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ISSUE: What to do when training and test sets are DIf-
feRenT.

The situations where the training and test data are from
different distributions is called covariate shift. There are
a variety of causes of covariate shift:

Simple Covariate Shift: If we are correctly modelling
the situation with a conditional model, and the only
change is different covariate distributions, there are no
real modelling issues.

Sample Selection Bias: Sample selection rule (V in fig-
ure below) determines what samples occur in data. We
need to estimate the sample rejection process.

Domain Shift: The covariate X ’moves’.

Xnew = f(Xold) , Y (Xnew) = Y (f(Xold)) (1)

Source component shift: Proportions of different
source components vary between datasets. Within
source conditional models are same.

Mixture of Regressors for
Source Component Shift

The model takes the following form

•The distribution of the training data and test data are
denoted PD and PT respectively, and are unknown in
general.

• Source set 1 consists of M mixture distributions, where
mixture t is denoted P1t(x). Each of the components is
associated with regression model P1(y|x).

• Source set 2 consists of M2 mixture distributions,
where mixture t is denoted P2t(x). Each of the compo-
nents is associated with the regression model P2(y|x).

•The training and test data distributions take the follow-
ing form:

PD(x) =
∑

t

β1γ
D
1tP1t(x) + β2γ

D
2tP2t(x)

PT(x) =
∑

t

γT
1tP1t(x)

EM Algorithm and Examples
This is a simple mixture of experts model, and it is
straightforward to apply the EM algorithm for updates.
We applied this for various regressors including Gaus-
sian process regressors using a variational approximation
for the mixture. We also show that Importance Weighted
Least Squares is a special case.

Generated Test Data
We compare mixture of regressors approach to covariate
shift (MRCS) with importance weighted least squares es-
timator (IWLS) given the best mixture model fit for the
data and a mixture of regressors model that ignores the
form of the test data, but chooses a regressor by match-
ing to the test data distribution using a KL divergence
measure (MRKL). The third case is where the mixture of
regressors is used simply as a standard regression model,
ignoring the possibility of covariate shift (MRREG). (100
datsets, linear, random numbers of mixtures, 8 restarts,
80 iterations of EM. Analysis was done for fixed model
sizes and for model choice using a Bayesian Information
Criterion (BIC).)

MRCS IWLS MRKL MRREG
1 Mixture 0.588 0.797 3.274 0.890
2 Mixtures 0.536 0.804 2.673 0.881
3 Mixtures 0.601 0.831 3.390 0.887
4 Mixtures 0.623 0.817 2.823 0.894
5 Mixtures 0.612 0.837 2.817 0.898
BIC Choice 0.6100 0.7990 2.8638 0.8813

MCRS better - 77/100 72/100 84/100

Auto-mpg

To demonstrate covariate shift we can consider a reduced
UCI Auto-mpg prediction task trained on cars from one
place of origin and tested on cars from another place of
origin. Here we consider predicting the fuel consump-
tion (attribute 1) using the four continuous attributes. We
train the model using data on cars from origin 1, and test
on cars from origin 2 and origin 3. We use Gaussian pro-
cess regressors for each regression function. The results
of running this are in the table below

GP MRCS IWLS MRKL MRREG
Origin 2 1.192 0.600 0.700 1.2243 0.7397
Origin 3 0.898 0.568 0.691 1.3862 0.706

The following figures show an example of the approach.
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Nonlinear regression using covariate shift. (a),(c),(e) Training set

fit and (b),(d),(f) test data with predictions for MRCS (top), IWLS

(middle) and MRKL (bottom) respectively. In (a),(c),(e), the ’.’ data

labels the points for which the test regressor has greater responsibil-

ity, and the ’+’ data labels points for which the training only regressor

has greater responsibility.

Future Work

This framework is currently being extended to the case of
multiple training and test datasets using a fully Bayesian
scheme, and will be the subject of future work. In this
setting we have a Topic model, similar to Latent Dirichlet
Allocation, where each dataset is built from a number of
contributing regression components, where each compo-
nent is expressed in different proportions in each dataset.
The model and tests of this paper show that this multiple
dataset extension could well be fruitful.


