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ABSTRACT

Obtaining the best linear unbiased estimator (BLUE) of noisy
signals is a traditional but powerful approach to noise reduc-
tion. Explicitly computing BLUE usually requires the prior
knowledge of the subspace to which the true signal belongs
and the noise covariance matrix. However, such prior knowl-
edge is often unavailable in reality, which prevents us from
applying BLUE to real-world problems. In this paper, we
therefore give a method for obtaining BLUE without such
prior knowledge. Our additional assumption is that the true
signal follows a non-Gaussian distribution while the noise is
Gaussian.

1. INTRODUCTION

One of the most fundamental and important problems in sig-
nal processing is reduction of the noise contained in observed
signals. In this paper, we focus on the cases where the ob-
served signal is the sum of a low-dimensional true signal and
full-dimensional noise.

A traditional but useful approach to noise reduction in this
setting is to obtain the best linear unbiased estimator (BLUE)
of the observed signals [1], i.e., the linear unbiased estimator
of the true signal that has the minimum variance among all
linear unbiased estimators. BLUE can be obtained by lin-
early projecting the observed signal onto the subspace � of
the true signal along a (not necessarily orthogonal) comple-
mentary subspace � determined by the noise covariance ma-
trix�. In order to explicitly compute BLUE, the signal sub-
space � and the noise covariance matrix� are required. Un-
fortunately, however, they are typically unknown in practice,
so the application of BLUE to real-world problems has been
rather limited so far. The purpose of this paper is to theoreti-
cally show a possibility of obtaining BLUE without the prior
knowledge of � and�.

We first show that BLUE can be obtained by using the
data covariance matrix �, without using the noise covariance
matrix �. This finding is practically meaningful because es-
timating the data covariance matrix � can be directly carried

out in a consistent manner using the data samples, while esti-
mating the noise covariance matrix� is not a straightforward
task in general. Thanks to this result, we only need to estimate
the signal subspace � for obtaining BLUE.

Then we outline our new method named non-Gaussian
component analysis (NGCA)[2], which enables us to identify
the desired signal subspace � under the assumption that the
signal components follow a non-Gaussian distribution while
the noise is Gaussian. It is shown experimentally that by
NGCA, � can be successfully identified, and thus our con-
tribution in this paper opens a possibility of obtaining BLUE
without the prior knowledge of � and�.

2. FORMULATION

Let � � �� be the observed noisy signal, which is composed
of an unknown true signal � and noise �.

� � ���� (1)

We treat � and � as random variables (thus � also), and as-
sume � and � are statistically independent. We further sup-
pose that the true signal � lies in a subspace � � �

� of known
dimension � � ������, where � � � � �. On the other
hand, the noise � spreads out over the entire space �� and is
assumed to be mean zero. Following this generative model,
we are given a set of i.i.d. observations ��������. Our goal is
to obtain a set of denoised signals ��������� that are close to
the true signals ��������.

A standard approach to noise reduction in this setting is
to project the noisy signal � onto the true signal subspace �,
by which the noise is reduced while the signal component �
is still preserved. Here the projection does not have to be
orthogonal, thus we may want to optimize the projection di-
rection so that the maximum amount of noise can be removed.

In statistics, the linear estimator which fulfills the above
requirement is called the best linear unbiased estimator
(BLUE) [1]. BLUE has the minimum variance among all lin-
ear unbiased estimators. More precisely, in the current set-



ting, BLUE of � denoted by �� is defined by

�� ���� (2)

where, with ���� being the conditional expectation over the
noise � given signal �,

� � �	
���
�������

�������� � �� �������
subject to �������� � �� (3)

Let� be the noise covariance matrix:

� � �� ���
�� (4)

which we assume non-degenerated. Let � be the orthogonal
projection matrix onto the subspace �. Then, the estimation
matrix� is given by (see e.g., [1, 3])

� � ������ ������ (5)

where � denotes the Moore-Penrose generalized inverse. Let

� � ���� (6)

where �� is the orthogonal complement of �. Then it can
be confirmed that� is an oblique projection onto � along �
(see e.g., [3]):

�� �

�
� if � � ��
� if � � � � (7)

This is illustrated in Figure 1.
When calculating BLUE by Eqs.(2) and (5), the signal

subspace � and the noise covariance matrix � should be
known. However, � and � are often unknown in practice,
and estimating them from data samples �������� is not gener-
ally a straightforward task. For this reason, the applicability
of BLUE to real-world problems has been rather limited so
far.

In this paper, we therefore propose a new algorithm which
opens a possibility to obtain BLUE even in the absence of the
prior knowledge of � and�.

3. OBTAINING BLUE WITHOUT�

In this section, we show that � is not needed in computing
BLUE.

With some abuse, we call the following matrix� the data
covariance matrix, although we do not assume � has mean
zero:

� � �� ���
�� (8)

Then we have the following lemmas.

Lemma 1 The subspace � is expressed as

� � ���� (9)

Fig. 1. Illustration of BLUE.

(Proof) Since � and � are independent and �� �� � �,

��� � �� ���
��� � �� ���� ������ � �� ���

���
� ���� (10)

which establishes Eq.(9).

Lemma 2 The estimation matrix� is expressed as

� � ������ ������ (11)

(Proof) Since the null space of ������ �� is ��, we have

�����
� ����� � �����

� ������ 	� � (12)

Let �� be the orthogonal projection matrix onto � �. Then,
for any � � ��, we have

����� � �����
� �������

� �� � ��� (13)

������� � ������ �������� � �� (14)

which are equivalent to Eq.(7). Thus, � ��.
Lemma 2 implies that we can obtain BLUE using the data

covariance matrix �, without using the noise covariance ma-
trix �. Roughly speaking, the “� -part” of � should agree
with that of � because the signal � lies only in �. Therefore,
it intuitively seems that we can replace � in� by� because
� only affects the component in � (see Eq. (7)). The above
lemma theoretically supports this intuitive claim.

A practical advantage of the above lemma is that, while
estimating the noise covariance matrix� from the data sam-
ples �������� is not a straightforward task in general, � can
be directly estimated in a consistent way as

�� �
�

�

��
���

���
�
� � (15)

4. ESTIMATING � BY NON-GAUSSIAN
COMPONENT ANALYSIS

Given Eqs.(11) and (15), the remaining issue to discuss is
how to estimate the true signal subspace � (or the orthog-
onal projection matrix � ). Here we assume that the signal
� follows an unknown non-Gaussian distribution, while the



noise � follows a Gaussian distribution with mean zero and
unknown covariance matrix �. Under this assumption, we
can apply our method named the non-Gaussian component
analysis (NGCA), that allows to identify the signal subspace
�. In the following, we will briefly review the main concepts
of the NGCA algorithm1.

Let us now transform the data samples �������� as

�� �
��� �

�

�� for � � �� � � � � �� (16)

and let �� be the corresponding counterpart of �:

�� � �� �

��� (17)

Then we have the following lemma.

Lemma 3 For an arbitrary smooth real function ���� on �
and an arbitrary vector � in ��, the following vector � ap-
proximately belongs to ��.

� � �

�

��

��� 	������� (18)

where, for � ���� being the derivative of ����,

	����� � ������� ��� ������� (19)

The lemma implies that for a family ����������� of
smooth functions, we can create a family �������� of vec-
tors which all approximately belong to �� . Note that the ac-
curacy is theoretically guaranteed in the sense of a uniform-
convergence—the estimation error quickly vanishes as the
number of data samples tends to infinity (see the separate pa-
per [2] for full rigorous theoretical analyses).

We then apply principal component analysis (PCA) [4]
to �������� and extract � leading eigenvectors �	������ as
an estimate of an orthonormal basis in ��. Finally, by pulling
back the result into the original space, we obtain the following
estimate of� :

�� � ��� �

�

����� �

�

���� where � � �	� 
 
 
	��� (20)

Eqs.(18) and (19) imply that the mapping from � to � is
linear. Therefore, we can arbitrarily change the norm of �
just by multiplying � by an arbitrary scalar. This can totally
corrupt the PCA results since vectors with larger norm have
stronger impacts on the PCA solutions. For this reason, the
norm of �������� should be reasonably normalized. A de-
sirable normalization scheme would be that � should have a
larger norm if it accurately belongs to �� (in the sense that the
angle between � and �� is small). This can be achieved by
normalizing �������� by its standard deviation (cf. [2]). A
consistent estimator of the variance of � can be obtained as


 � �

�

��

��� �	�������� � ����� (21)

1Details of the algorithm including more formal formulation, proofs, ex-
tensive theoretical analysis, and additional experimental results are available
in the separate paper [2].

For � � �� � � � � �
Randomly initialize �� � �� such that ���� � �.
For � � �� � � � �  % Heuristic update of�

�� �
�

�

��

��� 	����������.
�� � �������.

End

� � �

�

��

��� �	������������ � �����.

� � ���

�

�. % Normalization

End
� � �
�  �
�� � ��. % Extract informative vectors
Apply PCA to � and extract � leading vectors �	 ������.�� � ��� �

�

����� �

�

��� with� � �	� 
 
 
	��.

Output�� � � ��� ���� �� �� ����
.

Fig. 2. Pseudocode of NGCA algorithm.

Given that �������� are reasonably normalized, ��� ex-
presses the amount of “information” on �� which � carries.
Namely, the larger ��� is, the more information on �� it con-
tains. This implies that the accuracy of the above procedure
can be further improved by updating the vector� to increase
���. Furthermore, if ��� is still small after the search, such
� may be ignored since it does not contain enough informa-
tion on ��. The final NGCA algorithm is sketched in Figure 2.

For identifying the non-Gaussian subspace �, the method
of projection pursuit (PP) [5, 4] could also be used. PP tries to
iteratively find directions with maximum “non-Gaussianity”
based on a prefixed projection index. A particular implemen-
tation of PP actually corresponds to running the NGCA algo-
rithm for a single function ���� [4]. Therefore, NGCA can
be regarded as an extension of PP, which is beneficial in the
following sense: It is known that some projection indices are
suitable for finding directions with super-Gaussian (heavy-
tailed) distributions while others are suited for finding sub-
Gaussian (light-tailed) distributions [4]. Therefore, if the tar-
get signal consists of, say, both super- and sub-Gaussian dis-
tributions, it is practically difficult to choose the single “right”
projection index. On the other hand, in NGCA, we do not
need to fix the projection indices and can use many indices at
the same time. Thus, suitable indices are automatically found
by the algorithm.

5. SIMULATIONS

Here we briefly report exemplary numerical results using the
following � data sets (see the separate paper [2] for additional
experimental analyses). Each data set includes � � ����
samples in � � �� dimension and each sample consists of
�-dimensional independent standard Gaussian. Other � � �
non-Gaussian components are as follows.
(A) Simple Gaussian mixture: �-dimensional independent
Gaussian mixtures with density of each component given by
��������������������, where �	�
���� is the Gaussian den-
sity with mean � and variance ��.
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Fig. 3. Boxplots of the estimation error of� .

(B) Dependent super-Gaussian: �-dimensional isotropic
distribution with density proportional to ���������.
(C) Dependent sub-Gaussian: �-dimensional isotropic uni-
form with constant positive density for ��� � � and � other-
wise.
(D) Dependent super- and sub-Gaussian: �-dimensional
Laplacian with density proportional to ���������� and �-
dimensional dependent uniform � ��� �� ��, where � � � for
���� � ��
 � and � � �� otherwise.

For each of these situations, the non-Gaussian compo-
nents are additionally rescaled coordinatewise so that each
coordinate has unit variance.

For NGCA, we used the following set of functions:

������ ��	
 � ���� � �� ��������������� (22)

��� � ���� � ��������� (23)

��� � ���� � �������� (24)

��� � ���� � ��������� (25)

where ��� �� �� �� � �
� are parameters which enrich the

function families. Parameters are set as �� �� � ��� �,
� � ��� �, and �� � ����� �, where each of these ranges was
divided into ���� equispaced values—thus yielding a fam-
ily of � � ���� functions. We set � � ��� and  � ��.
We compared NGCA with PP with “pow3” index (corre-
sponding to ���� � ��) or “tanh” index (corresponding to
���� � �������).

Figure 3 shows the boxplots of the estimation error over
��� runs measured by the following criterion:

Error������ � ��� �������� (26)

For the simplest data set (A), NGCA is comparable or slightly
better than PPs. It is known that PP(tanh) is suitable for find-
ing super-Gaussian components (heavy-tailed distribution)
while PP(pow3) is suitable for finding sub-Gaussian compo-
nents (light-tailed distribution) [4]. This can be observed in
the data sets (B) and (C): PP(tanh) works well for the data set
(B) and PP(pow3) works well for the data set (C), although
the upper-quantile of PP(pow3) is very large for the data set
(C) because PP sometimes got trapped in local minima. For

the data sets (B) and (C), NGCA appears to be comparable or
slightly better than PPs with the “right” index. The superiority
of the index integration feature of NGCA can be clearly ob-
served in the data set (D), which includes both sub- and super-
Gaussian components. Because of this composition, there is
no single best non-Gaussianity index for this data set, and the
proposed NGCA gives significantly lower errors than PPs.

6. CONCLUSIONS

For calculating BLUE, prior knowledge of the noise covari-
ance matrix � and the signal subspace � are usually needed.
In this paper, we showed that BLUE can be obtained with-
out �, and � can be successfully identified by the proposed
NGCA method. Thus our contribution opens a possibility of
obtaining BLUE without the prior knowledge of� and �.
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