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2Maze Problem: Guide Robot to Goal

Robot knows its position but doesn’t know 
which direction to go.
We don’t teach the best action to take at each 
position but give a reward at the goal.
Task: make the robot select the optimal action.
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3Markov Decision Process (MDP)
An MDP consists of

: set of states, 
: set of actions, 
: transition probability, 
: reward,

An action     the robot takes at state    is 
specified by policy     .

Goal: make the robot learn optimal policy
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4Definition of Optimal Policy
Action-value function:

discounted sum of future rewards when 
taking    in     and following thereafter
Optimal value:

Optimal policy:
is computed if        is given.

Question: How to compute      ?
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5Policy Iteration
Starting from some initial policy          
iterate Steps 1 and 2 until convergence.
Step 1. Compute                 for current
Step 2. Update     by

Policy iteration always converges to
if in step 1 can be computed.
Question: How to compute              ?

(Sutton & Barto, 1998)
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6

can be recursively expressed by

can be computed by solving 
Bellman equation
Drawback: dimensionality of Bellman 
equation becomes huge in large state and 
action spaces

Bellman Equation

high computational cost
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7Least-Squares Policy Iteration
Linear architecture:

is learned so as to optimally approximate 
Bellman equation in the least-squares sense
# of parameters is only    :

LSPI works well if we choose appropriate
Question: How to choose          ?

(Lagoudakis and Parr, 2003)

: fixed basis functions 
: parameters
: # of basis functions
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8Popular Choice: Gaussian Kernel (GK)

Smooth 
Gaussian tail goes over 
partitions

: Euclidean distance
: Centre state
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9Approximated Value Function by GK 

Values around the partitions are               
not approximated well.

Approximated by GKOptimal value function
Log scale

20 randomly located Gaussians



10Policy Obtained by GK 

GK provides an undesired policy 
around the partition.

GK-based policyOptimal policy



11Aim of This Research
Gaussian tails go over the partition.
Not suited for approximating 
discontinuous value functions.

We propose new Gaussian kernel 
to overcome this problem.



12State Space as a Graph
Ordinary Gaussian uses Euclidean distance.

Euclidean distance does not incorporate      
state space structure, so tail problems occur.
We represent state space structure by a graph, 
and use it for defining Gaussian kernels.

(Mahadevan, ICML 2005)
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13

Natural distance on graph                            
is shortest path.

We use shortest path                                  
in Gaussian function.

We call this kernel geodesic Gaussian.
SP can be efficiently computed by Dijkstra.

Geodesic Gaussian Kernels
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14Example of Kernels

Tails do not go across the partition.
Values smoothly decrease along the maze.
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15

Values near the partition are well approximated.
Discontinuity across the partition is preserved.

Ordinary Gaussian

Optimal
Comparison of Value Functions

Geodesic Gaussian



16Comparison of Policies

GGKs provide good policies near the partition.

Geodesic GaussianOrdinary Gaussian
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Average over 100 runs

Geodesic

Ordinary

Ordinary Gaussian: tail problem
Geodesic Gaussian: no tail problem

Experimental Result

Number of kernels
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18Robot Arm Reaching

2-DOF robot arm State space
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1000-100Reward: 

+1 reach the object
0   otherwise

Task: move the end effector to reach the object



19Robot Arm Reaching

Successfully avoids 
the obstacle and 

can reach the object.

Moves directly towards   
the object without 

avoiding the obstacle.

Ordinary Gaussian Geodesic Gaussian



20Khepera Robot Navigation
Khepera has 8 IR sensors measuring the 
distance to obstacles.
Task: explore unknown maze without collision

Reward: 
+1 (forward)
-2 (collision)
0 (others)

Sensor value: 0 - 1030



21State Space and Graph
Discretize 8D state space by self-organizing map.
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22Khepera Robot Navigation

When facing obstacle, 
goes backward          

(and goes forward again).

When facing obstacle, 
makes a turn          

(and go forward).

Ordinary Gaussian Geodesic Gaussian



23Experimental Results
Average over 30 runs

Geodesic outperforms ordinary Gaussian.

Geodesic

Ordinary



24Conclusion
Value function approximation:

good basis function needed
Ordinary Gaussian kernel:

tail goes over discontinuities
Geodesic Gaussian kernel:

smooth along the state space
Through the experiments, we showed 
geodesic Gaussian is promising in         
high-dimensional continuous problems!


