
A Novel Dimension Reduction Procedure for Searching
Non-Gaussian Subspaces

Motoaki Kawanabe1, Gilles Blanchard1, Masashi Sugiyama2,
Vladimir Spokoiny3, and Klaus-Robert Müller1,4

1 Fraunhofer FIRST.IDA, Germany
2 Department of Computer Science, Tokyo Institute of Technology, Japan

3 Weierstrass Institute and Humboldt University, Germany
4 Department of Computer Science, University of Potsdam, Germany

{blanchar, nabe}@first.fhg.de, sugi@cs.titech.ac.jp,
spokoiny@wias-berlin.de, klaus@first.fhg.de

Abstract. In this article, we consider high-dimensional data which contains a
low-dimensional non-Gaussian structure contaminated with Gaussian noise and
propose a new linear method to identify the non-Gaussian subspace. Our method
NGCA (Non-Gaussian Component Analysis) is based on a very general semi-
parametric framework and has a theoretical guarantee that the estimation error of
finding the non-Gaussian components tends to zero at a parametric rate. NGCA
can be used not only as preprocessing for ICA, but also for extracting and visu-
alizing more general structures like clusters. A numerical study demonstrates the
usefulness of our method.

1 Introduction

Suppose that we are given a set of i.i.d. observations xi ∈ R
d, (i = 1, . . . , n) obtained

as a sum of a signal s ∈ R
m (m ≤ d) with an unknown non-Gaussian distribution and

an independent Gaussian noise component n ∈ R
d :

x = As + n, (1)

where A is a d × m matrix and n ∼ N(0, Γ ). The rationale behind this model is
that in most real-world applications the ‘signal’ or ‘information’ contained in the high-
dimensional data is essentially non-Gaussian while the ‘rest’ can be interpreted as high-
dimensional Gaussian noise. We want to emphasize that we do not assume the Gaussian
components to be of smaller order of magnitude than the signal components. This set-
ting therefore excludes the use of common (nonlinear) dimensionality reduction meth-
ods such as PCA, Isomap [12] and LLE [11] that are based on the assumption that the
data lies, say, on a lower dimensional manifold, up to some small noise distortion.

If the non-Gaussian components si’s are mutually independent, the model turns out
to be the under-complete noisy ICA [9]. Although some algorithms have been proposed,
combinations of dimension reduction like PCA or Factor Analysis and noise-free ICA
methods are often used, when the number m of the sources is relatively small. How-
ever, the classical methods for dimension reduction are based on second order statistics
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and do not consider non-Gaussianity of the sources. In this research, we will construct
a dimension reduction procedure called NGCA (Non-Gaussian Component Analysis)
which extracts the non-Gaussian subspace by higher order statistics. Since mutual in-
dependence of the sources is not assumed, our NGCA method can be used not only as
preprocessing for ICA, but also for searching more general and dependent non-Gaussian
structures (cf. [10]).

The NGCA approach is built upon a very general semi-parametric framework where
the density of the sources is not specified at all. We will present an implementation
here which is close in spirit to Projection Pursuit (PP) [5, 7, 8, 9] for visualization of
interesting structures in high-dimensional data. However, the philosophy that we would
like to promote in this paper is in a sense different: in fact we do not specify what we
are interested in, but we rather define what is not interesting. To be more precise, in PP
methods, a single index which measures the non-Gaussianity (or ’interestingness’) of
a projection direction has to be fixed and optimized , while NGCA takes many various
indices into account at the same time. Therefore it can outperform PP algorithms, if the
data contains say, both super- and sub-Gaussian components.

In the following section we will outline a novel semi-parametric theory for linear
dimension reduction and theoretical guarantees of the NGCA procedure. The algorithm
will be presented in Section 3 and simulation results underline the usefulness of NGCA;
finally a brief conclusion is given.

2 Theoretical Framework

The probability density function p(x) of the observations defined by the mixing model
(1) can be put under the following semi-parametric form:

p(x) = g(Tx)φΓ (x), (2)

where T is an unknown linear mapping from R
d to another subspace R

m, g is an un-
known function on R

m related to the distribution of the source s and φΓ is a centered
Gaussian density with unknown covariance matrix Γ . The model (2) includes as partic-
ular cases both the pure parametric ( m = 0 ) and pure non-parametric ( m = d ) models.
In practice we are interested in an intermediate case where d is large and m is rather small.

Note that the decomposition (2) is non-unique, but we will show that the following
m -dimensional linear subspace I of R

d is identifiable:

I = Ker(T )⊥ = Range(T�) .

We call I the non-Gaussian index space. Its geometrical meaning is the following: in
the model (1), the noise term can be decomposed into two components, n = n1 +
n2, where n1 = Aη ∈ Range(A) and n2 is restricted in the (d − m)-dimensional
complementary subspace s.t. Cov(n1, n2) = 0 (i.e. n1 and n2 are independent). Thus,
we have the representation

x = As̃ + n2, (3)

where s̃ := s+η and the noise term n2 distributes with a (d−m)-dimensional degen-
erated Gaussian independent of s̃. The subspace I is then the orthogonal complement
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of the (d − m)-dimensional subspace containing the independent Gaussian component
n2. Once we can estimate the index space I, we can project out the noise n2 by pro-
jecting the data x onto I. In the representation (2) we can assume that TA = Im and
Tx = s̃ without loss of generality, in which case T corresponds to the demixing matrix
in under-complete ICA, but here we are not interested in the individual directions of the
components s̃i (which are not assumed to be independent).

The main idea underlying our approach is summed up in the following Proposition
(proof in Appendix). Whenever the variable x has covariance matrix identity, this result
allows, from an arbitrary smooth real function h on R

d, to find a vector β(h) ∈ I.

Proposition 1. Let x be a random variable whose density function p(x) satisfies (2)
and suppose that h(x) is a smooth real function on R

d . Assume furthermore that Σ =
E

[

xx�]

= Id. Then under mild regularity conditions the following vector belongs to
the target space I:

β(h) = Ex [∇h(x) − xh(x)] . (4)

Since an expectation over the unknown density p(x) is used to define β by Eq.(4), in
practice, it must be approximated using empirical expectation over the available data:

̂β(h) =
1
n

n
∑

i=1

{∇h(xi) − xih(xi) .} (5)
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Fig. 1. The NGCA principle idea: from a varied family of real functions h, compute a family of
vectors ̂β belonging to the target space up to small estimation error

In the extended version of this paper [3], we show a probabilistic confidence bound of
estimation error of our NGCA method under certain regularity conditions.

• If we assume E
[

xx�]

= Id, the empirical estimator ̂β(h) converges at a rate
O(n−1/2) to a vector in the index space I.

• In the general case where E
[

xx�]

is an arbitrary positive definite matrix, we

consider a “whitening” step, computing ŷi = ̂Σ−1/2xi beforehand, where ̂Σ :=
1
n

∑n
i=1 xix

�
i . Taking into account the extra error introduced by this step, we can

bound the the convergence rate of γ(h) := ̂Σ−1/2
̂βy(h) to the index space I by

O(
√

d log n/n) .
• The entire index space I can be estimated from a family of vectors ̂βk (see

Fig. 1) for a large set of functions {hk}L
k=1 and applying PCA to the set {̂βk}L

k=1.
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• Thanks to an exponential deviation inequality for the convergence rate of single
functions, a union bound over L functions leads to a uniform convergence bound
over the whole set of functions with rate of order O(

√

d log n/n +
√

log L/n).
Therefore, taking, e.g., L = O(nd) we still have insurance that convergence holds.

3 The NGCA Algorithm

As is briefly mentioned in the last section, in our NGCA procedure, basically we cal-
culate a family of vectors ̂βk for a large family of such functions {hk}L

k=1 and apply
PCA to the set {̂βk}L

k=1 to find out the m-dimensional subspace ̂I which gives the least
approximation error. Although the principle of NGCA is very simple, there are some
implementation issues.

• The theoretical results guarantee that the convergence order is achieved for any
smooth functions {hk}L

k=1 with mild regularity conditions. However, in practice, it
is important to find out good functions which provide a lot of information on the
index space I and make the estimator ̂I more accurate, because there exist many
uninformative functions.

• Since the mapping h �→ β(h) is linear, we need an appropriate renormalization
of h or β(h), otherwise it is meaningless to combine many vectors {βk} from
various functions {hk} by PCA. Here we propose renormalizing by the trace of the
variance Var{̂β(h)}. Under this condition the norm of each vector is proportional
to its signal-to-noise ratio so that longer vectors are more informative, while vectors
with too small a norm are uninformative and can be discarded.

In the proposed algorithm we will restrict our attention to functions of the form
hf,ω(x) = f(〈ω, x〉), where ω ∈ R

d, ‖ω‖ = 1, and f belongs to a finite family F of
smooth real functions of real variable. Our theoretical setting allows to ensure that the
approximation error remains small uniformly over F and ω . However it is not feasible
in practice to sample the whole parameter space for ω as soon as it has more than a few
dimensions. To overcome this difficulty we advocate using a well-known PP algorithm,
FastICA [8], as a heuristic to find good candidates for ωf for a fixed f . We remark that
FastICA, as a standalone procedure, requires to fix the “index function” f beforehand.
The new point of our method is that we provide a theoretical setting and a methodology
which allows to combine the results of this Projection Pursuit method when used over
a possibly large spectrum of arbitrary index functions f .

Summing up, the NGCA algorithm then consists of the following steps: (1) Data
whitening, (2) Applying FastICA to each function f ∈ F to find a promising candi-
date value for ωf , (3) Computing the corresponding family of vectors (̂β(hf,ωf

))f∈F
(using Eq. (5)), (4) Normalize the vectors appropriately; threshold and throw out un-
informative ones, (5) apply PCA, (6) Pull back in original space (cf. Pseudocode).
Note that the PCA step could be replaced by other, more refined principal directions
extraction methods. In the implementation tested, we have used the following forms
of the functions fk: f

(1)
σ (z) = z3 exp(−z2/2σ2) (Gauss-Pow3), f

(2)
b (z) = tanh(bz)

(Hyperbolic Tangent), f (3)
a (z) = {sin, cos} (az) (Fourier). More precisely, we consider
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PSEUDOCODE FOR THE NGCA ALGORITHM

Input: Data points (xi) ∈ R
d, dimension m of target subspace.

Parameters: Number Tmax of FastICA iterations; threshold ε; family of real functions (fk).
Whitening.

The data xi is recentered by subtracting the empirical mean.
Let ̂Σ denote the empirical covariance matrix of the data sample (xi) ;

put ŷi = ̂Σ− 1
2 xi the empirically whitened data.

Main Procedure.
Loop on k = 1, . . . , L:

Draw ω0 at random on the unit sphere of R
d.

Loop on t = 1, . . . , Tmax: [FastICA loop]

Put ̂βt ← 1
n

n
∑

i=1

(

ŷifk(〈ωt−1, ŷi〉) − f ′
k(〈ωt−1, ŷi〉)ωt−1

)

.

Put ωt ← ̂βt/‖̂βt‖.
End Loop on t

Let Ni be the trace of the empirical covariance matrix of ̂βTmax
:

Ni =
1
n

n
∑

i=1

∥

∥ŷifk(〈ωTmax−1, ŷi〉) − f ′
k(〈ωTmax−1, ŷi〉)ωTmax−1

∥

∥

2 −
∥

∥

∥

̂βTmax

∥

∥

∥

2
.

Store v(k) ← ̂βTmax
∗

√

n/Ni. [Normalization]
End Loop on k

Thresholding.
From the family v(k), throw away vectors having norm smaller than threshold ε.

PCA step.
Perform PCA on the set of remaining v(k).
Let Vm be the space spanned by the first m principal directions.

Pull back in original space.
Output: Wm = ̂Σ− 1

2 Vm.

discretized ranges for a ∈ [0, A], b ∈ [0, B], σ ∈ [σmin, σmax], which gives rise to a fi-
nite family (fk) (which includes simultaneously functions of the three different above
families).

4 Numerical Results

All the experiments presented where obtained with exactly the same set of parameters:
a ∈ [0, 4] for the Fourier functions; b ∈ [0, 5] for the Hyperbolic Tangent functions;
σ2 ∈ [0.5, 5] for the Gauss-pow3 functions. Each of these ranges was divided into 1000
equispaced values, thus yielding a family (fk) of size 4000 (Fourier functions count
twice because of the sine and cosine parts). Some preliminary calibration suggested to
take ε = 1.5 as the threshold under which vectors are not informative. Finally we fixed
the number of FastICA iterations Tmax = 10. With this choice of parameters, with 1000
points of data the computation time is typically of the order of 10 seconds on a modern
PC under a Matlab implementation.
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Fig. 2. Boxplots of the error criterion E(̂I, I) over 100 training samples of size 1000

Tests in a controlled setting. We performed numerical experiments using various syn-
thetic data. We report exemplary results using 4 data sets. Each data set includes 1000
samples in 10 dimensions, and consists of 8-dimensional independent standard Gaus-
sian and 2 non-Gaussian components as follows:

(A) Simple Gaussian Mixture: 2-dimensional independent bimodal Gaussian mix-
tures;
(B) Dependent super-Gaussian: 2-dimensional density is proportional to exp(−‖x‖);
(C) Dependent sub-Gaussian: 2-dimensional uniform on the unit circle;
(D) Dependent super- and sub-Gaussian: 1-dimensional Laplacian with density pro-
portional to exp(−|xLap|) and 1-dimensional dependent uniform U(c, c + 1), where
c = 0 for |xLap| ≤ log 2 and c = −1 otherwise.

We compare the NGCA method against standalone FastICA with two different index
functions. Figure 2 shows boxplots, over 100 samples, of the error criterion E(̂I, I) =
m−1 ∑m

i=1 ‖(Id − ΠI)v̂i‖2, where {v̂i}m
i=1 is an orthonormal basis of ̂I, Id is the

identity matrix, and ΠI denotes the orthogonal projection on I. In datasets (A),(B),(C),
NGCA appears to be on par with the best FastICA method. As expected the best index
for FastICA is data-dependent: the ’tanh’ index is more suited to the super-Gaussian
data (B) while the ’pow3’ index works best with the sub-Gaussian data (C) (although in
this case FastICA with this index has a tendency to get caught in local minima, leading
to a disastrous result for about 25% of the samples. Note that NGCA does not suffer
from this problem). Finally, the advantage of the implicit index adaptation feature of
NGCA can be clearly observed in the data set (D), which includes both sub- and super-
Gaussian components. In this case neither of the two FastICA index functions taken
alone does well and NGCA gives significantly lower error than either FastICA flavor.

Example of application for realistic data: visualization and clustering. We now give
an example of application of NGCA to visualization and clustering of realistic data. We
consider here “oil flow” data which has been obtained by numerical simulation of a
complex physical model. This data was already used before for testing techniques of
dimension reduction [2]. The data is 12-dimensional and our goal is to visualize the
data and possibly exhibit a clustered structure. We compared results obtained with the
NGCA methodology, regular PCA, FastICA with tanh index and Isomap. The results
are shown on Figure 3. A 3D projection of the data was first computed using these
methods, which was in turn projected in 2D to draw the figure; this last projection
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Fig. 3. 2D projection of the “oil flow” (12-dimensional) data obtained by different algorithms,
from left two right: PCA, Isomap, FastICA (tanh index), NGCA. In each case, the data was first
projected in 3D using the respective methods, from which a 2D projection was chosen visually so
as to yield the clearest cluster structure. Colors indicate label information (not used to determine
the projections).

was chosen manually so as to make the cluster structure as visible as possible in each
case. The NGCA result appears better with a clearer clustered structure appearing. This
structure is only partly visible in the Isomap result; the NGCA method additionally
has the advantage of a clear geometrical interpretation (linear orthogonal projection).
Finally, datapoints in this dataset are distributed in 3 classes. This information was not
used in the different procedures, but we can see a posteriori that only NGCA clearly
separates the classes in distinct clusters.

5 Conclusion

We proposed a new semi-parametric framework for constructing a linear projection
to separate an uninteresting, possibly of large amplitude multivariate Gaussian ‘noise’
subspace from the ‘signal-of-interest’ subspace. We also provided generic consistency
results on how well the non-Gaussian directions can be identified (an extended version
of this paper). Once the low-dimensional ‘signal’ part is extracted, we can use it for a
variety of applications such as data visualization, clustering, denoising or classification.
Numerically we found comparable or superior performance to, e.g., FastICA in defla-
tion mode as a generic representative of the family of ICA/PP algorithms. Note that
in general, PP methods need to pre-specify a projection index with which they search
non-Gaussian components. By contrast, an important advantage of our method is that
we are able to simultaneously use several families of nonlinear functions; moreover,
also inside a same function family we are able to use an entire range of parameters
(such as frequency for Fourier functions). Thus, NGCA provides higher flexibility, and
less restricting assumptions a priori on the data. In a sense, the functional indices that
are the most relevant for the data at hand are automatically selected.

Future research will adapt the theory to simultaneously estimate the dimension of
the non-Gaussian subspace. Extending the proposed framework to non-linear projection
scenarios [11, 12, 1, 6] and to finding the most discriminative directions using labels are
examples for which the current theory could be taken as a basis.
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Proof of Proposition 1

Put α = Ex [xh(x)] and ψ(x) = h(x) − α�x. Note that ∇ψ = ∇h − α, hence
β(h) = Ex [∇ψ(x)]. Furthermore, it holds by change of variable that

∫

ψ(x + u)p(x)dx =
∫

ψ(x)p(x − u)dx.

Under mild regularity conditions on p(x) and h(x), differentiating this with respect to
u gives

Ex [∇ψ(x)] =
∫

∇ψ(x)p(x)dx = −
∫

ψ(x)∇p(x)dx = −Ex [ψ(x)∇ log p(x)] ,

where we have used ∇p(x) = ∇ log p(x) p(x). Eq.(2) now implies ∇ log p(x) =
∇ log g(Tx) − Γ−1x, hence

β(ψ) = −Ex [ψ(x)∇ log g(Tx)] + Ex

[

ψ(x)Γ−1x
]

= −T�
Ex [ψ(x)∇g(Tx)/g(Tx)] + Γ−1

Ex

[

xh(x) − xx�
E [xh(x)]

]

.

The last term above vanishes because we assumed Ex

[

xx�]

= Id. The first term
belongs to I by definition. This concludes the proof. �


	Introduction
	Theoretical Framework
	The NGCA Algorithm
	Numerical Results
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




