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Abstract

For obtaining a higher level of generalization capability in supervised learning, model
parameters should be optimized, i.e., they should be determined in such a way that
the generalization error is minimized. However, since the generalization error is
inaccessible in practice, model parameters are usually determined in such a way
that an estimate of the generalization error is minimized. A standard procedure for
model parameter optimization is to first prepare a finite set of candidates of model
parameter values, estimate the generalization error for each candidate, and then
choose the best one from the candidates. If the number of candidates is increased
in this procedure, the optimization quality may be improved. However, this in turn
increases the computational cost. In this paper, we give methods for analytically
finding the optimal model parameter value from a set of infinitely many candidates.
This maximally enhances the optimization quality while the computational cost is
kept reasonable.
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1 Introduction

The goal of supervised learning is to estimate an unknown input-output relation from
samples, which is mathematically formulated as a function approximation problem. If
the learning target function is accurately learned, the output values for unlearned input
points can be estimated. This is called the generalization capability. The level of general-
ization capability is evaluated by the ‘closeness’ between the learned function and the true
function, i.e., the generalization error. We want to obtain the learned function that mini-
mizes the generalization error. The learned function usually depends on model parameters
such as the regularization parameter. Therefore, in order to obtain a better function, the
model parameters should be chosen appropriately, i.e., so that the generalization error is
minimized.

However, since the true learning target function is unknown, the generalization error
can not be directly calculated. A standard approach to coping with this problem is
to determine the model parameters so that an estimate of the generalization error is
minimized. So far, a large number of generalization error estimators have been proposed
[12, 13, 1,16, 11, 9, 20, 19]. Most of the existing generalization error estimators including
all the methods cited above are justified by the unbiasedness in some sense. That is, they
are good estimators of the generalization error on average. This implies that they could
be inaccurate for single trial since they may have large variance.

To cope with problem, a regularized generalization error estimator has been proposed
[18], which is called the regularized subspace information criterion (RSIC). RSIC is no
longer unbiased, but has smaller variance so is more reliable than unbiased generalization
error estimators. RSIC includes an additional tuning parameter in the generalization error
estimator itself. In order to perform model selection well by RSIC, this tuning parameter
should be determined appropriately. The paper [18] gave an objective and useful criterion
for determining the tuning parameter.

An existing model selection procedure based on RSIC is to search the best model
parameter and the best tuning parameter within finite sets of candidates, i.e., a naive
grid search. If the numbers of candidates are increased in this procedure, the optimiza-
tion quality may be improved. However, this in turn increases the computational cost.
Therefore, RSIC could be rather demanding in computation time. Note that some greedy
optimization strategy such as binary search may also be used instead, but it can get stuck
in one of the local optima so may not be reliable.

In this paper, we propose novel methods to alleviate this problem. Our approach is to
analytically derive the optimal values of the model parameter and/or the tuning parameter
from sets of infinitely many candidates. This enables us to access to the optimal solution
within moderate computation time.

2 Formulation of Supervised Learning

In this section, we formulate the supervised learning problem.
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Figure 1: Supervised learning problem.

Let us consider the problem of approximating a function from training samples. Let
f(x) be the learning target function, which is a real-valued function defined on D C R
We assume that f(a) belongs to a reproducing kernel Hilbert space H [3, 24, 23]. Note that
H is generally infinite dimensional. We denote the reproducing kernel of ‘H by K(«,2’).
Let {(@,,y;)}7_, be the training samples, where @; € D is an input point and y; € R is an
output value. We assume that the output value y; is degraded by i.i.d. Gaussian noise ¢;
with mean zero and variance o

yi = flxi) + &. (1)

The input points {x;}", could be either random or deterministic. The above formulation

is summarized in Figure 1.
Let f(@) be a learned function obtained from training samples. The goal of supervised
learning is to obtain the best approximation to the target function. To this end, we need

o~

to define the “goodness” measure of f(x). In this paper, we measure the goodness of

o~

/(=) by ~
(il (2)

o~

where || - || is the norm in the reproducing kernel Hilbert space H. Since f(@) usually
depends on the noise {¢;}"_,, we consider the expectation of the above goodness measure
over the noise. This quantity can be decomposed as

Ecl|f = FII” = BllFI* = 2E(F, ) + I £1, (3)

where E. denotes the expectation over the noise and (-,-) denotes the inner product in

H. Since the third term || f]|* is a constant which does not depend on f(x), we ignore it
and define the rest by G

G = Ee|| f]|* - 2E(f. ). (4)

We call (¢ the generalization error. In this framework, we do not take the expectation
of the generalization error over the training input points {@;}7_,, which is often done in
literature [1, 24, 4, 6]. Thus our framework is more data-dependent than the others (For
the advantages of the data-dependent framework, see the papers [20, 19, 17]).



Analytic Optimization of Shrinkage Parameters 4

o~

Now our goal is formalized: we want to learn f(«) from training samples {(@;, ;) }7,
so that the generalization error & is minimized. To this end, we need to define a search
space for f(@). The broadest choice would be the function space H itself, but it is hard to
deal with since H is generally infinite dimensional. To alleviate this problem, we employ
the following kernel model for learning [10, 14, 15].

Flz) = Z o K (@, x;), (5)

where {a;} | are parameters to be learned. Note that this form is known to be a mini-
mizer of some regularized functional in H [10].
Let

a=(ap,ay,...,0,)", (6)
Y= (y17y27"'7yn)T7 (7)

where T denotes the transpose. In this paper, we focus on the cases where the parameter
vector a is learned in a linear fashion, i.e., a is obtained by

a =Ly, (8)

where L is an n-dimensional matrix which is independent of the noise. We call L the
learning matriz. R

Consequently, the problem of learning f(@) is converted into the problem of learning
L. Since the generalization error (¢ includes the unknown learning target function f(a),
we can not directly learn L so that ¢ is minimized. A standard approach to coping with
this problem is to employ an accessible estimator of the unknown generalization error .
In the next section, we review existing methods for estimating G.

3 Generalization Error Estimators

In this section, we briefly review generalization error estimators called the subspace infor-

mation criterion (SIC) [20, 19] and its extension the regularized SIC' (RSIC) [18].

3.1 Subspace Information Criterion

Let S be a subspace of H spanned by { K' (&, ®;)},. Let g(@) be the orthogonal projection
of f(x) onto S. Note that, in the sense of Eq.(4), g(«) is the optimal approximation to
f(x) in S (see Figure 2). Since g(x) belongs to S, it is expressed as

g(a?) = ZO{?K(%%’)? (9)
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\ /f(m)

> g(x)

K(x,x;)
S=L{{K(z,z;)}7)

Figure 2: Decomposition of the learning target function f(@).

where {a7}"_, are unknown optimal parameters. Let

o = (a},a3,...,a0)". (10)

Then the generalization error (¢ can be expressed as follows [19].
G[L] = E.(K Ly, Ly) — 2E. (K Ly, a™), (11)
where K is the kernel matriz, i.e., the (¢, j)-th element is given by
Ki,j = K(a:i,a:j). (12)
Since a* is unknown in Eq.(11), we replace it by its linear unbiased estimator &, (see
Figure 3). Namely, with some n-dimensional matrix R, &, is given as
a, = Ry, (13)
which satisfies
Eca, = a™. (14)
Note that the subscript ‘u’ in the above equations stands for ‘unbiased’. It is known that
such R, is given as follows [19].

R, =K', (15)
where T denotes the Moore-Penrose generalized inverse [2].
Using @,,, we can express (& as

G[L] = E.(KLy, Ly) — 2F.(KLy, R,y) + o*tr(KLR) ). (16)

The subspace information criterion (SIC) is defined as the right-hand side of Eq.(16) with
the expectation operator E, removed:

SIC[L] = (K Ly, Ly) — 2(K Ly, R,y) + 25°tr(KLR). (17)
For any L, SIC is an unbiased estimator of G.
E.SIC[L] = G[L]. (18)

In the papers [20, 19], the learning matrix L is determined based on SIC by choosing
L that minimizes SIC from a set £ of candidates of L:

L = argmin SIC[L]. (19)
Lel
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Figure 3: Replacing unknown a* by an unbiased estimator &, (SIC) or by a regularized
estimator a, (RSIC).

3.2 Regularized Subspace Information Criterion

It is reported that a good learning matrix L can be obtained by SIC [20, 19]. However,
the goodness of SIC is only guaranteed in the sense of unbiasedness; nothing has been
shown regarding its variance. This implies, e.g., the variance of SIC can be large when
the noise level is very high. In such cases, learning with SIC can be unstable. To cope
with this problem, the regularized SIC (RSIC) has been proposed [18]. Below, we briefly
review RSIC.

Let @, be some linear regularized estimator of a*:
a, = Ry, (20)

where R is an n-dimensional matrix which is independent of the noise. We call R the
reference matrix, since @, is used as a reference.

A major reason why SIC can have large variance would be instability of a,. A basic
idea of RSIC is to replace the unbiased estimator &, with a biased but more stable
estimator &, (see Figure 3 again):

RSIC[L; R] = (K Ly, Ly) — 2(K Ly, Ry) + 20*tr(KLR"), (21)

where the notation RSIC[L; R] means that it is a functional of L with a ‘parameter’
matrix R.

In RSIC, the parameter matrix R should be determined appropriately. To this end,
we need a goodness measure of R. The paper [18] proposed using the following criterion.

J[R; L] = E.(RSIC[L; R] — G[L])%, (22)

where the notation J[R; L] means that it is a functional of R which depends on L. Now
we want to determine R so that the above J is minimized. However, .J includes unknown
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(G so it can not be directly calculated. Let B and C be

B=2R/KL-2R"KL, (23)
C=L"KL-2R"KL. (24)

Then an unbiased estimator of .J is given as follows [18].

JIR; L] = {(By,y) — o’tr(B)}*
—a*[(B+B)y|* +o'tx(B* + BB")
+ o’ (C+ Cy|? — o*tr(C* + CCT), (25)

which satisfies, for any R and L,

o~

E.J[R;L] = J[R; L]. (26)

The paper [18] proposed using the above J instead of .J for determining R.

Learning L based on RSIC and J is carried out as follows. First, a set £ of candidates
of L and a set R of candidates of R are prepared. For each L € £, R is optimized within
R:

Ry = argmin j[R; L). (27)
ReER

Then, using 1/%,;, L is optimized within L:

L = argmin RSIC[L; Ry]. (28)
Lel

4 Existing Methods for Determining L

When we learn L using SIC or RSIC, we have to determine the set £ from which L is
searched (and also the set R from which R is searched in RSIC). The largest possible
set is R”, but it is generally too broad to be searched from. Conventionally, we form the
set £ (and the set R) based on some learning criterion. In this section, we briefly review
popular choices of the learning criterion.

4.1 Existing Method 1 (E1)

Ridge learning [8, 22, 14] determines the parameter a so that the regularized squared

error is minimized.
n

~ 2
> (Fla) =) +nlle?, (20)
=1
where 77 is a non-negative scalar called the ridge parameter. A minimizer of the regularized
squared error is given by

L=(K"+nl)'K, (30)



Analytic Optimization of Shrinkage Parameters 8

where I is the identity matrix. If we focus on ridge learning, the problem of choosing the
learning matrix L is reduced to the problem of choosing the ridge parameter 7.

The papers [20, 19] proposed determining the learning matrix L by choosing the best
value of n that minimizes SIC from a finite set of different values of 1. We refer to this
procedure as E1. If the computational complexity is measured with respect to the number
of compared models, the computational complexity of E1 is O(|L|), where |L| denotes the
number of elements in £ (see Table 1).

4.2 Existing Method 2 (E2)

In the procedure E1, the learning matrix L is chosen from a finite set of candidates. In
order to improve the optimization quality of L, it is desirable to increase the number of
candidates. However, increasing the number of candidates simply increases the compu-
tational complexity (see Table 1). The paper [21] proposed an efficient model selection
procedure based on SIC, where the best learning matrix L is analytically obtained under
a certain condition. This analytic approach maximally enhances the optimization quality
and at the same time it keeps the computational complexity reasonable.

It appears to be difficult to have an analytic solution of Eq.(27) if the set £ is deter-
mined based on ridge learning (30), since the target parameter 7 is included in the matrix
inverse. The paper [21] instead employed shrinkage learning: determine the parameter a
so that the following quantity is minimized.

n

Z <J/C\(5Ei)_yi>2—|—)\HKaH27 (31)

=1
where A is a non-negative scalar called the shrinkage parameter. A minimizer of the above
quantity is given by the following learning matrix.
S
L+ A

If we focus on shrinkage learning, the problem of choosing the learning matrix L is
reduced to the problem of choosing the shrinkage parameter A. Let Agic be the minimizer

of SIC:

(32)

Asic = arginf SIC()), (33)
A€[0,00)
and let
0 = <KTy7 y>7 (34)
vy = Uztr(KT). (35)
Then }\\SIC is given as follows [21]:
~ U2 lf U1 > Vg,
Agic = U1 — V2 (36)

00 otherwise.
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By this expression, we can compute the optimal value of A analytically. We refer to
this procedure as E2. The computational complexity of E2 is O(1) with respect to the
number of candidates (which is infinity here, see Table 1).

4.3 Existing Method 3 (E3)

Although E2 is computationally very efficient, it is based on SIC which can be rather

unstable. As explained in Section 3.2, using RSIC would give a more reliable result.
When RSIC is employed, we have to optimize the reference matrix R in addition to

the learning matrix L. Below, we use ridge learning for both L (see Eq.(30)) and R:

R=(K’+vI)"'K, (37)

where v is a non-negative scalar. Now the problem of choosing R and L is reduced to
the problem of choosing v and 7.

The paper [18] proposed determining the ridge parameter n based on RSIC as follows.
First, a finite set of candidate values of 1 and a finite set of candidate values of v are
prepared. For each n, v is optimized based on J. Then n is optimized based on RSIC
using the chosen v. We refer to this procedure as E3. The computational complexity of
E3 is O(|L]|R|) (see Table 1).

The procedure E3 has been shown to work well [18]. However, as Table 1 shows, it
is computationally demanding. The primal goal of this paper is to give a more efficient
model optimization procedure based on RSIC.

5 [Efficient Optimization of R

In this section, we present a method to analytically obtain the best reference matrix R
under a certain condition. This analytic approach maximally enhances the optimization
quality while the computational cost is kept moderate.

5.1 Analytic Expression of Optimal R

Let us employ shrinkage learning for R:

1

- Kt
1+~

) (38)

where 7 is a non-negative scalar. Here we derive an analytic form of the optimal ~ that
minimizes JJ. Note that we do not impose any assumption on L. That is, the following
discussion is valid for any L.

Let S and T be

S=K'KL, (39)
T=L"KL. (40)
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Let
ur ={(Sy,y) - *tr(S)}", (41)
uy =c*||(S + ST)yl||* — o*tr(S* + SST)
—o*(S + 8" Ty,y) + o*tr(ST). (42)

Then we have the following theorem.

Theorem 1 Let

~rp = arginf j(’y; L). (43)

')/E[0,00)

Then v is given by

U .
max (0, 2 ) if up > ug,

U1 — U2
arbitrary value in [0,00) if uy = ug =0, (44)
o0 otherwise.

A proof of the above theorem is given in A. By Theorem 1, the optimal value of v can
be analytically calculated for any L. Note that the second case in Eq.(44) may not occur
in practice.

5.2 Proposed Method 1 (P1)

To be comparable to E3, we use ridge learning for L on top of Theorem 1. That is,
we prepare a finite set of candidate values of 1, and for each 7, the best v is computed
by Eq.(44). We refer to this procedure as P1. The computational complexity of P1 is
O(|L]) which is smaller than E3 by the factor of |R|. This order is comparable to E1 (see
Table 1).

6 Efficient Optimization of L

In the previous section, we derived an analytic expression of R, which contributes to
reducing the computation time. In this section, we show that we can even derive an
analytic expression of the optimal L under a certain condition, which further improves
the computational cost.

6.1 Analytic Expression of Optimal L

We employ shrinkage learning also for L (see Eq.(32)). Here we derive the analytic form
of the optimal shrinkage parameter A on top of Theorem 1.
Let
vy = 202 (K1) y, y) — o*tr((KT)?). (45)

Then we have the following theorem.
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Theorem 2 Let 7, be the optimal v for Fq.(32) (see Theorem 1), and let

/)\\RSIC = arginf RSIC()\, :)/\/\) (46)

YE[D,00)
Then /)\\RSIC is given by

(U1 - Uz)Uz
R (v1 — v2)? — 2max(0, v3)
ARSIC = { arbitrary value in [0,00) if vy = vy =0, (47)

. N2
if v1 > vy and v3 < %,

o0 otherwise,
where vy and vy are defined by Fqs.(34) and (35), respectively.

A proof of the above theorem is given in B. The proof is rather elaborate since we
have to take into account A which implicitly appears in ¥, (see Eq.(44)). Fortunately,
however, we could have obtained a rather simple formula for XRSIC. By Theorem 2, the
optimal value of A can be analytically calculated. Note that the second case in Eq.(47)
may not occur in practice.

The above theorem may be regarded as an extension of E2 where the optimal shrinkage
parameter is derived for SIC. It is interesting to note that the first case in Eq.(47) with
vy < 0 agrees with the first case in Eq.(36).

6.2 Proposed Method 2 (P2)

As P2, we refer to the procedure of obtaining L by Theorem 2. The computational
complexity of P2 is O(1), which is smaller than P1 by the factor of |£]|. This order is
comparable to E2 (see Table 1).

7 Simulations

In this section, we experimentally compare the accuracy and computation time of the
existing and proposed methods.

7.1 Setting
Let f(x) be
flz) = sinc(x). (48)

See Figure 4 for the profile. We employ the Gaussian reproducing kernel Hilbert space
[15] as H, where the reproducing kernel is given by

K(z,2') = exp (-W) . (49)
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Figure 4: Sinc function and training samples when (n, o?) = (50,0.01).

Note that the sinc function is included in the above Gaussian reproducing kernel Hilbert
space [5]. We take training input points {x;}”; independently following the uniform
distribution on (—m, 7). Noise {¢}7_, are taken independently following the normal dis-
tribution with mean zero and variance . Training output values {y;}"_, are created as

y; = sinc(x;) + ¢;. We consider the following four cases.

(n,0?) =(50,0.01), (50,0.09),

(100,0.01),(100,0.09). (50)

That is, small/large samples and low/high noise level. For each of the above case, we
repeat the simulation 1000 times by changing {z;}"_, and {¢;}",. In the experiments, o
is treated as an unknown variable and is estimated by
- _ KKy —y|?
o? = :

n — tr( KKY)

(51)

Note that the current setting theoretically vields KK = I with probability one since
the Gaussian kernel with distinct training input points provides a strictly positive kernel
matrix [15]. However, in practice, K is degenerated numerically so Eq.(51) is still valid.

n and v are chosen from the set of 10 equidistance values in log-scale in the range
[107*,10%]. Therefore, |£]| = |R| = 10. In our implementation, the computation of
Moore-Penrose generalized inverse was rather unstable. To avoid numerical troubles, we
discarded eigenvalues less than 1072,

So far, we called G the generalization error, where || f||* is ignored (see Eq.(3)). This
was convenient when we investigate relative goodness of ]/C\ However in the experiments,
we are interested in absolute goodness of f. So we use the following measure here.

G=E|f—fI* =G+l (52)

With some abuse, we call (¢ the generalization error through this section.
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Note that all matrices L, R, and K appeared in the current setting have common
eigenvectors. This means that all the methods can be implemented quite efficiently, i.e.,
once eigendecomposition of K is carried out in advance, all the methods can be computed
very efficiently. We implemented all the methods in this way.

In the following, we compare the computation time and the generalization error ob-

tained by E1, E2, E3, P1, and P2.

7.2 Overview of the Results

Mean and standard deviation of the generalization error obtained by each method over
1000 runs are described in Table 2, where the best method and comparable ones by
the t-test [7] at the significance level 5% are described with boldface. Figure 5 shows
the box-plot expression of the obtained generalization error. The table shows that E3
works significantly better than others when n = 50, while P1 gives the best performance
when n = 100. Mean CPU computation time over 1000 trials is described in Table 3,
showing that E3—which appeared to work very well—is slow in computation compared
with others.

The ratio of mean generalization error for some pairs of methods is described in Table 4,
while the ratio of computation time is described in Table 5. In the following, we compare
the pairs in detail.

7.3 Comparison between P1 and E1

The computational complexity of P1 and El are both O(|£]). We first compare their
actual computation time. Table 5 shows that although they have the same computational
complexity, P1 required approximately three times more computation time than E1. We
conjecture that this is mainly caused by the computation of Eq.(44).

As explained in Section 3.2, model selection by RSIC is expected to be better than
that by SIC. Therefore, we expect that P1 gives smaller generalization error than El,
which is investigated experimentally. Table 4 shows that except for (n,c?) = (50,0.01),
P1 is significantly better than E1. Figure 5 shows that P1 particularly gives smaller upper
quantiles than E1. This can also be confirmed from Table 2, where the standard deviation
of P1 is much smaller than that of E1.

The above results show that P1 needs slightly longer computation time than E1, but
is more accurate and particularly stable than E1.

7.4 Comparison between P1 and E3

P1 and E3 both employ RSIC for model selection. The computational complexity of E3

is O(|L||R]) while that of P1 is O(|£]). Thus P1 is theoretically 10 times faster than
E3 in computation. Table 5 shows that for both n = 50 and n = 100, the computation
time of P1 is 12-13% of that of E3. Given there are some inessential computations in
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Table 1: Computational complexity of each method with respect to the number of com-
pared models. |£| and |R| denote the number of elements in £ and R, respectively.

El E2 E3 | Pl P2
o(l£) o) O(LIR]) [ o) o)

Table 2: Mean and standard deviation of generalization error for toy data set. The best
method and comparable ones by the t-test at the significance level 5% are described with

boldface.

(n,c?) El E2 E3 P1 P2
(50,0.01) | 0.974+0.42 1.16+0.60 0.92+0.36 | 1.11+0.34 1.164+0.58
(50,0.09) | 3.06+3.89 4.86+3.86 2.284+1.84 | 2.81+0.83 4.8442.72
(100,0.01) | 1.004£0.50 1.454+0.91 0.88+0.39 | 0.85+0.09 1.44+0.88
(100,0.09) | 3.67+4.78 6.40+6.35 2.22+2.84 | 1.49+0.65 5.66+4.54

Table 3: Mean CPU computation time in milli seconds.

El E2 E3 | P1 P2

Theoretical | 10 1 100 | 10 1
n =50 0.32 0.11 7.60 | 0.95 0.12
n = 100 0.38 0.13 834 |1.05 0.14

Table 4: Ratio of Mean Generalization error. We described the number with bold face
if the compared methods have significant difference by the t-test at the significance level

5%.

(n,0?) | P1/E1 P1/E3 P2/E2 P2/Pl
(50,0.01) | 1.14 120 1.00 1.05
(50,0.09) | 091 123 100 1.73
(100,0.01) | 0.85 0.97  0.99  1.69
(100,0.09) | 0.41 067 0.89  3.80

Table 5: Ratio of Mean CPU computation time

P1/E1 P1/E3 P2/E2 P2/P1

Theoretical 1 0.1 1 0.1
n =50 2.97 0.12 1.09 0.13
n = 100 2.76 0.13 1.08 0.13
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Figure 5: Boxplots of generalization error for toy data set.

actual implementation, this experimental result is in good agreement with the theoretical

analysis.

E3 employs ridge learning for R while P1 employs shrinkage learning for R. Therefore,
E3 and P1 generally give different learning results. We experimentally investigate the
accuracy of learning. Table 4 shows that, when n = 50, the generalization error obtained
by P1 is approximately 20% larger than that obtained by E3. On the other hand, when
n = 100, the generalization error obtained by P1 is smaller than that obtained by E3.
Particularly when (n, o?) = (100,0.09), P1 prominently outperforms E3 (see also Table 2).

The above results show that P1 is much faster than E3, and the generalization per-

formance may be comparable.
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7.5 Comparison between P2 and E2

The computational complexity of P2 and E2 are both O(1). Table 5 shows that their
actual computation time is certainly comparable.

P2 employs RSIC while E2 uses SIC, from which we expect that P2 works better
than E2. Table 4 shows that when ¢? = 0.01, P2 and E2 do not have statistically
significant difference in generalization performance. This would be a natural consequence
since when the noise level is low, SIC is already a good estimator of the generalization
error without any modification. When (n,o?) = (100, 0.09), P2 gives significantly better
results than E2, which may be caused by the fact that RSIC is a more stable estimator
of the generalization error than SIC. When (n,c?) = (50,0.09), the mean generalization
errors of P2 and E2 are quite comparable. However, Figure 5 shows that P2 gives much
smaller 95%-quantile than E2, which implies that P2 is more stable than E2. This can
also be confirmed from Table 2, where the standard deviation of P2 is smaller than that
of E2.

The above results show that P2 is on par with E2 in computation time, but is more
stable than E2 when the noise level is high.

7.6 Comparison between P2 and P1

Finally, we compare two proposed methods. The computational complexity of P1 is
O(|L]), while that of P2 is O(1). Thus P2 is theoretically 10 times faster than El in
computation. Table 5 shows that for both n = 50 and n = 100, the computation time of
P2 is 13% of that of E3, which is in good agreement with the theoretical analysis.

P1 employs ridge learning for L while P2 uses shrinkage learning for L. Therefore,
P1 and P2 generally give different learning results. Table 4 shows that for all four cases,
P1 gives significantly smaller generalization errors than P2; particularly the difference is
prominent when o% = 0.09.

The above results show that P2 is faster in computation than P1, but P1 works better
in generalization performance than P2.

7.7 Summary

The above experimental results are summarized as follows. When we do not have lim-
itation in computing time and just pursue the optimal generalization capability, E3 or
P1 appears to be suitable. Among them, P1 is faster in computation than E3. For
this reason, we conclude that P1 is the most promising method in pursuing the optimal
generalization capability.

On the other hand, if we have a limit in computation time, P2 seems to be the best
choice since it gives the best generalization performance among the class of computation-
ally efficient methods.
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8 Conclusions

An existing model selection procedure based on RSIC chooses L and R from finite sets,
i.e., a grid search. If the number of candidates in the sets are increased, the optimization
quality of L and R would be improved. However, this in turn increases the computa-
tion time. In this paper, we alleviate this problem by deriving analytic expressions of
the optimal L and R from infinite sets. We experimentally showed that the proposed
model selection procedures based on the analytic optimal solutions are more efficient than
existing methods.

In deriving analytic solutions, we used shrinkage learning since it has a simple expres-
sion. However, it appears to be rather inaccurate compared with ridge learning. Our
important future work is to derive analytic expressions of the optimal expressions of L
and R under a more powerful learning criterion.
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A  Proof of Theorem 1

When R is of the form of Eq.(38), B and C are expressed as

2
B=-"lg, (53)
1+~
2
C=T-—8. (54)
14+~
Let
up = o*||(S + ST)y||> — o*tr(S* + SST). (55)

Then Eq.(25) yields

4(uy — uo)y? +4ug  8(ug — up)

J] s L] =
it (1+7)? I+75
4402 Ty|? — 20 (T), (56)
and its first derivative is given by
7 8{(ur — ua)y — ua}
J'[v; L] = . 57

Below, we give a proof depending on u; and us (See Table 6).
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Table 6: Cases in Proof of Theorem 1.
‘ Conditions H Results ‘

up >uz |uz <0 (A5 =0
u; 20 || (B) 7L =7
Uy < Us (C) AL = o0
up =wuz | uz #0 || (D)L = o0
uy =0 || (E) 4z € [0, 00)

that J[vy; L] is monotone increasing and thus 7z = 0.
(B) If uy > uz > 0, Eq.(57) implies that J'[7; L] = 0, where
F= e (20)
Uy — Uz
Since ,
~ ~ 4 _=x
Sl L] = Jy; L] = wb Iy,

L+ (1 +7)*
where strict equality holds if and only if v =7, we have 7 = 7.

18

(A) If uy > ug and ug < 0, Eq.(57) yields j’[’y; L] > 0 for any v € [0,00). This implies
J

(58)

(59)

(C) If uy < uz, we have ug > 0 since uy > 0. Then Eq.(57) yields j’[’y; L] < 0 for any

o~

v € [0,00). This implies that J[y; L] is monotone decreasing and thus 7 = cc.

(D) If uy = uy # 0, we have ug > 0 since uy > 0. Then Eq.(57) yields j’[’y; L] <0 for

o~

any v € [0,00). This implies that J[y; L] is monotone decreasing and thus 7 = oc.

o~

(E) If uy = uz = 0, Eq.(57) yields J'[; L] = 0. This implies that J[y; L] is constant

so 4 is an arbitrary value in [0, co).

By summarizing the above results (see Table 6), we have Eq.(44).

B Proof of Theorem 2

When L is of the form of Eq.(32), S and T are expressed as

1
S=_—K'
I+

Then we have
vs(1 + 2X)
(1+A)2 7
(v; —ve)*(1 4+ A) —v3(1 + 2X)
(1+2A)° ’
o 2(v1 — vy)

RSIC[\; 31] TOENE NI

Ug =

Uy — Uy =

(60)

(61)

(62)
(63)

(64)
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Table 7: Cases in Proof of Theorem 2.

‘ Conditions H Results ‘
vy £ vy | v3 <0 v < vy || (Al) Agsic = oo
v1 > vy || (A2) Aggic = A
0<wvs < M vy < vy || (BL) Agsic =
v1 > vy || (B2) Agsic = )\
V3 = M vy >0 (Bg) ARsIic =
vy = (B4) Do not happen
M <wvs < (vi—w2)? | vy >0 | (Cl) Agsic =
v = (C2) Do not happen
(Ul — U2)2 < vs vy >0 (Dl) ARSIC =
v = (D2) Do not happen
vy =vy | v =0 (E) Arsic € [0,00)
vy > 0 (F) Arsic = oo

Since K is positive semidefinite, we have v; > 0 and vy > 0. Below, we give a proof
depending on vy, vy, and vs (See Table 7).

(A) If vy # vy and v3 <0, Eq.(62) yields uy < 0 for any A € [0, 00) and Eq.(63) yields
uy > uy for any A € [0,00). Therefore, Theorem 1 yields 7, = 0 for any A € [0,00). In
this case, Eq.(64) yields

—2(1)1 — UQ))\ — U1 + 21)2

RSIC[A; 0] = 010 ; (65)
and its first derivative is given by
2(vy —v) A — 2
RSIC/; 0] = 2L = va)d = 2vs (66)

(47

(A1) If v3 < 0 and vy < vy, Eq.(66) yields RSIC[X;0] < 0 for any A € [0, 00) since vy > 0
because of vy > vy > 0. This implies that RSIC[A; 0] is monotone decreasing and thus
Arsic = 00. (A2) If v3 < 0 and v; > vq, Eq.(66) yields RSIC'[A; 0] = 0, where

A=

(67)

U1 — U2

Since

(01 — v2)%(\ = A)?
TESYER (@)

where strict equality holds if and only if A = X we have /)\\RSIC -\
(B) If v1 # vy and 0 < v3 < M , £q.(62) yields uz > 0 for any A € [0 o0) and
Eq.(63) yields uy > uy for any A € [0 oo) Therefore, Theorem 1 yields 4, = 7, where 5

RSIC[A; 0] — RSIC[); 0] =
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is defined by Eq.(58). In this case, Eq.(64) yields

~ —21)0)\ + vy — g
RSIC[A; 7] = (1+A)2 ) (69)
where 2o
v — v9)° — 20
vy = (v U12_)U2 & (70)
Then its first derivative is given by
— 200A —2v

(B1) If 0 < w3 < % and vy < vy, we have vy < 0 and vy > 0 so Eq.(71) yields
RSIC[A;7] < 0 for any A € [0,00). This implies that RSIC[A;7] is monotone decreasing

~

and thus Agsic = c0. (B2) If 0 < v3 < % and vy > v, we have vy > 0 so Eq.(71)
yields RSIC'[X; 7] = 0, where
Y=2(>0). (72)

Vo

Since .

vo(A — A) _ >0 (73)
(L+AP(1+A)
where strict equality holds if and only if A = X, we have /)\\RSIC =\ (B3) If vy # vy,
vz = %, and vy > 0, Eq.(71) yields RSIC'[A;7] < 0 for any A € [0,00). This implies
that RSIC[A;7] is monotone decreasing and thus /)\\RSIC =o0. (B4) vy # vy, v3 = (U1_2U2)2,
and vy = 0 do not happen; vs # 0 implies 02 > 0, so vy = 0 yields tr(KT) = 0 which
results in v; = 0. However, this contradicts with vy # vs.

(C) If vy # vy and (n=w) vy < (v; — vq9)?, Eq.(62) yields uy > 0 and Eq.(63) yields

2
uy > ug for any A € [0, A¢), where

RSIC[\: 3] — RSIC[\; 7] =

ro = Lozl =)’ (74)

(Ul — U2)2 — 21)3‘

Therefore, Theorem 1 yields 7\ =5 for A € [0, A¢). In this case, RSIC[A; 7] is given by
Eq.(69) and RSIC'[A;7] is given by Eq.(71). For A € [0, A¢), we have RSIC'[\;7] < 0.
Therefore, RSIC[A; 7] is monotone decreasing in A € [0, A¢), so the infimum of RSIC[A;7]
in [0, A¢) is
. ~ ~ U1
f IC[X;7] = RSIC[M\ ;7] = ————.

AEI[QAC)RS C[A 7] = RSIC[Ac; 7] TESYE (75)
Eq.(63) yields u; < uz for any A € [A¢,00). Therefore, Theorem 1 yields 7, = oo for
A € [Ac, ). In this case, Eq.(64) yields

01

(L4 N2

RSIC[A; 0] = (76)
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and its first derivative is given by

21)1

RSIC'[A; 00] = RS

(77)

(C1) If vy # vy, (vi— U2) < w3 < (v; —vq)?, and vy > 0, Eq.(77) yields RSIC[A; oo] < 0 for
any A € [A¢, 00). ThlS implies that RSIC[); oo] is monotone decreasing, so the infimum
of RSIC[A; o0] in [A¢, 00) is

inf  RSIC[); o0] = RSIC[o0; 00| = 0. (78)

A€[A¢,00)

On the other hand, Eq.(75) yields

f RSIC[X;5] > 0, 79
et [A;7] > (79)
from which we have /)\\RSIC = 0. (C2) vy # vg, (vi= U2) < w3 < (v —v2)?, and vy = 0 do not

happen; v; = 0 implies Ky = 0, so ((K')?y, y> = 0, which yields vs = —otr((KT)?) <
0. However, this contradicts with M < vz < (vp — )2

(D) If vy # vy and (vy — vy)? § vs, Fq.(63) yields u; < uy for any A € [0, 00).
Therefore, Theorem 1 yields 7, = oco. In this case, RSIC[A; 00] is given by Eq.(76) and
RSIC'[A; 0] is given by Eq.(77). (D1) If vy # vq, (v1 — v9)?* < vz, and v; > 0, Eq.(77)
vields RSIC'[A; 00] < 0 for any A € [0, 00). Therefore, RSIC[); oo] is monotone decreasing
and thus XRSIC = 00. (D2) vy # vg, (v1 — v2)* < v3, and vy = 0 do not happen as shown
n (C2).

(E) If vy = vy = 0, Eq.(64) yields RSIC[A;4] = 0. Therefore, ARsic is an arbitrary
value in [0, 00).

(F) If vy = vy > 0, Eq.(64) implies that RSIC[A; 4] does not depend on + and is given
by the right-hand side of Eq.(76). This implies that RSIC[);~] is monotone decreasing
with respect to A and thus XRSIC =0

By summarizing the above results, we have Eq.(47). [ ]
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