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Summary of This Talk

Our target situation is non-regular models 
under the covariate shift.

Non-regular model is a class of practical parametric models 
such as Gaussian mixtures, neural networks, hidden Markov 
models, etc.

regular non-regular
standard

covariate shift
statistics

importance weight

algebraic geometry

The covariate shift is the setting, where the training and test 
input distributions are different.
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Summary of Our Theoretical Results
Analytic expression of generalization error in 
large sample cases

Small order terms, which can be ignored in the 
absence of covariate shift, play an important role.
Small order terms are difficult to analyze in practice.

Upper bound of generalization error in small 
sample cases

Our bound is computable for any sample size.
The worst case generalization error is elucidated.



4

Contents
1. Explanation of the table

2. Our results

regular non-regular
standard

covariate shift

First, I’ll explain the table, 
then, show our results.
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Regression Problem
Training phase: learn input-output relation 
from training samples

x

y

x

y
Training

True function produces 
training output values.

x

Input density generates 
training input points.

)|( xyr

Model is fitted to 
training samples.

q(x)
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Regression Problem
Test phase: predict test output values at 
given test input points

x

y

x

y

Model is used for estimating 
test output values.

Test

x

Input density again 
generates test input data

q(x)

We evaluate the test 
error (performance)
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Input Distribution in Standard Setting
The training and test distributions are same 

x

y
Test

x

Generation of 
input data

x

y
Training

q(x)
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Training dist.

Input Distribution in Practical Situations
The training and test input distributions are …

x

x

y

q(x)
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Training dist.

Test dist.

Input Distribution in Practical Situations
The training and test input distributions are different!!!

x

y

x

Covariate shift
Bioinformatics

[Baldi et al., 1998]
Econometrics

[Heckman, 1979]
Brain-computer interface

[Wolpaw et al., 2002]
etc.

q(x)
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Training dist.

Test dist.

Input Distribution in Practical Situations
The training and test input distributions are different!!!

x

y

x

Covariate shift
Bioinformatics

[Baldi et al., 1998]
Econometrics

[Heckman, 1979]
Brain-computer interface

[Wolpaw et al., 2002]
etc.

)|( xyr

q(x)

doesn't change.
)()( 10 xqxq ⇒
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Training dist.

Test dist.

Input Distribution in Practical Situations

The training and test input distributions are different!!!

x

y

x
Due to the change of data region, 
the performance also changes.

A standard technique does NOT work.

Covariate shift
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Classes of Learning Models

Regular
Polynomial regression
Linear model

etc.

Non-regular
Neural network
Gaussian mixture
Hidden Markov model
Bayesian network
Stochastic CFG
etc.

It is important to analyze non-regular models.

Non-regular models have hierarchical 
structure or hidden variables.

Non-/ Semi-parametric models
SVM

etc.

Parametric models
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Our Learning Method is Bayesian

Bayesian Learning [ Parametric ]

x

y
The Bayesian learning constructs 
the predictive distribution as the 
average of models.

frequentists’ Bayesian

Maximum 
Likelihood

MAP Bayes
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Here, the interest is the generalization 
performance in each setting.

Before looking at each case, let us 
define how to measure the 
generalization performance.
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How to Measure Generalization Performance

Kullback divergence (or log-loss)

dx
xp
xpxpppD ∫= )(
)(log)()||(

2

1
121

0)||()()( 2121 =⇔= ppDxpxp
It shows the distance between densities.

0)||()()( 2121 >⇔≠ ppDxpxp

D(true function || predictive distribution)
Kullback divergence from the true distribution to the 
predictive distribution.
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n
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00

,

Expected Kullback Divergence Is 
Our Generalization Error

x

y We take the expectation 
over all training samples.

It is the function w.r.t. the training 
sample size.
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What Do We Want to Know?
Learning curve: generalization error 
as a function of sample size
When the sample size n is sufficiently large,

:sample size

th
e 

va
lu

e 
of

 e
rro

rs Speed of convergence

Bias

00 >B0S

0
n

⎟
⎠
⎞

⎜
⎝
⎛++=

n
o

n
SBnG 1)( 0

0
0

)(0 nG

00 =B )ˆ,|()|( wxypxyr =

),|()|( wxypxyr ≠



20

Contents
1. Parametric Bayesian framework

2. Our results

regular non-regular
standard

covariate shift

Now, we take a careful look 
at each case separately.
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Regular Models in the Standard Input Dist.

In statistics, the analysis has a long history.
Learning curve is well studied.
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0B
0S (Dimension of parameter space)/2

Distance from the true function to the optimal model

0B

0S

True function

Optimal model
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Regular Models under Covariate Shift

The importance weight improves the 
generalization error. [Shimodaira, 2000]

Importance Weight  =

∫

∫∫
=

×=××

dxxLossxq

dxxLoss
xq
xqxqdxxLossIWxq
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Distance to the optimal model following the test data.
Original speed + A factor from the importance weight.
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Non-Regular Models without Covariate Shift
Stochastic Complexity: the average of marginal likelihood

n : the training data size

a prior

Marginal likelihood is used for the model selection 
or the optimization of the prior.
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An asymptotic form of the stochastic complexity is
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Analysis of Generalization Error 
in the Absence of Covariate Shift

Generalization Error
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subtraction.
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The analysis for non-
regular models under 
the covariate shift is 
still open !!!
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Stochastic Complexity under Covariate Shift
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We define shifted stochastic complexity:

The expectation of test data is different.

The previous definition:

⎥
⎦

⎤
⎢
⎣

⎡
−= ∫∏

+

=

1

1

0
,

0 )(),|(log)(
n

i
iiYX

dwwwXYpEnU nn ϕ

n : the training data size



30

Following the previous study,

n : the training data size

Assumption: An asymptotic form of the stochastic complexity is

LL +++++≅ ndcnbnanU iiii
i /log)(

)(loglog)( 00
0 nonbnanU ++=

The previous assumption:
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We Obtain Analytic expression of 
Generalization Error by subtraction

According to the definition,
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Based on a property of the learning curve, the 
expression can be simplified.
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Small Order Terms Cannot be Ignored

),( 0101 bbaa ==

Small order terms are 
ignored in the standard 
asymptotic analysis.

n : the training data size
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Evaluation of Small Order Terms is Difficult!!!!
Simple Neural Network

0=y )tanh(bxay =

x

y

x

y
: the true function

: the learning function

Evaluating small order terms is very hard
even in very simple settings.
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We Obtain an Finite-Sample Upper Bound
Theorem 2
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Maximum ratio of input densities:

The upper bound can be easily computed!!!

We can overcome the difficulty in the previous theorem.
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We Can Obtain Worst-Case Learning Curve

Previous example
0=y )tanh(bxay =

x

y

x

y
: the true function

: the learning function

)(1 nG : error under covariate shift

: sample size
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)(0 nMG : upper bound
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Conclusions
We analyzed Bayesian generalization error

of non-regular models: GM, HMM, NN etc.
under covariate shift: Input distribution change

We proved that small order terms of 
stochastic complexity, which can be usually 
ignored, play important roles.

Directly evaluating generalization error is very hard. 
We derived a computable finite-sample 
upper bound

Worst-case generalization error is elucidated.


