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Abstract. Learning based on kernel machines is widely known as a
powerful tool for various fields of information science such as pattern
recognition and regression estimation. The efficacy of the model in ker-
nel machines depends on the distance between the unknown true function
and the linear subspace, specified by the training data set, of the repro-
ducing kernel Hilbert space corresponding to an adopted kernel. In this
paper, we propose a framework for the model selection of kernel-based
learning machines, incorporating a class of kernels with an invariant met-
ric.

1 Introduction

Learning based on kernel machines[1] is widely known as a powerful tool for
various fields of information science such as pattern recognition and regression
estimation. Many kernel machines, represented by the support vector machines[2]
and the kernel ridge regression[3, 4], are proposed. In these methods, kernels are
recognized as useful tools to calculate the inner product in high-dimensional
feature spaces[3, 4].

On the other hand, according to the theory of reproducing kernel Hilbert
spaces[5, 6], the essence of using kernels in learning problems is that the unknown
target (classifiers in pattern recognition problems, unknown true functions in
regression estimation problems, and so on) belongs to the reproducing kernel
Hilbert space corresponding to the adopted kernel. On the basis of this essence,
Ogawa formulated a learning problem as an inversion problem of a linear op-
erator from the reproducing kernel Hilbert space corresponding to the adopted
kernel onto a certain vector space concerned with the given training data set
and constructed a series of learning machines, named “(parametric) projection
learning”, that gives a good approximation of the orthogonal projector of the
unknown true function onto the linear subspace, specified by the given training



data set, of the reproducing kernel Hilbert space corresponding to the adopted
kernel[7].

In the field of machine learning based on kernel machines, the model selection,
that is, the selection of a kernel (or its parameters) is one of the most important
problems. In this paper, we construct a framework of the kernel selection on
the basis of the projection-learning-based interpretation of learning problems,
incorporating a class of kernels with an invariant metric.

2 Mathematical Preliminaries for The Theory of
Reproducing Kernel Hilbert Spaces

In this section, we prepare some mathematical tools concerned with the theory
of reproducing kernel Hilbert spaces.

Definition 1 [5] Let Rn be an n-dimensional real vector space and let H be
a class of functions defined on D ⊂ Rn, forming a Hilbert space of real-valued
functions. The function K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel of H,
if

1. For every x̃ ∈ D, K(x, x̃) is a function of x belonging to H.
2. For every x̃ ∈ D and every f ∈ H,

f(x̃) = 〈f(x), K(x, x̃)〉H, (1)

where 〈·, ·〉H denotes the inner product of the Hilbert space H.

The Hilbert space H that has a reproducing kernel is called a reproducing
kernel Hilbert space (RKHS). The reproducing property Eq.(1) enables us to
treat a value of a function at a point in D. Note that reproducing kernels are
positive definite [5]:

N∑

i,j=1

cicjK(xi, xj) ≥ 0, (2)

for any N , c1, . . . , cN ∈ R, and x1, . . . , xN ∈ D. In addition, K(x, x̃) = K(x̃, x)
for any x, x̃ ∈ D is followed[5]. If a reproducing kernel K(x, x̃) exists, it is
unique[5]. Conversely, every positive definite function K(x, x̃) has the unique
corresponding RKHS [5].

Next, we introduce the Schatten product [8] that is a convenient tool to reveal
the reproducing property of kernels.

Definition 2 [8] Let H1 and H2 be Hilbert spaces. The Schatten product of
g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f, h〉H1g, f ∈ H1. (3)

Note that (g ⊗ h) is a linear operator from H1 onto H2. It is easy to show
that the following relations hold for h, v ∈ H1, g, u ∈ H2.

(h⊗ g)∗ = (g ⊗ h), (h⊗ g)(u⊗ v) = 〈u, g〉H2(h⊗ v), (4)

where the super script ∗ denotes the adjoint operator.



3 Formulation of Learning as Linear Inverse Problems

Let {(yi,xi)|i = 1, . . . , `} be a given training data set with yi ∈ R, xi ∈ Rn,
satisfying

yi = f(xi) + ni, (5)

where f denotes the unknown true function and ni denotes a zero-mean additive
noise. The aim of machine learning is to estimate the unknown function f by
using the given training data set and statistical properties of noise.

In this paper, we assume that the unknown function f belongs to the RKHS
HK corresponding to a certain kernel function K. If f ∈ HK , then Eq.(5) is
rewritten by

yi = 〈f(x),K(x,xi)〉HK
+ ni, (6)

on the basis of the reproducing property of kernels. Let y = [y1, . . . , y`]′ and
n = [n1, . . . , n`]′ with the super script ′ denoting the transposed matrix (or
vector), then applying the Schatten product to Eq.(6) yields

y =

(∑̀

k=1

[e(`)
k ⊗K(x, xk)]

)
f(x) + n, (7)

where e
(`)
k denotes the k-th vector of the canonical basis of R`. For a convenience

of description, we write

AK =

(∑̀

k=1

[e(`)
k ⊗K(x, xk)]

)
. (8)

The operator AK is linear one that maps an element of HK onto R` and Eq.(7)
can be written by

y = AKf + n, (9)

which represents the relation between the unknown true function f and an out-
put vector y. The information of input vectors is integrated in the operator
AK . Therefore, a machine learning problem can be interpreted as an inversion
problem of Eq.(9) [7].

Based on the model Eq.(9), a novel learning framework named “(paramet-
ric) projection learning” was proposed[7, 9–11]. The projection learning gives
the minimum variance unbiased estimator of the orthogonal projection of the
unknown true function f onto R(A∗K) (the range of A∗K), and the parametric
projection learning gives its improvement, incorporating a relaxation of the unbi-
asedness of the projection learning. The parametric projection learning includes
the projection learning as a special case. The parametric projection learning is
defined as follows:

Definition 3 [10, 11] The parametric projection learning BPPL is defined by

BPPL(γ) = argminB [tr[(BAK − PR(A∗
K

))(BAK − PR(A∗
K

))∗]
+ γEn||Bn||2], (10)



where PR(A∗
K

) and γ denote the orthogonal projector onto R(A∗K) and a real
positive parameter that controls the trade-off of the two terms, which works as a
relaxation of the unbiasedness, respectively.

One of the solutions of the parametric projection learning is given by

BPPL(γ) = A∗K(AKA∗K + γQ)+ (11)

as shown in [10, 11], where the super script + denotes the Moore-Penrose gener-
alized inverse [12] and Q denotes the noise correlation matrix defined by

Q = En[nn′].

Finally, the solution of the parametric projection learning is given by

f̂(x) = BPPLy,

and the concrete form of it is written by

f̂(x) =

(∑̀

i=1

[
K(x, xi)⊗ e

(`)
i

])
(G + γQ)+y

=
∑̀

i=1

y′(G + γQ)+e
(`)
i K(x, xi), (12)

where G = AKA∗K is the Gram’s matrix of K written by G = (gij), gij =
K(xi, xj), which is easily confirmed by using the properties Eq.(4) of the Schat-
ten product. Note that the assumption Q = O yields the solution based on the
Moore-Penrose generalized inverse of AK .

4 Model Selection Using a Class of Kernels with an
Invariant Metric

In general, the solution of kernel-based learning machines is given by a linear
combination of K(x, xi) that spans R(A∗K). Thus, the validity of the model
depends on ||f − PR(A∗

K
)f ||2HK

. However, we can not directly evaluate it, since
f in unknown. In this section, we construct a framework of selection of a good
kernel that minimizes ||f−PR(A∗

K
)f ||2HK

by incorporating a class of kernels with
an invariant metric.

Let K0 be a specific kernel and let K be a class of kernels satisfying

HK ⊂ HK0 (13)

and
〈f, g〉HK = 〈f, g〉HK0

, (14)

for any K ∈ K and any functions f, g ∈ HK . Let

SK = {f |f ∈ HK for all K ∈ K}. (15)



We assume that SK 6= φ. Thus, 〈f, g〉HK
is invariant for any K ∈ K and any

f, g ∈ SK, which means that K ∈ K has the invariant metric that is the same
with that of HK0 for any f ∈ SK. Note that ||f ||2HK

is also invariant for any
K ∈ K and any f ∈ SK.

We assume that f ∈ SK and let

f = PR(A∗
K

)f + (I − PR(A∗
K

))f (16)

be a decomposition of f with K ∈ K, then

||f ||2HK
= ||PR(A∗

K
)f ||2HK

+ ||(I − PR(A∗
K

))f ||2HK

= ||PR(A∗
K

)f ||2HK0
+ ||(I − PR(A∗

K
))f ||2HK0

(17)

holds and it immediately follows that

||f ||2HK
≥ ||PR(A∗

K
)f ||2HK0

. (18)

Thus, it is guaranteed that ||(I − PR(A∗
K

))f ||2HK
(= ||(I − PR(A∗

K
))f ||2HK0

) is
minimized by

Kopt = argmaxK∈K||PR(A∗
K

)f ||2HK0
, (19)

which means that the selection of the best kernel from K is achieved.
As is mentioned in the previous section, a minimum variance unbiased esti-

mator of PR(A∗
K

)f is given by the projection learning. However, its variance may
be too large to use the solution as an approximation of PR(A∗

K
)f . Thus, we may

have to use an another solution, such as that based on a regularization scheme,
as an approximation of PR(A∗

K
)f , for instance.

5 Numerical Examples

In this section, we show a numerical example of a regression estimation of a
one-dimensional function in order to investigate the properties of the proposed
framework of a kernel selection.

We adopt L2 as HK0 and the sinc kernel defined by

Kα
S (x, x̃) =

sin α(x− x̃)
π(x− x̃)

, α ∈ [αs, αe], 0 < αs < αe. (20)

as a class of kernels with an invariant metric. In fact, the sinc kernel has the
same metric with L2 as shown in [13]. Moreover,

HK
α1
S
⊂ HK

α2
S

(21)

holds for any α1 ≤ α2, since the RKHS corresponding to Kα
S is the space of band-

limited functions in [−α, α] in the Fourier domain. According to the monotonicity
of the RKHSs corresponding to the sinc kernels,

SK = {f |f ∈ HKα
S

for all α ∈ [αs, αe]} = {f |f ∈ HKαs
S
}. (22)
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Fig. 1. The relation of the training data set and the unknown true function.

Thus, the unknown true function f must belong to HKαs
S

to make our framework
to be consistent for any α ∈ [αs, αe].

We use
f(x) =

sin 2x

πx
(23)

as the unknown true function f and

{(f(xi), xi)|xi ∈ {−10,−8, . . . ,−2, 0, 2, . . . , 8, 10}} (24)

as the given training data set. Figure 1 shows the relation of the training data
set and the unknown true function. We adopt A+

K as a learning machine, since
Q = O in this case.

We dare to adopt [1.5, 2.5] for the interval of the parameter searching. Note
that when α ∈ [1.5, 2), the condition f ∈ HKα

S
is broken, that is, the estimated

function obtained by A+
K is no longer the orthogonal projection of f . The result

with the condition α ∈ [1.5, 2) could reveal the importance of the condition
f ∈ HK in machine learning problem. On the other hand, when α ∈ [2, 2.5],
the consistency of our framework is guaranteed and the result based on it could
reveal the validity of our framework. Figure 2 shows the transitions of ||f̂ ||2L2 ,
||f − f̂ ||2L2 , and the sum of them with respect to α. Figures 3 ∼ 5 show the
learning results with the parameters α = 1.5, 2.0, 2.5, respectively.

According to the result shown in Fig.2 with α ∈ [1.5, 2), it is confirmed that
f 6= HKα

S
causes the fail of estimation of the orthogonal projection of f . In fact,

the norm of f̂ is larger than that of f . Thus, it is concluded that adopting the
kernel whose RKHS does not include f makes no sense for learning.

On the other hand, when α ∈ [2, 2.5] is satisfied, that is, f ∈ HKα
S

holds, it is
confirmed that f̂ is the orthogonal projection of f , since the sum of ||f̂ ||2L2 and
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||f− f̂ ||2L2 is nearly equal to ||f ||2L2 . Moreover, it is confirmed that the maximizer
of ||f̂ ||2L2 , satisfying f ∈ HKα

S
, actually catches the best parameter α = 2, which

supports the validity of our framework.

Remarks

We used a noise-free case in the numerical example. However, it is inevitable to
consider the noise in practical cases.

As mentioned in the previous section, when the noise exists, the solution
based on the projection learning is not robust in general. Thus, we may have
to use a regularization scheme such as parametric projection learning with the
optimal parameter chosen by a parameter selection criterion such as the SIC[14].

Although we adopted the sinc kernel as a class of kernels with an invariant
metric in the numerical example, the sinc kernel is not so useful, since the inter-
section of the corresponding RKHSs is reduced to the RKHS corresponding to
the minimum parameter of the interval for the parameter searching due to the
monotonicity of the corresponding RKHSs, which means that we can not adopt
the interval that includes the unknown true parameter. Therefore, it is one of
very important problems to construct a wide class of kernels with an invariant
metric whose intersection includes a wide class of functions.

6 Conclusion

In this paper, we constructed a framework of a kernel selection on the basis of
the projection-learning-based interpretation of learning problems, incorporating
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Fig. 3. The learning result with α = 1.5.
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Fig. 4. The learning result with α = 2.0.
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a class of kernels with an invariant metric. Coping with the noise and construc-
tion of a class of kernels with an invariant metric that is suitable for practical
problems are future works.
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