., 2000). On the other hand, strong
non-stationarity effects have been often observed in brain signals between training and test sessions
(Vidaurre et al., 2004; Millán, 2004; Shenoy et al., 2006), which could be regarded as an example
of the covariate shift. This indicates that employing importance weighted methods could further
improve the BCI recognition accuracy.

Here, we employ AIWLDA to cope with the non-stationarity (see Section 4.2 for detail). We
test AIWLDA with totally 14 data sets obtained from 5 different subjects (see Table 1 for specifica-
tion), where the task is binary classification of EEG signals. The experimental setting is described
in more detail in the references (Blankertz et al., 2007, 2006; Sugiyama et al., 2006). Note that
training samples and unlabeled/test samples are gathered in different recording sessions, so the non-
stationarity in brain signals may change the distributions. On the other hand, the unlabeled samples
and test samples are gathered in the same recording session; more precisely, the unlabeled samples
are gathered in the first half of the session while the test samples (with labels) are collected in the
latter half. Therefore, unlabeled samples may contain some information on the test input distribu-
tion, although input distributions of unlabeled and test samples are not necessarily identical since
the non-stationarity in brain signals can cause a small change in distributions even within the same
session. Thus, this setting realistically renders the classifier update in online BCI systems.

We estimate ptrain(x) and ptest(x) by maximum likelihood fitting of the multi-dimensional Gaus-
sian density with full covariance matrix. ptrain(x) is estimated using training samples and ptest(x) is
estimated using the unlabeled samples.

Table 2 describes the misclassification rates of the test samples by LDA (an existing method,
which corresponds to AIWLDA with λ = 0), AIWLDA with λ chosen based on 10-fold IWCV or
10-fold CV, and AIWLDA with optimal λ. The value of λ is selected from {0,0.1,0.2, . . . ,1.0};
chosen values are also described in the table. Table 2 also contains the Kullback-Leibler (KL) diver-
gence (Kullback and Leibler, 1951) from the estimated training input distribution to the estimated
test input distribution. Since we want to have an accurate estimate of the KL divergence, we used the
test samples for estimating the test input distribution when computing the KL divergence (cf., only
unlabeled samples are used when the test input distribution is estimated for AIWLDA and IWCV).
The KL values may be roughly interpreted as the level of the covariate shift.

First we compare OPT (AIWLDA with optimal λ) with LDA. The table shows that OPT out-
performs LDA in 8 out of 14 cases, which motivates us to employ AIWLDA in BCI. Within each
subject, we can observe a clear tendency that OPT outperforms LDA when the KL divergence is

996



COVARIATE SHIFT ADAPTATION BY IMPORTANCE WEIGHTED CROSS VALIDATION

Subject Trial
Dim.

of
samples

# of
training
samples

# of
unlabeled
samples

# of
test

samples

1 1 3 280 112 112
1 2 3 280 120 120
1 3 3 280 35 35
2 1 3 280 113 112
2 2 3 280 112 112
2 3 3 280 35 35
3 1 3 280 91 91
3 2 3 280 112 112
3 3 3 280 30 30
4 1 6 280 112 112
4 2 6 280 126 126
4 3 6 280 35 35
5 1 2 280 112 112
5 2 2 280 112 112

Table 1: Specification of BCI data.

Subject Trial OPT LDA IWCV CV KL
1 1 ∗ 8.7 (0.5) 9.3 (0) − 10.0 (0.9) 10.0 (0.9) 0.76
1 2 ∗ 6.2 (0.3) 8.8 (0) 8.8 (0) 8.8 (0) 1.11
1 3 4.3 (0) 4.3 (0) 4.3 (0) 4.3 (0) 0.69
2 1 40.0 (0) 40.0 (0) ◦ 40.0 (0) 41.3 (0.7) 0.97
2 2 ∗ 38.7 (0.1) 39.3 (0) +

◦ 38.7 (0.2) 39.3 (0) 1.05
2 3 25.5 (0) 25.5 (0) 25.5 (0) 25.5 (0) 0.43
3 1 ∗ 34.4 (0.2) 36.9 (0) + 34.4 (0.2) 34.4 (0.2) 2.63
3 2 ∗ 18.0 (0.4) 21.3 (0) + 19.3 (0.6) 19.3 (0.9) 2.88
3 3 ∗ 15.0 (0.6) 22.5 (0) + 17.5 (0.3) 17.5 (0.4) 1.25
4 1 ∗ 20.0 (0.2) 21.3 (0) 21.3 (0) 21.3 (0) 9.23
4 2 2.4 (0) 2.4 (0) 2.4 (0) 2.4 (0) 5.58
4 3 6.4 (0) 6.4 (0) 6.4 (0) 6.4 (0) 1.83
5 1 21.3 (0) 21.3 (0) 21.3 (0) 21.3 (0) 0.79
5 2 ∗ 13.3 (0.5) 15.3 (0) +

◦ 14.0 (0.1) 15.3 (0) 2.01

Table 2: Misclassification rates for BCI data. All values are in percent. IWCV or CV refers to
AIWLDA with λ chosen by 10-fold IWCV or 10-fold CV. OPT refers to AIWLDA with
optimal λ. Values of chosen λ are described in the bracket (LDA is denoted as λ = 0).
‘∗’ in the table indicates the case where OPT is better than LDA. ‘+’ is the case where
IWCV outperforms LDA and ‘−’ is the opposite case where LDA outperforms IWCV.
‘◦’ denotes the case where IWCV outperforms CV. KL refers to the Kullback-Leibler
divergence between (estimated) training and test input distributions.
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large, while they are comparable to each other when the KL divergence is small. This well agrees
with the theory that AIWLDA can compensate for the effect of the covariate shift, while AIWLDA
is reduced to plain LDA in the absence of covariate shift. Next we compare IWCV (applied to AI-
WLDA) with LDA. IWCV outperforms LDA for 5 cases, while the opposite case occurs only once.
The table also shows that within each subject, IWCV tends to outperform LDA when the KL diver-
gence is large. Finally, we compare IWCV with CV (applied to AIWLDA). IWCV outperforms CV
for 3 cases, while the opposite case does not occur. IWCV tends to outperform CV when the KL
divergence is large within each subject.

6. Discussions, Conclusions, and Future Prospects

In this paper, we discussed the model selection problem under the covariate shift paradigm: training
input points and test input points are drawn from different distributions (i.e., Ptrain(x) 6= Ptest(x)), but
the functional relation remains unchanged (i.e., Ptrain(y|x) = Ptest(y|x)). Under the covariate shift,
standard model selection schemes such as cross validation (CV) are heavily biased and do not work
as desired. In this paper, we therefore proposed a new variant of CV called importance weighted
CV (IWCV), which is proved to be almost unbiased even under the covariate shift.

The model selection problem under the covariate shift has been studied so far. For example,
a risk estimator in the context of density estimation called Akaike’s information criterion (AIC)
(Akaike, 1974) was modified to be still asymptotic unbiased (Shimodaira, 2000) and a risk estima-
tor in linear regression called subspace information criterion (SIC) (Sugiyama and Ogawa, 2001)
was similarly extended to be still unbiased (Sugiyama and Müller, 2005). Although these model
selection criteria have rich theoretical properties, the generality of the proposed IWCV goes far be-
yond them: for the first time arbitrary models, arbitrary parameter learning methods, and arbitrary
loss functions can be employed (see Sugiyama et al., 2006, for further discussion and simulation).
Thanks to this generality, IWCV enabled us to select appropriate models even in classification tasks
under the covariate shift.

We proved that IWCV is almost unbiased even under the covariate shift, which guarantees the
quality of IWCV as a risk estimator. However, this does not necessarily imply the good model
selection performance since the estimator has some variance. Although our experiments showed
that IWCV works well in model selection under the covariate shift, it will be important to also
theoretically closer investigate its model selection performance, for example, following the lines of
Stone (1977) or Altman and Léger (1997).

In theory, we assumed that the ratio of test and training input densities at training input points is
known. On the other hand, they are replaced by appropriate empirical estimates in our simulations.
Although the simulation results showed that the proposed method works well even when the densi-
ties are unknown, it is valuable to theoretically evaluate the effect of this replacement. Furthermore,
developing a more sophisticated method of estimating the density ratio is an important issue to be
explored (see, for example, Huang et al., 2007). Feature selection and dimensionality reduction are
also important ingredients for better performance. Taking into account the covariate shift in feature
selection and dimensionality reduction would be an interesting issue to be pursued, for example,
following the lines of He and Niyogi (2004) or Sugiyama (2006b).

While we focused on AIWERM and investigated the model selection performance, developing
more sophisticated parameter learning methods would be an important future direction. Graph
regularization techniques (Bousquet et al., 2004; Belkin and Niyogi, 2004; Hein, 2006; Chapelle
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et al., 2006), support vector machines (SVMs) (Vapnik, 1998; Schölkopf and Smola, 2002; Huang
et al., 2007), boosting (Schapire, 2003; Meir and Rätsch, 2003) could be useful bases for further
development. We note that the proposed IWCV is applicable to any parameter learning methods;
even non-parametric learning methods can be employed. Therefore, IWCV may be used for model
selection of newly developed learning methods in the future.

We showed experimentally that the IWCV method contributes to improving the accuracy of
brain-computer interfaces (BCIs). Future studies along this line will focus on the development of
a real time version of the current idea, ultimately striving for fully adaptive learning systems that
can appropriately deal with various kinds of non-stationarity. In addition to BCI, there are a number
of possible applications, for example, robot control (Shelton, 2001), spam filtering (Bickel and
Scheffer, 2007), and bioinformatics (Baldi et al., 1998). Applying IWCV in these application areas
would be an interesting direction to be investigated.

Active learning (MacKay, 1992; Cohn et al., 1996; Fukumizu, 2000)—also referred to as ex-
perimental design in statistics (Kiefer, 1959; Fedorov, 1972; Pukelsheim, 1993)—is the problem of
determining the location of training input points {xi}

n
i=1 so that the risk is minimized. The covariate

shift naturally occurs in the active learning scenario since the training input points are generated fol-
lowing a user-defined distribution. For linear regression, IWLS-based active learning methods that
focus on minimizing the variance of the estimator have been developed (Wiens, 2000; Sugiyama,
2006a). For general situations including classification with logistic regression models, more elabo-
rated active learning methods which use IWERM have been developed (Kanamori and Shimodaira,
2003; Bach, 2007). In the active learning scenarios, the model has to be fixed, for example, in the
above papers, λ in AIWERM (4) is fixed to one. On the other hand, in model selection scenarios, the
training input points have to be fixed and corresponding training output values have to be gathered.
Thus there exists a dilemma between active learning and model selection (Sugiyama and Ogawa,
2003). An interesting future direction would be to develop a method of performing active learning
and model selection at the same time, for example, following the line of Sugiyama and Rubens
(2007).

A general situation where the joint training distribution and the joint test distribution are differ-
ent (i.e., Ptrain(x,y) 6= Ptest(x,y)) is called the sample selection bias (see Heckman, 1979). Bayesian
generative approaches to coping with such situations have been proposed when unlabeled test input
points are available (Storkey and Sugiyama, 2007) or when both test input points and test output
values are available (Daumé III and Marcu, 2006). However, due to the Bayesian nature, these
approaches implicitly assume that the model used for learning is correctly specified. When this is
not true, we may need to reasonably restrict the type of distribution change for meaningful estima-
tions (see, for example, Zadrozny, 2004; Fan et al., 2005; Ben-David et al., 2007; Yamazaki et al.,
2007, for theoretical analyses). The covariate shift setting which we discussed in this paper could
be regarded as one of such restrictions.

Another interesting restriction on the distribution change is the class prior probability change
in classification scenarios, where the class prior probabilities are different (i.e., Ptrain(y) 6= Ptest(y)),
but the class conditional distribution remains unchanged (i.e., Ptrain(x|y) = Ptest(x|y)). Note that
in this case, the functional relation generally changes (i.e., Ptrain(y|x) 6= Ptest(y|x)). SVM (Vapnik,
1998; Schölkopf and Smola, 2002) is a popular classification technique and is shown to converge
to the Bayes optimal classifier as the number of training samples tends to infinity (Lin, 2002).
However, this nice theoretical property is lost under the class prior probability change. To cope
with this problem, SVMs are modified so that the convergence to the Bayes optimal classifier is
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still guaranteed under the class prior probability change (Lin et al., 2002). Our proposed IWCV
idea can be similarly applied in the scenarios of class prior probability change; more specifically, if
we replace the importance ptest(xi)/ptrain(xi) by Ptest(yi)/Ptrain(yi), IWCV is still almost unbiased
even under the class prior probability change. Therefore, IWCV may be used for tuning the model
parameters of SVMs even under the class prior probability change. Note that the setting of class
prior probability change may be regarded as an extension of imbalanced classification, where the
ratio of training samples in each class is not even (see, for example, Japkowicz, 2000; Chawla et al.,
2003).

Beyond the covariate shift, learning under changing distribution has been gathering significant
attention recently (e.g., Bickel, 2006; Candela et al., 2006); note also the large body of work exists
in online learning, where the distribution is subject to continuous change (e.g., Robbins and Munro,
1951; Saad, 1998; LeCun et al., 1998; Murata et al., 2002). For further developing learning methods
under the changing environment, it is essential to establish and share standard benchmark data sets,
for example, the projects supported by PASCAL (Candela et al., 2005) or EPSRC (Kuncheva, 2006),
Common benchmark data sets can be used to evaluate the experimental performance of proposed
and related methods.

Finally, the importance-weighting idea which was originally used in importance sampling (e.g.,
Fishman, 1996) could be applied to various statistical procedures, including resampling techniques
such as bootstrap (Efron, 1979; Efron and Tibshirani, 1993). An interesting future direction is
therefore to develop a family of importance-weighted algorithms following the spirit of this paper
and to investigate their statistical properties.
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