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Abstract

Kernel-based learning algorithms have been successfully applied in various problem
domains, given appropriate kernel functions. In this paper, we discuss the problem
of designing kernel functions for binary regression and show that using a bell-shaped
cosine function as a kernel function is optimal in some sense. The rationale of this
result is based on the Karhunen-Loeéve expansion, i.e., the optimal approximation
to a set of functions is given by the principal component of the correlation operator
of the functions.
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1 Introduction

In recent years, a number of kernel-based learning algorithms such as the regularization
networks [11, 5, 2], the support vector machines [18, 10, 14, 15], and the Gaussian processes
[20, 19] have received growing attention. These kernel methods are shown to generalize
very well in various problem domains, given appropriate kernel functions. Thus, properly
choosing or designing the kernel function is crucial in kernel methods. In this paper,
we discuss the problem of designing kernel functions. A lot of attention have been paid
recently to designing kernel functions especially for non-vectorial structured data [18, 13,
8,1, 21,9, 16, 17, 14, 4]. In this paper, however, we consider the problem of designing
kernel functions for standard vectorial data.

A kernel function is usually specified by the family of functions (Gaussian, polynomial,
etc.) and kernel parameters (width, order, etc.). In practice, learning with kernels is often
carried out by using a fixed family of kernel functions (say the Gaussian kernel) and the
kernel parameters (Gaussian widths) are optimized by some model selection method such
as cross-validation. Although it is in principle possible to also choose the family of kernel
functions by cross-validation, this practice does not seem so common because of infinitely
many degrees of freedom in the optimization of the family of kernel functions.

In this paper, we focus on the binary regression problem where the learning target
function is binary, and show that using a bell-shaped cosine function as a kernel function
is optimal in some sense. The rest of this paper is organized as follows. In Section 2
and Section 3, our basic idea of designing kernel functions and its details are described.
Section 4 reports the experimental results for standard benchmark data sets, and Section 5
concludes the paper.

2 Basic Idea of Designing Kernel Functions

In this section, we illustrate our basic idea of designing kernel functions.

We consider the regression problem of approximating an unknown learning target
function from training examples. Let us denote the learning target function by f(«),
which is defined on R%. We employ the kernel regression model (or the kernel machine)
for learning:

flz) = Zailx”(m,wi), (1)

where {a;}7_; are parameters to be estimated from training examples, K (@, ') is a kernel
function, and ®; (€ RY) is a training input point. We do not impose the positive semi-
definiteness on the kernel function®.

In the following, we focus on translation-invariant kernels [14], i.e., K (@, @) depends
only on & — «’. A notable feature of kernel regression models with translation-invariant
kernels is that the shape of kernel functions is common to any @®’. That is, @’ can

!The positive semi-definiteness of the kernel function is not required, e.g., in the ridge estimation [7].
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be interpreted as the center of kernel functions. This fact implies that each kernel is
responsible for local approximation in the vicinity of each training input point x;. For
this reason, we consider the problem of approximating the learning target function f(@)
locally by a single kernel function and derive the optimal shape of kernel functions.

Let ¢o(@) be a local function centered at @’ and U be the set of all local functions. Let
‘H be a functional Hilbert space which contains W. The inner product and norm in H are
denoted by (-,-) and || - ||, respectively. We treat > as a random function® and denote the
expectation over t» by E. Then the kernel design problem is formulated as the problem
of searching for the optimal approximation to the set W in the function space H. Since
we are interested in finding the optimal family of kernel functions, scaling of the kernel
functions is not important. Therefore, we will search for the optimal direction ¢,, in the
function space H. Here, we define our optimality criterion by

Popt = argmin El[¢) — oy |?, (2)
HEH

where 1), 1s the orthogonal projection of ¢ onto ¢, i.e.,

(¥, 9)
by = B . (3)

Let R be the correlation operator of local functions, i.e., it is defined by using ¢ € ‘H

as
Ry = E[(p, ). (4)
Then the well-known Karhunen-Loéve expansion [3] asserts that the optimal direction ¢,

is given by the eigenfunction ¢n,..(x) associated with the largest eigenvalue A, of the
correlation operator R. Based on this fact, we propose using the kernel function defined

by

K(2,2') = dop (w - w) , (5)

where @' is the center of the kernel function and ¢ is a positive scaler that controls the
kernel width (i.e., the larger ¢ is, the wider the kernel width is). Since the above kernel
consists of the principal component of the correlation operator, we call it the principal
component (PC) kernel.

3 Constructing Kernel Functions for Binary Regres-
sion
In this section, we construct a kernel function for binary regression using the above idea.

Let us consider a one-dimensional binary regression problem, i.e., the output of the
learning target function f(x) is either 0 or 1 (see Figure 1). Then it can be observed that

2This does not mean that @ is a probability density function, but the function ¢ is drawn randomly
as an element of the function space H.
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Figure 1: An example of one-dimensional binary learning target function f(x).
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Figure 2: (a) a rectangle function and (b) a half-rectangle function.

such a binary function consists of rectangle functions with different widths. Therefore, in
the binary regression cases, the set of local functions is given by a set of rectangle functions
with different widths (see Figure 2-(a)). We regard the widths of rectangle functions (6,
and 60, in the figure) as random variables. Since we do not have any prior knowledge
on the probability distribution of the widths, the distribution should be defined in an
“unbiased” manner. Here we suppose that the width is bounded, and we use the uniform
distribution for the widths because it is non-informative.

The above formulation implies that the problem is symmetric, so we only consider the
right-half of the rectangle functions (see Figure 2-(b)). Without loss of generality, let us
normalize the width into [0,1]. Then the half-rectangle function is expressed by

ta) = { (6)

where 6 (0 < 6 < 1) denotes the width of the half-rectangle function. Since we assumed
the uniform distribution for 6, the probability density function p(6) is given by

p(f) =1for 0 <0 <1. (7)

1 ifo0<a<d,
0 otherwise,
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Let us use 1[0, 1] as a functional Hilbert space ‘H. That is, H is spanned by the functions
@(x) defined on [0, 1] such that

[ letofde < . (8)

The inner product in H is defined by

<%wzl¢@wmm (9)

where = denotes the complex conjugate of a complex number. The norm is defined
by ||l¢ll = v/{¢,¢). Then the correlation operator R of the half-rectangle functions is
expressed using any ¢ € H as

1
R = [ oyt (10)
0
Now let us solve the eigenproblem for R:

Rop = \o. (11)
This eigenproblem can be expressed as follows.

Lemma 1 The eigenproblem for R is expressed as

/ (e n)oly)dy = A(z), (12)
where

o= { 170 sy o

A proof of Lemma 1 is given in A. Based on this lemma, we have the following theorem
which gives the analytic solutions of the eigenproblem.

Theorem 2 All positive eigenvalues {A,}52, and associated normalized eigenfunctions

{dp(2)}720 of R are given by

4

A= ———— 14
p (2p_|_ 1)27'('27 ( )

op(x) = V2 cos w:p (15)



Constructing Kernel Functions for Binary Regression 6

— 0™ Y AN /
L YN RN < e
e N NP
-1.5 : : : ;
0 0.2 0.4 0.6 0.8 1

Figure 3: Profiles of the eigenfunctions ¢o(x), é1(x), and ¢o(a).
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Figure 4: The profiles of the principal component kernel for binary regression and Gaus-
sian kernel. Both kernels are centered at the origin.

A proof of Theorem 2 is given in B. Profiles of the three leading eigenfunctions ¢o(x),
¢1(x), and ¢y(x) are illustrated in Figure 3.
From Eq.(5) and Theorem 2, we have the following PC kernel for the binary regression

problem.
r—a -f|:1:—:1;’|<7r
K(z,2") = €8 c ' c 2 (16)

0 otherwise,

where the coefficient v/2 is omitted, %c is redefined by ¢, and the symmetry of the cosine
function is used. A profile of the above kernel function is illustrated in Figure 4. Note
that this kernel is not positive semi-definite, which can be confirmed by the fact that
r1 =0, x5 =0.1, 23 = 0.7, and x4 = 1.6 yield a negative kernel matrix.

For comparison, a profile of the popular Gaussian kernel is also illustrated in the same
figure, showing that the derived PC kernel is rather similar to the Gaussian kernel. This
fact has the following implication: Binary classification problems are sometimes solved as
binary regression problems using the squared-loss [2, 15]. In this scenario, an interesting
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experimental fact is known that smooth kernels such as the Gaussian kernel work very
well in practice, although the binary learning target function is not at all smooth. Our
result partially explains this interesting phenomenon—Gaussian-like bell-shaped kernel
functions are shown to approximate binary functions very well.

When the input variable @ is multi-dimensional, there are several possibilities to extend
the above result, e.g., the element-wise product of the one-dimensional kernel function
or radially symmetric kernel function. In the following section, we focus on the radially
symmetric kernel because it is computationally less expensive:

(le=a\ e
¢ ¢ -2’ (17)

0 otherwise,

K(z,2') =

4 Simulations

In this section, we investigate the experimental performance of the proposed kernel func-
tion.

As benchmarks, we use the IDA data sets which are standard binary classifica-
tion data sets originally used in the paper [12]. The data sets are available from
‘http://ida.first.fraunhofer.de/projects/bench /benchmarks.htm’. All the data
sets we use here are binary classification problems and the labels in the original data sets
are —1 and 41. Here we convert —1 to 0 to fit the current setting. In the theoretical
discussions provided in the previous sections, we focused on binary regression problems
(squared error). Therefore, the application of the proposed kernel to binary classification
(misclassification error) is a heuristic.

We use the kernel regression model defined by Eq.(1) for learning and determine the
parameters {o;}7; by the ridge regression (RR) [7]. More specifically, the parameters
{a;}_, are determined such that the regularized training error is minimized.

{gll}};:ll (i: <f($z) - y¢>2 + )\jzi;oz?> , (18)

=1

where A is a positive scalar called the ridge parameter. A minimizer of Eq.(18) is given
by
(&1, &2, ceey één)T = (K2 + )\I)_lK(yl, Y2, ..y yn)T, (19)

where I denotes the identity matrix and K is the so-called kernel matrix, whose (¢, j)-th
element is given by

Ki,j = K(a:i,a:j). (20)

As a kernel function K(@;,«;), we use the proposed principal component kernel (PCK).
Model parameters such as the widths of the kernels and the ridge parameter A are deter-
mined following the original paper [12]: The model parameters are optimized using the
first 5 realizations of each data set. For each realization, the model parameters are chosen
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Table 1: Simulation results for IDA data sets. d is the input dimension and n is the
number of training examples. Mean and standard deviations of the misclassification rates
obtained by the ridge regression with the principal component kernel (RR+PCK) or with
the Gaussian kernel (RR+GK) are described. All values are described in percent. A
significantly better method by the t-test at the significance level 1% is described with
boldface.

‘DataSet ‘ d‘ n

| RR+PCK | RR+GK |

Banana 2 | 400 10.940.44 | 10.4+0.41
B. Cancer | 9 | 200 | 25.5+4.34 | 27.24+4.84
Diabetes | 8 | 468 23.2+£1.82 | 23.0£1.68
German | 20 | 700 24.14£2.08 | 24.242.21

Heart 13 ] 170 15.943.41 | 15.543.25
Image 18 | 1300 || 6.52+0.71 | 3.68+0.52
Ringnorm | 20 | 400 | 2.69+£0.32 | 5.35+£0.68
F. Solar 9 | 666 33.3£1.58 | 33.5£1.50
Splice 60 | 1000 || 11.440.58 | 11.1£0.59

Thyroid 5 | 140 6.61+2.84 | 5.31+2.46

Titanic 3 | 150 22.5+1.02 | 22.4+1.12
Twonorm | 20 | 400 | 2.45+0.14 | 2.524+0.17
Waveform | 21 | 400 9.73+0.44 | 9.811+0.48

from a wide range of values by 5-fold cross-validation. Then the median of 5 chosen values
are used throughout all realization of the data set.

We compare the misclassification rates obtained by the principal component kernel
(RR4+PCK) with that obtained by the Gaussian kernel (RR4+GK), which are described
in Table 1. All values are described in percent. For each data set, a significantly better
method by the t-test [6] at the significance level 1% is described with boldface. The table
shows that PCK and GK work comparably, implying that the standard GK may be used
as an approximation to PCK.

Table 2 shows the sparseness of the kernel matrix, i.e., the percentage of zeros in the
kernel matrix. Thanks to the locality of the PC kernel, it provides a sparse kernel matrix
for several data sets, which contributes to reducing computation time. Since RR+PCK
and RR+GK are comparable in accuracy, using PCK is advantageous because of the
sparseness.

Finally, we compare the misclassification rates obtained by RR4+PCK with the support
vector machine with the Gaussian kernel (SVM—I—GK)3, which are described in Table 3.
The table shows that RR+PCK works as well as SVM+GK, which is known to be one of
the best existing classifiers. Although application to binary classification is rather heuris-
tic, the results show that the proposed method (RR+PCK) may be useful in practice.

3The results of SVM+GK are borrowed from the paper [12].



Constructing Kernel Functions for Binary Regression

Table 2: Mean and standard deviations of the sparsity of the kernel matrix. All values

are described in percent.

‘ Data Set H PCK ‘ GK ‘
Banana 57.3£0.94 040
B. Cancer 040 040
Diabetes || 0.064+0.03 040
German 040 040
Heart 040 040
Image 2.3840.45 040
Ringnorm || 1.32+0.27 040
F. Solar 040 040
Splice 0+0 0+0
Thyroid || 21.7+2.55 040
Titanic 8.96+3.08 040
Twonorm 040 040
Waveform 040 040

Table 3: Mean and standard deviations of the misclassification rates obtained by the ridge
regression with the principal component kernel (RR+PCK) or the support vector machine
with the Gaussian kernel (SVM+GK) are described. All values are described in percent.
A significantly better method by the t-test at the significance level 1% is described with
boldface.

| Data Set | RR+PCK | SVM+GK |

Banana 10.940.44 | 11.5+0.66
B. Cancer | 25.54+4.34 | 26.04+4.74
Diabetes 23.24+1.82 | 23.5+1.73
German 24.142.08 | 23.6+2.07

Heart 15.94£3.41 | 16.0+3.26
Image 6.5240.71 | 2.961+0.60
Ringnorm | 2.6940.32 | 1.66+0.12
F. Solar 33.3+1.58 | 32.4+1.82
Splice 11.440.58 | 10.940.66

Thyroid 6.61+2.84 | 4.804+2.19

Titanic 22.5+1.02 | 22.4+1.02
Twonorm | 2.454+0.14 | 2.96+0.23
Waveform || 9.73+0.44 | 9.8840.43
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5 Discussions and Conclusions

Optimizing a family of kernel functions or the “shape” of kernel functions is a hard task
because it includes infinitely many degrees of freedom. In this paper, we showed that
the optimal kernel shape is given by the principal component of the correlation operator
of local functions, which resulted in a bell-shaped cosine kernel (see Figure 4). As the
simulation results showed, the ridge regression with the proposed kernel works as well as
the support vector machine, which is known to be an excellent classifier.

The profile of the obtained cosine kernel is rather similar to that of the standard
Gaussian kernel. This fact explained why a smooth kernel such as the Gaussian kernel
often works well in non-smooth binary regression problems. Indeed, our experiments
showed that the proposed kernel and the Gaussian kernel work comparably. Therefore,
the Gaussian kernel may be used as an approximation to the bell-shaped cosine kernel,
although using the proposed kernel is more advantageous because it provides a sparse
kernel matrix.

We did not take the positive semi-definiteness of the kernel function, which is not a
problem if kernel machines with ridge estimation are used. However, it would be inter-
esting to investigate whether the same or similar framework can be used for deriving the
optimal positive semi-definite kernel.

We focused on the binary regression problem. However, we expect that the proposed
kernel design methodology can be extended to more general regression senarios, since the
basic idea described in Section 2 does not even exploit the fact that the learning target
function is binary. In order to design a kernel function using the proposed methodology in
more general scenarios, we need to appropriately specify the correlation operator defined
by Eq.(4). If it can be specified using some prior knowledge on the problem domain, the
proposed method allows us to beneficially use such prior knowledge. In the absence of
such prior knowledge, on the other hand, we have to define the correlation operator such
that the solution is not subjectively biased. In the binary regression case we discussed in
this paper, our choice was to use the uniform distribution for the widths of the rectangle
functions, which seems to be non-informative. A key point of this implementation was
that the uniform distribution for the widths does not yield the uniform distribution in
the function space. Therefore, we could find a “meaningful” principal component in
the function space. In other words, if the uniform distribution in the function space is
assumed, arbitrary functions in the function space become principal components so a
meanningful outcome can not be obtained. Therefore, in order to extend the proposed
kernel design method to be applicable to more general scenarios, it is important to find
an appropriate way to design the correlation operator, which remains open currently.
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A Proof of Lemma 1

Let

T(Slf,y)Z/O Yo(x)pg(y)db.

Then it follows from Eq.(10) that

Substituting Eq.(6) into Eq.(21), we have
1
r(x,y) = / df =1 — max(z,y),
max(z,y)

which yields Eq.(13).

B Proof of Theorem 2

11

(21)

(22)

(23)

We shall solve the eigenproblem given by Eq.(12). Let us search eigenfunctions from
C®10,1], which is a set of twice-differentiable functions. Substituting Eq.(13) into Eq.(12)

yields

1
z

Ao(x) = (1 — ) / Co(y)dy + / (1 — y)bly)dy.

Differentiating both-hands sides of Eq.(24) with respect to x, we have
Aa) == [ o)y + (1= )ota) = (1 = )ole)
0

- / " bly)dy.

Further differentiating both-hands sides of Eq.(25) with respect to x, we have

MG () = —o(x).
It is known that, for A > 0, Eq.(26) has a general solution of the form
o(x) = a. cos = + agsin i,

VA VA

where a. and as are complex numbers.

(24)

(25)

(26)

(27)
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Now we shall determine the coefficients a. and as. Eqs.(24) and (25) yield the following
boundary conditions:

¢(1) =0, (28)
#'(0) = 0. (29)
Since differentiating both-hands sides of Eq.(27) with respect to = yields
1 x x
"(2) = — —acsin——l—ascos—>, 30
7 vay ( VA VA (30)
Eqs.(30) and (29) imply

Therefore, we have
o(x) = a.cos —. (32)
Eqs.(32) and (28) imply
a,cos —= = 0, (33)

so we have | © 5
p+ )7
—=-——""forp=0,1,2,.... 34

and let ¢,(x) be the associated eigenfunction.

For p=10,1,2,..., let

¢p() = a. cos \/)Tp'

In order for the eigenfunctions to be normalized, the coefficient «. in Eq.(36) should be
determined so that the norm of ¢, is equal to 1. Eqs.(36) and (35) yield

1
6 =l [ o s
0 P

(36)
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which holds if a. = v/2. Consequently, the eigenfunction ¢,(z) is given by
2p 41
op(x) = V2 cos w:p (38)

Finally, we shall show that the eigenvalues {A,}°2, given by Eq.(35) is the complete
set of positive eigenvalues of the correlation operator R. Since R is a positive semi-definite
operator, it is enough to show

i A\, = tr(R), (39)

where tr (R) denotes the trace of R. It is known that

2

- 1 T
2 i s (40

p=0

Therefore the left-hand side of Eq.(39) yields

(1)

tr(R) = /01 r(z, )de = /01(1 —z)dr = % (42)

which proves Eq.(39). [ ]
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