Mixture Regression for Covariate Shift
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ISSUE: What to do when training and test sets are DIf-
feRenT.
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The situations where the training and test data are from
different distributions is called covariate shift. There are
a variety of causes of covariate shift:

Simple Covariate Shift: If we are correctly modelling
the situation with a conditional model, and the only
change is different covariate distributions, there are no
real modelling issues.

Sample Selection Bias: Sample selection rule (V' in fig-
ure below) determines what samples occur in data. We
need to estimate the sample rejection process.
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Domain Shift: The covariate X "moves’.

Xnew = f(Xold) ’ Y(Xnew) = Y(f(Xold)) (1)

- 0.

Source component shift: Proportions  of  different
source components vary between datasets. Within
source conditional models are same.

Mixture of Regressors for
Source Component Shift

The model takes the following form

e The distribution of the training data and test data are
denoted Pp and Pr respectively, and are unknown in
general.

o Source set 1 consists of M mixture distributions, where
mixture ¢ is denoted Py;(x). Each of the components is
associated with regression model P (y|x).

e Source set 2 consists of M, mixture distributions,
where mixture ¢ is denoted P, (x). Each of the compo-
nents is associated with the regression model P (y|x).

o The training and test data distributions take the follow-
ing form:

Pp(x) =Y BiviPie(x) + Bovs Pu(x)
t

Prix) = 3T Pulx)
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EM Algorithm and Examples

This is a simple mixture of experts model, and it is
straightforward to apply the EM algorithm for updates.
We applied this for various regressors including Gaus-
sian process regressors using a variational approximation
for the mixture. We also show that Importance Weighted
Least Squares is a special case.

Generated Test Data

We compare mixture of regressors approach to covariate
shift (MRCS) with importance weighted least squares es-
timator (IWLS) given the best mixture model fit for the
data and a mixture of regressors model that ignores the
form of the test data, but chooses a regressor by match-
ing to the test data distribution using a KL divergence
measure (MRKL). The third case is where the mixture of
regressors is used simply as a standard regression model,
ignoring the possibility of covariate shift (MRREG). (100
datsets, linear, random numbers of mixtures, 8 restarts,
80 iterations of EM. Analysis was done for fixed model
sizes and for model choice using a Bayesian Information
Criterion (BIC).)
MRCS IWLS MRKL MRREG
1Mixture | 0588 0797 3274 0.890
2 Mixtures | 0.536 0.804 2673 0.881
3 Mixtures | 0.601 0.831 3.390 0.887
4Mixtures | 0.623 0.817 2.823 0.8%4
5Mixtures | 0.612 0.837 2817 0.898
BIC Choice 0.6100 0.7990 2.8638 0.8813
MCRSbetter| - 77/100 72/100 84/100

Auto-mpg

To demonstrate covariate shift we can consider a reduced
UCI Auto-mpg prediction task trained on cars from one
place of origin and tested on cars from another place of
origin. Here we consider predicting the fuel consump-
tion (attribute 1) using the four continuous attributes. We
train the model using data on cars from origin 1, and test
on cars from origin 2 and origin 3. We use Gaussian pro-
cess regressors for each regression function. The results
of running this are in the table below
GP MRCS IWLS MRKL MRREG

Origin 2/1.192 0.600 0.700 1.2243 0.7397
Origin 3/0.898 0.568 0.691 1.3862 0.706

© o

Nonlinear regression using covariate shift. (a),(c),(€) Training set
fit and (b),(d),(f) test data with predictions for MRCS (top), IWLS
(middle) and MRKL (bottom) respectively. In (a),(c),(€), the'.’ data
|abels the points for which the test regressor has greater responsibil-
ity, andthe’+' datalabels pointsfor which thetraining only regressor
has greater responsibility.

Future Work

This framework is currently being extended to the case of
multiple training and test datasets using a fully Bayesian
scheme, and will be the subject of future work. In this
setting we have a Topic model, similar to Latent Dirichlet
Allocation, where each dataset is built from a number of
contributing regression components, where each compo-
nent is expressed in different proportions in each dataset.
The model and tests of this paper show that this multiple

dataset extensign could well be fruitful.
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