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Common Assumption
INn Supervised Learning

Goal: from given training samples, predict
output of unseen test samples

To do so, we always assume

Training and test samples are
drawn from the same distribution

Ptrain (.’L‘, y) — PtGSt('f'Eﬁ y)

Is this assumption really true?



Not Always True!

Less women In face dataset than reality.
More criticisms In survey sampling than reality.

Tend to collect easy-to-gather samples for
training.

Sample generation mechanism varies over
time.

Brain activity data
The Yale Face Database B —




Covariate Shift

However, no chance for generalization
If training and test samples have
nothing In common.

Ptrain (.’B, y) # Ptest (ZE, y)

Covariate shift:

e Input distribution changes
Ptraifn (33) # Ptest (CL‘)
e Functional relation remains unchanged

Ptmz’n(y|w) — Ptest(y|w)
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Examples of Covariate Shift

(Weak) extrapolation:
Predict output values outside training region

057

05+t

Training samples

est samples 0

1.6¢
1.4+
1.2+

04
0.2r

0

1t
81
0.67

Input Density




Examples (cont.)

Possible applications:

e Non-stationarity compensation in brain-
computer interface

e Online system adaptation in robot motor
control

e Correcting sample selection bias in survey
sampling

e Active learning (experimental design)

Sugiyama (JMLR2006)




Covariate Shift

To illustrate the effect of covariate shift,
let’s focus on linear extrapolation

e Training samples
@
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Ordinary Least-Squares

win| 3 (Fw) 1)’

=1

If model Is correct:
OLS minimizes bias 1 :
asymptotically

If model is misspecified:

OLS does not minimize
bias even asymptotically. s

0.5¢

N R
We don’t have correct model in practice,
So we need to reduce bias!




Law of Large Numbers

Sample average converges to the
population mean:

2.d.
L Z ;L\J Ptrain (m)

_ZA mz __>/ pt’razn CC

We Want to estimate the expectation
over test input points only using
training input points {x;};;

/A(t)ptest (t)dt t ~ Ptest (33)



Key Trick: 0

Importance-Weighted Average
Importance Ratio of test and training input

densities Drest(T)
ptraz’n(w)
Importance-weighted average'
1 - es 1 es
—Z Dtest 213 H/ bt t ptrazn(m)dm
T i—1 ptrazn 2137, ptrazn
i.i.d. = / () ptest(x)dx
Li ptrazn(m)

t ~ Drest() (cf. importance sampling)
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Importance-Weighted LS

n

n |3 e (Fwo )’

Ptrain (:B) y Ptest (ZU) :Assumed known and strictly positive

f(x) = Q1 + 0¥
Even for misspedified models, « *

IWLS minimizes bias
asymptotically.
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Importance-Weighted LS ((:ont.)12
min |3 Lot (7 )’

& =1l Ptrain (wz)

However, variance of IWLS ! (x,) = Q1T

s larger than OLS (cf. BLUE) /=%

We want to ol
reduce variance

_05 L

We reduce variance by adding small bias
to IWLS (e.qg., changing weight, regularization)
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Adaptive IWLS

(Shimodaira, 2000)

" A 2
. ptest 337, o

min ( ) (f(a:z) — yz)
— —1 Ptrain wz)

Large bias Small bias

_ Intermediate _
Small variance Large variance



Model Selection e

n

i[5 (2220 (o -

1=1

We want to determine A so that
generalization error (bias+var) Is minimized.

6= [ (F@) - @) prea(a)de

However, gen. error Is inaccessible.
We use a gen. error estimator instead.



Cross-Validation o

A standard method for gen. error estimation
e Divide training samples into k& groups.

e Train a learning machine with £ — 1 groups.

e Validate the trained machine using the rest.

e Repeat this for all combinations and output the
mean validation error.

Groupl Group 2 ... Group k-1 Group k
00 000 00 000
— _J
~— \_Y_l
Training Validation

f(az) (J?(mt) — yt)2



CV under Covariate Shift 0
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True gen. error
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CV iIs almost unbiased
without covariate shift. ..

However, it is heavily o=
biased under covariate ... DH
shift.
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Goal of This Talk

We propose a better generalization
error estimator under covariate shift!
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Importance-Weighted CV (IWC\/])8

When testing the classifier in CV process,
we also importance-weight the test error.

Setl Set 2 Set k-1 Set k
00 000 00 000
~ Y —~ Y
Training Testing
o) et (g, )
ptrain(wt)

IWCV gives almost unbiased estimates
of gen. error even under covariate shift
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Example of IWCV

True gen. error

Obtained
generalization error
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0.356(0.086)

IWCV

0.077(0.020)
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Mean(Std.)

IWCYV Is nicely unbiased

Model selection by IWCV
outperforms CV!



Relation to Existing Methods 20

IWAIC (Shimodaira, JSPI 2000) IWSIC (Sugiyama & Miiller, Stat. & Deci. 2005)

IWAIC IWSIC IWCV

Asymptotic| Finite
& Finite | sample

Unbiasedness | Asymptotic

Loss Smooth Squared |Arbitrary
Model Reqular Linear |Arbitrary
Param_eter Smooth Linear |Arbitrary
learning
Computation Fast Fast Slow

IWCV Is the first method that is applicable
to classification with covariate shift!
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Application:
Brain-Computer Interface

imagine
right hand )
\_movements /

eeeeeeee



Non-Stationarity in EEG Features

Different mental conditions (attention,
sleepiness etc.) between training and test
phases may change the EEG signals.
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Adaptive Importance-Weighted23

Linear Discriminant Analysis

Standard classification method in BCI: LDA
(after appropriate feature extraction)

We use its variant: AIWLDA

n

. ptest(wz’) s T 2_
nin Z | (90 +0 x; — yz)

| =1l Ptrain (wz |
0<A<1

A =0: Ordinary LDA (standard method)
A =1:|WLDA (consistent)
A IS tuned by proposed IWCV
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BCIl Results

S_}ub- Trial Ordinary | AIWLDA
ject LDA +10IWCV
1 9.3 % 10.0 %
1 2 8.8 % 8.8 %
3 4.3 % 4.3 %
1 1 400% | 40.0%
2 2 39.3% | 38.7%
3 255% | 255%
1 36.9% | 34.4%
3 2 21.3% | 193 %
3 225% | 17.5%
1 21.3% | 21.3%
4 2 2.4 % 2.4 %
3 6.4 % 6.4 %
c 1 21.3% | 21.3%
2 153% | 14.0%

Proposed method
outperforms existing
one in 5 cases!
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BCI| Results

Sub-

Ordinary

AIWLDA

iect | 7" ipa [ +10wev| K-
1 | 93% | 100% |o0.76

1 | 2| 88% | 88w [1.11
3 | 43% | 43% o069

1 | 400% | 40.0% |o0.97

2 | 2 | 393% | 387% |1.05
3 | 255% | 255% |0.43

1 | 369% | 344% [263

3 | 2 | 213% | 193% |28s8
3 | 225% | 175% |1.25

1 | 213% | 21.3% |9.23

4 | 2| 24% | 24% |s558
3 | 64% | 64% |183

o |1 |213% | 21.3% [079
2 | 153% | 140% |2.01

KL divergence from training
to test input distributions

When KL is large,
IWCV Is better.

When KL 1s small,
no difference.

Non-stationarity In
EEG could be
successfully
modeled by
covariate shift!
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Conclusions

Covariate shift: input distribution varies but
functional relation remains unchanged.

Importance weight plays a central role In
compensating covariate shift.

IW cross-validation: unbiased and general
IWCV improves the performance of BCI.

Class-prior change: a variant of IWCV works

Latent distribution shift:
Storkey & Sugiyama (to be presented at NIPS2006)



