Value Function Approximation on Non-linear Manifolds for Robot Motor Control

Masashi Sugiyama¹⁾²⁾ <u>Hirotaka Hachiya¹⁾²⁾</u> Christopher Towell²⁾ Sethu Vijayakumar²⁾

Computer Science, Tokyo Institute of Technology
 School of Informatics, University of Edinburgh

- Robot knows its position but doesn't know which direction to go.
- We don't teach the best action to take at each position but give a reward at the goal.
- **Task:** make the robot select the optimal action.

Markov Decision Process (MDP)

- An MDP consists of $\{S, A, P, R\}$
 - S : set of states, $\{s_i\}$
 - A : set of actions, {up, down, left, right}
 - P : transition probability, P(s,a,s')
 - •R : reward, R(s, a)
- An action a the robot takes at state s is specified by policy π .

$$a = \pi(s)$$

Goal: make the robot learn optimal policy π^*

Definition of Optimal Policy

Action-value function:

$$Q^{\pi}(s,a) = E\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t} \middle| s_{0} = s, a_{0} = a\right)$$

discounted sum of future rewards when taking *a* in *s* and following π thereafter Optimal value: $Q^*(s, a) = \arg \max_{\pi} Q^{\pi}(s, a)$

Optimal policy: π*(s, a) = arg max Q*(s, a)
π* is computed if Q* is given.
Question: How to compute Q*?

Policy Iteration (Sutton & Barto, 1998)

- Starting from some initial policy π iterate Steps 1 and 2 until convergence.
 - **Step 1.** Compute $Q^{\pi}(s,a)$ for current π

Step 2. Update π by

$$\pi(s) = \arg\max_{a} Q^{\pi}(s, a)$$

Policy iteration always converges to π* if Q^π(s, a) in step 1 can be computed.
 Question: How to compute Q^π(s, a) ?

$$Q^{\pi}(s,a) = E\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s, a_{0} = a\right)$$

Bellman Equation

 $Q^{\pi}(s,a) \text{ can be recursively expressed by}$ $\forall s, \forall a$ $Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s,a,s') Q^{\pi}(s',\pi(s'))$

- $Q^{\pi}(s,a) \text{ can be computed by solving }$ Bellman equation
- Drawback: dimensionality of Bellman equation becomes huge in large state and action spaces

$$|S| \times |A|$$

high computational cost

Least-Squares Policy Iteration

Linear architecture:

(Lagoudakis and Parr, 2003)

- $\phi_i(s,a)$: fixed basis functions
- $\hat{Q}^{\pi}(s,a) = \sum_{i=1}^{N} w_i \phi_i(s,a)$ w_i : parameters
 - *K* : # of basis functions

LSPI works well if we choose appropriate $\{\phi_i\}_{i=1}^K$ Question: How to choose $\{\phi_i\}_{i=1}^K$?

Popular Choice: Gaussian Kernel (GK)⁸

Approximated Value Function by GK⁹

Approximated by GK

20 randomly located Gaussians

Values around the partitions are not approximated well.

Policy Obtained by GK

Optimal policy

GK-based policy

GK provides an undesired policy around the partition.

Aim of This Research

Gaussian tails go over the partition.

Not suited for approximating discontinuous value functions.

We propose new Gaussian kernel to overcome this problem.

State Space as a Graph

Ordinary Gaussian uses Euclidean distance.

$$k(s) = \exp\left(-\frac{ED(s_c, s)^2}{2\sigma^2}\right)$$

Euclidean distance does not incorporate state space structure, so tail problems occur.

We represent state space structure by a graph, and use it for defining Gaussian kernels.

Geodesic Gaussian Kernels

Natural distance on graph is shortest path.

We use shortest path in Gaussian function.

$$k(s) = \exp\left(-\frac{SP(s_c, s)^2}{2\sigma^2}\right)$$

Euclidean distance

We call this kernel geodesic Gaussian.
 SP can be efficiently computed by Dijkstra.

15

Values near the partition are well approximated.Discontinuity across the partition is preserved.

Comparison of Policies

Ordinary Gaussian

Geodesic Gaussian

GGKs provide good policies near the partition.

Ordinary Gaussian: tail problem
 Geodesic Gaussian: no tail problem

Robot Arm Reaching

Task: move the end effector to reach the object

2-DOF robot arm State space 180 Object End **Obstacle** (degree) effector Joint2 Joint 2 Joint 1 -180 Reward: -100 100 0 Joint 1 (degree) +1 reach the object otherwise ()

Robot Arm Reaching

Ordinary Gaussian

Moves directly towards the object without avoiding the obstacle.

Successfully avoids the obstacle and can reach the object.

Geodesic Gaussian

Khepera Robot Navigation

- Khepera has 8 IR sensors measuring the distance to obstacles.
- Task: explore unknown maze without collision

Sensor value: 0 - 1030

State Space and Graph

21

Discretize 8D state space by self-organizing map.

2D visualization

Khepera Robot Navigation

Ordinary Gaussian

Geodesic Gaussian

When facing obstacle, goes backward (and goes forward again). When facing obstacle, makes a turn (and go forward).

Conclusion

Value function approximation: good basis function needed Ordinary Gaussian kernel: tail goes over discontinuities Geodesic Gaussian kernel: smooth along the state space Through the experiments, we showed geodesic Gaussian is promising in high-dimensional continuous problems!