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Abstract. A common assumption in supervised learning is that the in-
put points in the training set follow the same probability distribution as
the input points used for testing. However, this assumption is not sat-
isfied, for example, when the outside of training region is extrapolated.
The situation where the training input points and test input points follow
different distributions is called the covariate shift. Under the covariate
shift, standard machine learning techniques such as empirical risk min-
imization or cross-validation do not work well since their unbiasedness
is no longer maintained. In this paper, we propose a new method called
importance-weighted cross-validation, which is still unbiased even under
the covariate shift. The usefulness of our proposed method is successfully
tested on toy data and furthermore demonstrated in the brain-computer
interface, where strong non-stationarity effects can be seen between cal-
ibration and feedback sessions.

1 Introduction

The goal of supervised learning is to infer an unknown input-output dependency
from training samples, by which output values for unseen test input points can
be estimated. When developing a method of supervised learning, it is commonly
assumed that the input points in the training set and the input points used
for testing follow the same probability distribution (e.g., [9,3,5]). However, this
common assumption is not fulfilled, for example, when the outside of training
region is extrapolated and when training input points are designed by an active
learning (experimental design) algorithm.

The situation where the training input points and test input points follow
different probability distributions is called the covariate shift [6]. For data from
many applications such as off-policy reinforcement learning, bioinformatics; or
brain-computer interfacing, the covariate shift phenomenon is conceivable.

In an idealized situation where the model used for learning is correctly speci-
fied (i.e., the learning target is included in the model), empirical risk minimiza-
tion (ERM, cf. Eq.(4)) which is a typical parameter learning method still gives an



asymptotically unbiased estimator of the true parameter even under the covari-
ate shift. However, in practical situations where the model is misspecified (i.e.,
the learning target is not included in the model), the asymptotic unbiasedness?
does not hold anymore; ERM yields a biased estimator even asymptotically.

To illustrate this phenomenon, let us employ a toy regression problem of
fitting a linear function to the sinc function (see Figure 1). Here, we consider an
extrapolation problem: training input points are distributed in the left-hand side
of the input domain, while test input points are distributed in the right-hand
side. The density functions of the training and test input points are depicted
by the solid and dashed lines in Figure 1-(A). If ordinary least-squares (OLS)
(which is an ERM method with squared-loss) is used for fitting the straight line,
we have a good approximation of the left-hand side of the sinc function (see
Figure 1-(B)). However, this is not an appropriate function for estimating the
test output values (‘x” in the figure). Thus, OLS results in a large test error.

Under the covariate shift with misspecified models, importance-weighted
ERM (IWERM, cf. Eq.(6)) is shown to give an asymptotically unbiased esti-
mator [6]. The key idea of IWERM is to weight the empirical risk according
to the importance, which is the ratio of densities of the training and test input
points. By this density ratio, the training input distribution is systematically
adjusted to the test input distribution.

Figure 1-(D) depicts the learned function obtained by importance-weighted
least-squares (TWLS). Compared with OLS, IWLS gives a better function for
estimating the test output values; the learned function converges to the optimal
function as the number of training samples goes to infinity.

The asymptotic unbiasedness can be achieved by IWERM, which may re-
sult in good estimation of the test output values, as illustrated above. However,
IWERM generally yields an estimator with larger variance than ordinary ERM.
This may be intuitively confirmed by the fact that OLS is the best linear un-
biased estimator, 1.e., having the smallest variance among all linear unbiased
estimators. Therefore, IWERM may not be optimal; a slightly biased variant of
IWERM with smaller variance could be better. The bias-variance trade-off may
be controlled by slightly ‘weakening’ the importance in IWERM [6] or by adding
a regularization term to IWERM. We refer to such a variance-reduced variant
as adaptive IWERM (ATWERM, cf. Eq.(8)). ATWERM includes a tuning pa-
rameter A (0 < XA < 1); A = 0 corresponds to ordinary ERM (uniform weight)
and A = 1 corresponds to IWERM (weight equal to the importance).

Figure 1-(C) depicts a learned function obtained by ATWLS with A = 0.5,
which yields much better estimation of the test output values than TWLS (Al-
WLS with A = 1) or OLS (ATWLS with A = 0).

As the above simple regression example demonstrates, AIWERM can work
very well given A is chosen appropriately. However, A = 0.5 is not always the

* Usually an estimator is said to be unbiased if the expectation of the estimator agrees
with the true parameter. For a misspecified model, we say that an estimator is
unbiased if the expectation of the estimator agrees with the optimal parameter in
the model (i.e., the optimal approximation of the learning target).
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Fig.1. An illustrative example of ex-
trapolation by fitting a linear function.
(A) The probability density functions of
the training and test input points. (B)-
(D) The learning target function f(z)
(the solid line), the noisy training sam-
ples (‘0’), a learned function f(m) (the
dashed line), and the (noiseless) test sam-

ples (‘x7).

Fig. 2. True risk and its estimations as
functions of the tuning parameter X in Al-
WLS. Dotted curves in the bottom two
graphs depict the true risk for clear com-
parison.



best choice; a good value of A may depend on the learning target, used model,
noise in the training samples, etc. Therefore, for enhancing generalization capa-
bility under the covariate shift, model selection should be carried out: set the
value of the tuning parameter A so that the estimated risk (or the estimated
generalization error) is minimized.

One of the popular techniques for estimating the risk in the machine learn-
ing community is cross-validation (CV). CV has been shown to give an almost
unbiased estimate of the risk with finite samples [5]. However, this almost unbi-
asedness 1s no longer true under the covariate shift. This phenomenon is illus-
trated in Figure 2, which depicts the values of the true risk and its estimates as
functions of the tuning parameter A in ATWLS (the same toy regression example
of Figure 1 is still used). The dotted curves in the bottom two graphs depict the
true risk for clear comparison. In this example, the true risk hits the bottom at
around A = 0.5 (see the top graph of Figure 2). On the other hand, CV gives a
totally different, monotone increasing curve (see the second graph of Figure 2).
As a result, CV chooses A = 0 as the best value, which appears to be a poor
choice.

To cope with this problem, we propose using a novel variant of CV called
importance-weighted CV (IWCV). We prove that IWCV is guaranteed to give an
almost unbiased estimate of the risk even under the covariate shift. The bottom
graph of Figure 2 shows the estimated risk obtained by IWCV. It gives much
better estimation than ordinary CV, and therefore an appropriate value of A

may be chosen by IWCV.

2 Problem Formulation

In this section, we formulate the supervised learning problem and review existing
learning methods.

2.1 Supervised Learning under Covariate Shift

Let us consider the supervised learning problem of estimating an unknown input-
output dependency from training samples. Let T = {(a;, 4;)}'_; be the training
samples, where #; € X C R%is an i.i.d. training input point following a proba-
bility distribution with density p(®) and y; € Y C R is a training output value
following a conditional probability distribution with conditional density r(y;|#;).

Let £(x,y,9) : X xY xY — [0,00) be the loss function, which measures the
discrepancy between the true output value y at an input point @ and its estimate
y. In regression scenarios where ) is continuous, the squared-loss is often used.

((,y,9) = (T —v)° (1)

On the other hand, in classification scenarios where ) is discrete (i.e., cate-
gorical), the following 0/1-loss is a typical choice since it corresponds to the

misclassification rate.
. _Joify=uy,
tw,y,y) = { 1 otherwise. (2)



Although the above loss functions are independent of @, the loss can generally
depend on @ [5].

Let us use a parameterized function f(az, 0) for estimating the output value
y, where 8 € @ C IR?. The goal of supervised learning is to determine the value
of the parameter 8 so that the expected loss for the test samples (i.e., the risk or
the generalization error) is minimized. Let (, u) be a test sample, where t € X
is a test input point and u € Y is a test output value following the conditional
distribution with conditional density r(u|t). Note that the conditional density
7(+]-) is the same conditional density as the training output values {y; }7_,. Then
the risk is expressed as

RO =Ty, yyn o {g (t, u, f(t;@))} : (3)

where [E denotes the expectation. Note that the learned parameter ] generally
depends on the training set 7 = {(@;, )}, .

In standard supervised learning theories (e.g., [9,3,5]), the test input point ¢
is assumed to follow p(#), which is the same probability density as the training
input points {@;}?_;. On the other hand, in this paper, we consider the situa-
tion under the covariate shift, 1.e., the test input point ¢ follows a probability
distribution with density ¢(#), which is different from p(x).

2.2 Empirical Risk Minimization and Its Importance-Weighted
Variants

A standard method to learn the parameter 8 would be empirical risk minimiza-

tion (ERM):
~ 1 & ~
GERM = argmin [g Z_;E (wia Yi, f(wla 6))] : (4)

0cE®
If p(#) = q(x), Opry is an asymptotically unbiased estimator of the optimal
parameter. However, under the covariate shift where p(®) # ¢(x), ERM does
not provide an asymptotically unbiased estimator anymore; @ ggas is biased even

asymptotically:

lim {E{m“y,}gzl {gERM}} #6, (5)

n—od

where 8" = argmingc e {Ec,u {E (t, u, f(t; 0))} }
Under the covariate shift, the following importance-weighted ERM (IWERM)
gives an asymptotically unbiased estimator [6]:

~ 1 & q(z;) ~
0 = - 4 75 Y1 Zag )
IWERM aregenémln Z_l p(@:) CHC ))] (6)
which satisfies R
Jim {Fte oz, [rwenu |} =67 (7)



From here on, we assume that p(x) and ¢(@) are known and strictly positive
(i.e., non-zero) for all ® € X.

Although the asymptotic unbiasedness is guaranteed in IWERM, it gener-
ally has larger variance than ordinary ERM [6]. Therefore, IWERM may not
be optimal; a slightly biased variant of IWERM could have much smaller vari-
ance, and thus is more accurate than plain IWERM. The bias-variance trade-off
may be controlled, for example, by weakening the weight (Adaptive IWERM;
ATWERM):

OarwERM = argmin [% Zn: (fJ(mi)))\g (wi,yi,f(azi;ﬂ))] , (8)

6co — \p(w:)

where 0 < A < 1.

The above ATIWERM is just examples; there may be many other possibilities
for controlling the bias-variance trade-off. However, we note that the methodol-
ogy we propose in this paper is valid for any parameter learning method.

2.3 Cross-Validation Estimate of Risk

Now we want to determine the value of the tuning parameter, say A, so that the
risk R is minimized—but R is inaccessible. A standard approach to coping
with this problem is to prepare some candidates {A;} of the tuning parameter,
to estimate the risk for each candidate, and to choose the one with minimum
estimated risk.

Cross-validation (CV) is a popular method to estimate the risk R Let
us divide the training set 7 = {(®;, y;)}7_, into k disjoint non-empty subsets
{Ti}r_,. Let ij(az) be a function learned from {7;};z;. Then the k-fold CV
(kCV) estimate of the risk R(™) is given by

k
1 ~
kCV =% Z T Z (93,3/, ij(az)) ) (9)

= Tl i,
where |7;] is the number of samples in the subset 7;. When k = n, kCV is
particularly called the leave-one-out cross-validation (LOOCV).

~

n 1 - =
Rigocy = ~> .t (wj,yj,fj(mj)) : (10)
i=1

where E() is a function learned from {(x;, ;) }ix;.

It is known that, if p(®) = ¢(x), LOOCV gives an almost unbiased estimate
of the risk; more precisely, LOOCYV gives an unbiased estimate of the risk with
n — 1 samples [5].

Bia yiin, {R(Lnfgocv} = RU""Y ~ R™). (11)

However, this is no longer true under the covariate shift with p(#) # ¢(2). In the
following section, we give a novel modified cross-validation method which still
maintains the ‘almost unbiasedness’ property even under the covariate shift.



3 Importance-Weighted Cross-Validation

Under the covariate shift, we propose using the following importance-weighted

cross-validation (IWCV):

1< _
kIWCV =7 Z T] Z 2 (93,3/, ij(aS)) ; (12)
j=1 y)€eT,

or

S(n 1 & (J(w ) 7
R(L(;OIWCV = n p(azj)g (wjayjafj(wj)) . (13)
j=1

Below, we prove that LOOIWCYV gives an almost unbiased estimate of the risk
even under the covariate shift (its proof is given in a separate technical report

[8])-

Lemma 1

E{muyz}:‘:l {R(Ln(%OIWCV} = R (14)

This lemma shows that the simple variant of CV called IWCV provides an
unbiased estimate of the risk with n — 1 samples even under the covariate shift.
A similar proof is also possible for KIWCYV, although its bias is larger than
LOOIWCV.

The density ratio q(#)/p(x) also appears in importance sampling; an ex-
pectation Fe[f(¢)] with + ~ g¢(®) is computed by an equivalent quantity
Ey[f(®)q(®)/p(x)] with & ~ p(x), where p(®) is chosen so that the variance
i1s minimized. Therefore, the proposed IWCV method could be regarded as an
application of the importance sampling identity in the CV framework. We ex-
pect that the relation between importance sampling and covariate shift may be
further discussed in the context of active learning [7], where the training input
density p(@) is designed by users so that the risk is minimized.

A weighted CV scheme has also been studied in robust statistics [1], where
the effect of outliers in the CV score is deemphasized by assigning smaller weight
to outliers. In the proposed IWCYV scheme, the CV score 1s weighted by the den-
sity ratio, by which the difference between p(a) and ¢(#) can be systematically
adjusted. Therefore, although using a weighted scheme in CV is a common fea-
ture, the aim is essentially different; we may even combine two schemes.

4 A Numerical Example

In this section, we experimentally investigate how IWCV works using a simple
one-dimensional regression dataset (see Figure 1). Let the training and test input
densities be p(x) = ¢1,(1/2)2(2) and q(x) = é2 (1/4)2(x), where ¢, .2(x) denotes
the normal density with mean g and variance ¢?. This setting implies that we are
considering an extrapolation problem (see Figure 1-(A)). We create the output



Table 1. Extrapolation in the toy dataset. The mean and standard deviation of the
test error obtained by each method are described. For reference, the test error obtained
with the optimal A (i.e., the minimum test error) is described as ‘OPT".

10CV 10IWCV | OPT
0.360 £0.108  0.086 +0.041 | 0.073 +0.023

value y; following ¢ ¢(e)1,(1/4)2(%), where f(x) = sinc(z). We use a simple linear
model for learning:

~

flz;00,61) =0y + Oh 2, (15)

where the parameters are learned by adaptive importance-weighted least-squares

(AIWLS):
argmin [% Z_: (q(wl)) (f(azz, bo,61) — yi)zl . (16)

0,61 p(wl)

Figure 1 (B)—(D) show the true function, a realization of training samples,
learned functions by ATWLS with A = 0,0.5,1, and a realization of (noiseless)
test samples. For this particular case, A = 0.5 seems to work well.

Figure 2 depicts the means and standard deviations of the true risk and
its estimates by 10-fold CV and 10-fold IWCV over 1000 runs, as functions of
the tuning parameter A in AIWLS. The graphs show that IWCV gives much
accurate estimates of the risk than ordinary CV; the unbiasedness of IWCYV is
well satisfied and the variance of IWCYV seems to be reasonable.

We then choose A from {0,0.1,0.2,...,1} so that the ordinary CV score or
the IWCYV score is minimized. The means and standard deviations of the test
error finally obtained by ordinary CV and IWCV over 1000 runs are described
in Table 1. The table shows that IWCV gives much smaller test errors than
ordinary CV; the p-value between ordinary CV and IWCV by the t-test is far
less than 0.01, stating that IWCYV significantly outperforms ordinary CV. ‘OPT’
in the table shows the test error when A is chosen optimally, i.e., so that the
true test error is minimized. The result shows that the performance of IWCYV is
rather close to the optimal choice.

5 Application to Brain-Computer Interface

In this section, we apply IWCV to brain-computer interface (BCI) data.

BCI is a system which allows for a direct dialog between man and machine
[11]. Cerebral electric activity is recorded via the electroencephalogram (EEG):
electrodes, attached to the scalp, measure the electric signals of the brain. These
signals are amplified and transmitted to the computer, which translates them
into device control commands. The crucial requirement for the successful func-
tioning of BCI is that the electric activity on the scalp surface already reflects
motor intentions, i.e., the neural correlate of preparation for hand or foot move-
ments. A BCI can detect the motor-related EEG changes and uses this informa-
tion, for example, to perform a choice between two alternatives: the detection



of the preparation to move the left hand leads to the choice of the first, whereas
the right hand intention would lead to the second alternative. By this means it
is possible to operate devices which are connected to the computer.

For classification of appropriately preprocessed EEG signals linear discrim-
inant analysis (LDA) [3] has shown to work very well [2]. On the other hand,
strong non-stationarity effects have been observed in brain signals between cali-
bration and feedback sessions [10], which could be regarded as an example of the
covariate shift. Therefore, it is expected that some importance-weighted method
could further improve the BCI recognition accuracy.

LDA 1s actually equivalent to least-square fitting of a linear model using
binary labels y; = £1 [3]. Here we use its variant called adaptive importance-

weighted LDA (ATWLDA):

R GE) o]

We test the above method with totally 14 data sets obtained from 5 different
subjects (see Table 2). In BCI, the densities p(«) and ¢(x) are unknown. Here
we estimate them by fitting the mixture of 5 Gaussians by the EM algorithm.
p(®) is estimated using training samples and ¢(#) is estimated using unlabeled
samples from the feedback period. The unlabeled samples are taken from the
first half of each feedback period, herewith rendering the conditions for a BCI
application realistic. This corresponds to an update of the used classifier in the

argmin
60,0

second half of the experiment.

The misclassification rates for test samples by LDA (existing method which
corresponds to ATWLDA with A = 0) and ATWLDA with A chosen by 10ITWCV
are given in Table 2. The results show that for the subjects 1 and 3, the combi-
nation of ATWLDA and 10IWCYV highly improves the recognition accuracy over
plain LDA. The accuracy is unchanged for the subjects 2 and 4, and comparable
for the subject 5. Overall, the proposed method outperforms LDA for 5 out of
14 data sets and being outperformed for 1 data set.

Note that the degree of non-stationarity is highly subject specific. While—
as expected—our method for compensating covariate shift effects yields highly
significant improvements for some subjects, others exhibit no change due to the
rather stationary nature of their brain signals.

6 Conclusions

In this paper, we discussed the supervised learning problem under the covariate
shift paradigm: training input points and test input points are drawn from dif-
ferent distributions. Future studies will focus on the development of a realtime
version of the current idea in order to ultimately obtain a fully adaptive learning
system.

We acknowledge partial financial supports from MEXT (Grant-in-Aid for
Young Scientists 17700142) and BMBF (FKZ 01IBE01A/B).



Table 2. Misclassification rates for brain computer interface. All values are in percent.
The values of the better method are described using a bold face.

# of # of # of AITWLDA|AIWLDA
Subject Trial training unlabeled  test |LDA + +

samples samples samples 10IWCV | OPT
1 1 280 112 112 9.8 8.0 8.0
1 2 280 120 120 |10.8 10.8 6.7
1 3 280 35 35 5.7 2.9 2.9
2 1 280 113 112 |43.4 43.4 43.4
2 2 280 112 112 |38.5 38.5 38.5
2 3 280 35 35 28.6 28.6 28.6
3 1 280 91 91 39.6 38.5 37.4
3 2 280 112 112 |22.3 19.6 19.6
3 3 280 30 30 20.0 20.0 20.0
4 1 280 112 112 | 24.1 24.1 23.2
4 2 280 126 126 2.4 2.4 2.4
4 3 280 35 35 8.6 8.6 8.6
5 1 280 112 112 |22.3 25.0 22.3
5 2 280 112 112 |12.5 11.6 10.7
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