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Obtaining the Best Linear Unbiased
Estimator of Noisy Signals
by Non-Gaussian Component Analysis
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Signal Denoising

Signals we observe In practice are often
noisy and redundant.

Observed Low-dim. Full-dim.
signal |= signal |4+| noise
4 S €
r € R? seScCR? e € R?

S : signal subspace

We want to remove noise € by cleverly
making use of signal redundancy



Setting

True signal is non-Gaussian: s ~ p(s)
Noise is centered Gaussian: € ~ ¢(€)

s and e€ are statistically independent
We observe i.i.d. noisy samples: {zi};—;
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Goal: obtain good estimates {5:};—1 of {Si}i=1 l




Typical Denoising Strategy

Project {xi}i—; onto S l

P :orthogonal
projection

Projection does not have to be orthogonal.
We want to choose “along”-subspace 7
so that noise Is maximally reduced.



Best Linear Unbiased Estimator °

(BLUE)

Linear estimator: s; = Hx;
Unbiased estimator:  E.[s;] = s;
E.: Expectation over noise

BLUE: Minimum variance estimator
among all linear unbiased estimators

IEe (/S\z Bl IEe [/S\z])2 S Ee (gz Bl Ee [gz])Q
for any linear unbiased estimator s;



Geometric View of BLUE

Project {z;};-; onto S along 7 = QS+ l

Q =E.[ee']
:Noise
covariance
matrix




Drawbacks of BLUE
BLUE can be computed by

/S\Z‘ — Hmz H = (PQ_lp)TQ_l

Thus we need

T: Moore-Penrose
generalized inverse

(A) Noise covariance matrix Q
(B) Projection matrix P (i.e., need to know S )

However, 2 and P are often unknown.

—)

Need to approximate BLUE l




To Cope with (A)

Lemma: Q can be replaced with ¥ = E,[zx ']

H=(Px 'P)iz!

Intuition:
e H only affects components in 7
e T "-part of () agrees withX sinces € S

Utility: Estimating Q Is not straightforward,
but a consistent estimator of X can be

constructed as S .
1=




To Cope with (B)

Lemma: Non-Gaussian directions
In signals Is the signal subspace

(Blanchard et al., 2006)

Gaussian mixture

(non-Gaussian)

) 20
Gausslian



Projection Pursuit o

(Friedman & Tukey, 1975)
lteratively finding non-Gaussian directions:

E.[G(8" @) - E, [G()]

B = argmax
181|=1

G : projection index v~ N(0,1)

e Kurtosis: G1(77) — 774 L 1

(good for finding sub-Gaussians)  Gaussian mixture

e Robust index: G2(n) = 3 log cosh(bn)

(good for finding super-Gaussians)

Laplacian



Multi-Index Projection Pursuit "

(Blanchard et al., 2006)
Performance of PP depends on the
choice of projection index.

If samples contain both super- and sub-
Gaussians, no single best index exists.

MIPP combines results {Bi} of PP with
many different indices by PCA.
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Normalization of PP Results e

PCA result becomes reliable if
e “good” has larger norm
e “bad” has smaller norm

B,
B;

8, Without normalization

fgbad With proper normalization
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Normalization (cont.) -

Such normalization is achieved by equalizing
error orders of {B,} 1 &2 =E,|8, — E.3;|?

In practice, <; is approximated by a consistent

estimator: ., 1 & 1 1<
& = — > lgi()|I? - — = > gilz))|?
J=1 j=1

gi(x) =GB =) — BCY(B =)



Error
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