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Summary of This Talk

Our target situation is non-regular models

under the covariate shift.

regular non-regular
standard statistics | algebraic geometry

covariate shift|importance weight

Non-regular model is a class of practical parametric models
such as Gaussian mixtures, neural networks, hidden Markov

models, etc.

The covariate shift is the setting, where the training and test
iInput distributions are different.
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Summary of Our Theoretical Results

Analytic expression of generalization error In
large sample cases

Small order terms, which can be ignored in the
absence of covariate shift, play an important role.

Small order terms are difficult to analyze in practice.

Upper bound of generalization error in small
sample cases

Our bound Is computable for any sample size.
The worst case generalization error Is elucidated.
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First, I'll explain the table,
then, show our results.
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Regression Problem
Training phase: learn input-output relation

from training samples r(y|x)

X) 1 Input density generates e
CI( ) training input points. Model is fitted to
/\ training samples.

o
.. y
Trammg}
True function produces

training output values. o
X X
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Regression Problem

Test phase: predict test output values at
given test input points

qx) | Input density again

generates test input data Madel is used for estimating

test output values.

We evaluate the test
error (performance)

¢
Test> Y 3 g




Input Distribution In Standard Setting

The training and test distributions are same
q(x)

Generation of

Nut data
X < ; f

Training




Input Distribution in Practical Situations

The training and test input distributions are ...

q(x)

Training dist.
!/\X




Input Distribution in Practical Situations

The training and test input distributions are different!!!

q(x)

Covariate shift
Test dist. H Bioinformatics

Training dist. [Baldi et al., 1998]
Econometrics

= X [Heckman, 1979]

Brain-computer interface
[Wolpaw et al., 2002]

etc.
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Input Distribution in Practical Situations

The training and test input distributions are different!!!

q(x) Covariate shift
Test dist. H Bioinformatics

Training dist. [Baldi et al., 1998]

Econometrics
i = X [Heckman, 1979]

Brain-computer interface
[Wolpaw et al., 2002]

y etc.

Vs r(y|x) doesn't change.

0o (X) = Gx(X)
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Input Distribution in Practical Situations

The training and test input distributions are different!!!

Covariate shift
Test dist. j‘ H

Training dist.

Due to the change of data region,
the performance also changes.

A standard technigue does NOT work.
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Classes of Learning Models

Non-/ Semi-parametric models
SVM
etc.

Parametric models

Regular Non-regular
Neural network

Gaussian mixture
Hidden Markov model
Bayesian network
Stochastic CFG

etc.

Non-regular models have hierarchical

structure or hidden variables.
It is Important to analyze non-regular models.

Polynomial regression
Linear model

etc.
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Our Learning Method Is Bayesian

frequentists’ Bayesian

Maximum

Likelihood

Bayesian Learning [ Parametric ]

The Bayesian learning constructs
'| the predictive distribution as the
average of models.
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1. Parametric Bayesian framework

regular

non-regular

standard

covariate shift

2. Our results

Here, the interest is the generalization

performance in each setting.

Before looking at each case, let us
define how to measure the
generalization performance.
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How to Measure Generalization Performance

Kullback divergence (or log-loss)

"Dl py) = [ py () log Py A
P, (X

It shows the distance between densities.
P, (X) = p,(X) < D(p, || p,)=0

P, (¥) % P, (X) < D(p, | p,) >0
- _/

D(true function || predictive distribution)

Kullback divergence from the true distribution to the
predictive distribution.
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Expected Kullback Divergence Is
Our Generalization Error

We take the expectation
over all training samples.

Fe " X Dlt IS the function w.r.t. the training
sample size.
n
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What Do We Want to Know?

o
~~
>
~

the value of errors o

Learning curve: generalization error
as a function of sample size
When the sample size n is sufficiently large,

G°(n) = B, +i+o(£j
N 1

>

Speed of convergence
S, B, >0 ryl0=pyixw
B, =0 ryIx)=pyxw)

o
5
©
7

19 n :sample size
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1. Parametric Bayesian framework

regular non-regular
standard
covariate shift
2 Our results Now, we take a careful look

at each case separately.
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Regular Models in the Standard Input Dist.

In statistics, the analysis has a long history.
Learning curve is well studied.

G°(n) =B, +i+o(1j
N N

Bo Distance from the true function to the optimal model

So (Dimension of parameter space)/2
True function

il
S, -Optimal model
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Regular Models under Covariate Shift

4 N
(%)
Importance Weight = (X)
N Ao Y,
j 0, (X) x IW x Loss(x)dx = [ g, (x) %X Loss(x)dx
) 0, (X)
= 'ql(x) Loss(x)dx

The importance weight improves the
generalization error.

GOUD::ay+§9+o(lj

[Shimodaira, 2000]

Bo Distance to the optimal model following the test data.

So Original speed + A factor from the importance weight.

N N
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Non-Regular Models without Covariate Shift

/Stochastic Complexity: the average of marginal likelihood \
n+1
0" 0= €5,,.| o [ ] pCL X, wotwyan|
=1 model a prior

Marginal likelihood is used for the model selection
or the optimization of the prior.

. /

N : the training data size

An asymptotic form of the stochastic complexity is

U°(n) =a,n+b, logn+o(logn)
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Analysis of Generalization Error
In the Absence of Covariate Shift

U°(n+1)=a,(n+1) +b,log(n+1) +o(logn)
—  U°%(n)=a,n +b, logn+o(logn)

G°(n)=a, + by + 0(1) by very simple
n N/ subtraction.

Generalization Error

b 1
0
G (n) =dyt FO +0 H » which includes regular cases.
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1. Parametric Bayesian framework

regular non-regular
standard statistics | stochastic complexity
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The analysis for non-
2...0urresults........... |regular models under

- A) Large sample cases: |the covariate shift is

'B) Finite sample cases | still open !!
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Kullback Divergence w.r.t. Test Distribution

r.(.y LX)

G{(n)=E°

XOYN ] o suunnnnns

.

L )
.
e®

| g
JPAN

G°(n) : standard case

dxdy

G'(n) : covariate shift
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Stochastic Complexity under Covariate Shift

We define shifted stochastic complexity:

The expectation of test data is different.

_ _ n+1
U'(n+1) = E;<n+1,vn+lE§n,Yn {_ IOQIH p(Y; [ X, w)p(w)dw
i=1

|

N %
The previous definition: h
n+1
U°(n)=EY,,. {— log [T pY; IX i,w)¢<w)dw}
i=1
/

\_

N : the training data size
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Following the previous study,

-

Assumption: An asymptotic form of the stochastic complexity is

U'(n)=zan+b logn+---+c¢ +d /n+---

N
-
The previous assumption:
U°(n) =a,n+b, logn+o(logn)
N

N : the training data size
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We Obtain Analytic expression of
Generalization Error by subtraction

According to the definition,

G'(n)=U'(n+1)-U°(n)

U'(n+) =a,(n+1) +b log(n+1)+--- +c,+d, /(n+1) +0(1/n)
— U°’(n) =a,n +b, logn +--- +¢,+d,/n +0(1/n)

Gl(n):(al—ao)n+(b1—b0)logn+a1+c1—co+(b1+d1—d0)/n+o(1/n)

L}

Based on a property of the learning curve, the
expression can be simplified.
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Small Order Terms Cannot be Ignored
Theorem 1

G'(n) =a, +(c, —¢C,) + by +(d; —dy) +O(£j

(a1 :aO’bl :bo)
by ~J

4 )
Small order terms are
ignored in the standard

asymptotic analysis.

G°(n) = a, +

o

U'(n)=an+b logn+---+c +d /n+---

N : the training data size 32




Evaluation of Small Order Terms is Difficult!!!!
Simple Neural Network

: % y=0 %, y= atanh(bx)\

- the true function

X frx

\\; :theleanﬂngfuncﬂ?g/

Evaluating small order terms is very hard
even in very simple settings.
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We Obtain an Finite-Sample Upper Bound
Theorem 2

G'(n) < MG°(n)

Maximum ratio of input densities: [ (X)_ )
M = max ql( ) < o0
X~0o (X) X
\ _qO _ )

The upper bound can be easily computed!!!

We can overcome the difficulty in the previous theorem.
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the value of errors

We Can Obtain Worst-Case Learning Curve

Previous example
4 Y, y=0 Y,y =atanh(bx)\

. the true function

X frx

N . the learning function/
01 o
008 %, Vpperbortd T
0.08
007 |, | G(n): error under covariate shift
0.06 f I
005 | | G°(n): error without shift
0.04 I '
el MGP(n): upper bound
.| - : upper boun
001 f~—u 1

0 ' il 2 e e e S e e i oy i sl e B3 e e i i e e S e -

0 150 200 250 300 350 400 450 s00 . Sample size




Conclusions

We analyzed Bayesian generalization error
of non-regular models: GM, HMM, NN etc.
under covariate shift: Input distribution change

We proved that small order terms of
stochastic complexity, which can be usually
ignored, play important roles.

Directly evaluating generalization error is very hard.

We derived a computable finite-sample
upper bound

Worst-case generalization error is elucidated.
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