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Abstract
The goal of active learning is to determine the locations of training input points so that the general-
ization error is minimized. We discuss the problem of activelearning in linear regression scenarios.
Traditional active learning methods using least-squares learning often assume that the model used
for learning is correctly specified. In many practical situations, however, this assumption may not
be fulfilled. Recently, active learning methods using “importance”-weighted least-squares learning
have been proposed, which are shown to be robust against misspecification of models. In this paper,
we propose a new active learning method also using the weighted least-squares learning, which we
call ALICE (Active Learning using the Importance-weighted least-squares learning based on Con-
ditional Expectation of the generalization error). An important difference from existing methods is
that we predict theconditionalexpectation of the generalization error given training input points,
while existing methods predict thefull expectation of the generalization error. Due to this dif-
ference, the training input design can be fine-tuned depending on the realization of training input
points. Theoretically, we prove that the proposed active learning criterion is a more accurate pre-
dictor of thesingle-trialgeneralization error than the existing criterion. Numerical studies with toy
and benchmark data sets show that the proposed method compares favorably to existing methods.

Keywords: Active Learning, Conditional Expectation of Generalization Error, Misspecification
of Models, Importance-Weighted Least-Squares Learning, Covariate Shift.

1. Introduction

In a standard setting of supervised learning, the training input points are provided from the envi-
ronment (Vapnik, 1998). On the other hand, there are cases where thelocation of the training input
points can be designed by users (Fedorov, 1972; Pukelsheim, 1993).In such situations, it is expected
that the accuracy of learned results can be improved by appropriately choosing the location of the
training input points, e.g., by densely allocating the training input points in the regions with high un-
certainty.Active learning(MacKay, 1992; Cohn et al., 1996; Fukumizu, 2000)—also referred toas
experimental designin statistics (Kiefer, 1959; Fedorov, 1972; Pukelsheim, 1993)—is the problem
of optimizing location of training input points so that the generalization error is minimized.

The generalization error can be decomposed into thebiasandvarianceterms. In active learning
research, it is often assumed that the model used for learning is correctlyspecified (Fedorov, 1972;
Cohn et al., 1996; Fukumizu, 2000), i.e., the learning target function can be expressed by the model.
Then, under a mild condition, the ordinary least-squares (OLS) learning yields that the bias term
vanishes and only the variance term remains. Based on this fact, a traditional active learning method
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with OLS tries to determine the location of the training input points so that the variance term is
minimized (Fedorov, 1972). In practice, however, the correctness of the model may not be fulfilled.

Active learning is a situation under thecovariate shift(Shimodaira, 2000), where the training
input distribution is different from the test input distribution. When the modelused for learning is
correctly specified, the covariate shift does not matter because OLS is stillunbiased under a mild
condition. However, OLS is no longer unbiased even asymptotically for misspecified models, and
therefore we have to explicitly deal with the bias term if OLS is used.

Under the covariate shift, it is known that a form of weighted least-squares learning (WLS)
is shown to be asymptotically unbiased even for misspecified models (Shimodaira, 2000; Wiens,
2000). The key idea of this WLS is the use of the ratio of density functions oftest and training input
points: the goodness-of-fit of the training input points is adjusted to that ofthe test input points by
the density ratio, which is similar toimportance sampling.

In this paper, we propose a variance-only active learning method using WLS, which can be
regarded as an extension of the traditional variance-only active learning method using OLS. The
proposed method can be theoretically justified for the approximately correct models, and thus is
robustagainst the misspecification of models.

Conditional Expectation of Generalization Error: A variance-only active learning method us-
ing WLS has also been proposed by Wiens (2000), which can also be theoretically justified for ap-
proximately correct models. The important difference is how the generalization error is predicted:
we predict theconditionalexpectation of the generalization error given training input points, while
in Wiens (2000), thefull expectation of the generalization error is predicted. In order to explain this
difference in more detail, we first note that the generalization error of the WLS estimator depends
on the training input density since WLS explicitly uses it. Therefore, when WLS is used in active
learning, the generalization error is predicted as a function of the training input density, and the
training input density is optimized so that the predicted generalization error is minimized.

The parameters in the model are learned using the training examples, which consist of training
input points drawn from the user-designed distribution and corresponding noisy output values. This
means that the generalization error is a random variable which depends onthe location of the train-
ing input points and noise contained in the training output values. We ideally want to predict the
single-trial generalization error, i.e., the generalization error for a single realization of the training
examples at hand. From this viewpoint, we do not want to average out the random variables, but we
want to plug the realization of the random variables into the generalization error and evaluate the
realized value of the generalization error. However, we may not be able toavoid taking the expec-
tation over the training output noise since the training output noise is inaccessible. In contrast, the
location of the training input points are accessible by nature. Motivated by this fact, in this paper, we
predict the generalization errorwithout taking the expectation over the training input points. That
is, we predict theconditionalexpectation of the generalization error given training input points. On
the other hand, in Wiens (2000), the generalization error is predicted in terms of the expectation
overboththe training input points and the training output noise.

A possible advantage of the conditional-expectation approach is schematically illustrated in
Figure 1. For illustration purposes, we consider the case of sampling only one training example. The
solid curves in the left graph (Figure 1-(a)) depictGpa(ε|x), the generalization error for a training
input densitypa as a function of the training output noiseε given a training input pointx. The three
solid curves correspond to the cases where the realizations of the traininginput pointx area1, a2,
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(a) (b)

Figure 1: Schematic illustration of conditional expectation and full expectationof the generaliza-
tion error. (a) and (b) correspond to the generalization error forpa andpb, respectively.

anda3, respectively. The value of the generalization error for the densitypa in the full-expectation
approach is depicted by the dash-dotted line, where the generalization error is expected over both
the training output noiseε and the training input pointsx (i.e., the mean of the three solid curves).
The values of the generalization error in the conditional-expectation approach are depicted by the
dotted lines, where the generalization errors are expected only over the training output noiseε, given
x= a1,a2,a3, respectively (i.e., the mean of each solid curve). The right graph (Figure 1-(b)) depicts
the generalization errors for the training input densitypb in the same manner.

In the full-expectation framework, the densitypa is judged to be better thanpb regardless of the
realization of the training input point since the dash-dotted line in the left graph is lower than that
in the right graph (see Figure 1 again). However, as the solid curves show, pa is often worse thanpb

in single trials. On the other hand, in the conditional-expectation framework, the goodness of the
density is adaptively judged depending on the realizations of the training input pointx. For example,
pb is judged to be better thanpa if a2 andb3 are realized, orpa is judged to be better thanpb if a3

andb1 are realized. That is, the conditional-expectation framework may yield a better choice of the
training input density (and the training input points) than the full-expectation framework.

The above discussion illustrates a conceptual advantage of the conditional-expectation ap-
proach. Theoretically, we prove that the proposed active learning criterion derived in the
conditional-expectation framework is a better predictor of the single-trial generalization error than
the full-expectation active learning criterion proposed by Wiens (2000).This substantiates the ad-
vantage of the conditional-expectation approach. Experimental results also support this claim: the
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proposed method compares favorably to Wiens’s method in the simulations with toyand benchmark
data sets.

Bias-and-Variance Approach for Misspecified Models: Kanamori and Shimodaira (2003) also
proposed an active learning algorithm using WLS. This method is not variance-only, but it takes both
the bias and the variance into account by gathering training input points in twostages. In the first
stage, a certain number of training examples are randomly gathered from theenvironment, and the
generalization error (i.e., the sum of the bias and variance) is predicted byusing the gathered training
examples. Then in the second stage, the training input density for the remaining training examples
is optimized based on the generalization error prediction. Theoretically, the two-stage method is
shown to asymptotically give the optimal training input density not only for approximately correct
models, but also for totally misspecified models. Although this property is solid, itmay not be
practically valuable since learning with totally misspecified models may not work well because of
the model error. A drawback of this method is that it requires some randomly collected training
examples in the first stage, so we are not allowed to optimally design all the training input locations
by ourselves. Our experiments show that the proposed method works better than the two-stage
method of Kanamori and Shimodaira (2003).

Batch Selection of Training Input Points: Active learning in the machine learning community is
often thought of as being asequentialprocess: selecting one or a few training input points, observing
corresponding training output values, training the model using the gathered training examples, and
iterating this process. An alternative approach is thebatchapproach, where all training input points
are gathered in the beginning.

If the environment is non-stationary, i.e., the learning target function drifts, taking the sequential
approach would be necessary. On the other hand, under the stationaryenvironment, i.e., the learning
target function is fixed, the batch approach gives the globally optimal solution and the sequential
approach can be regarded as a greedy approximation to it. In this paper,we consider the stationary
case, so the batch approach is desirable.

In correctly specified linear regression, the expected generalization error does not depend on
the learning target function under a mild condition. Therefore, the globally optimal solution can be
obtained in principle. However, in misspecified linear regression which we discuss in this paper,
the expected generalization error depends on the unknown learning target function. In this scenario,
the sequential approach would be natural: estimating the unknown learning target function and
optimizing location of the training input points are carried out alternately. On theother hand, in this
paper, we do not estimate the learning target function, but we approximate the generalization error
by the quantity which doesnot depend on the learning target function. This makes it possible to
take the batch approach of determining all the training input points at once in advance.

A general criticism of the batch approach is that except for some specialcases where the global
optimal solution can be obtained analytically (Fedorov, 1972; Sugiyama and Ogawa, 2001), the
batch approach usually requires the simultaneous optimization of all training input points, which
is computationally very demanding. On the other hand, the sequential approach is computationally
efficient since only one or a few training input points are optimized in each iteration (Cohn et al.,
1996; Fukumizu, 2000; Sugiyama and Ogawa, 2000). In this paper, we avoid the computational
difficulty of the batch approach not by resorting to the sequential approach, but by optimizing the
training input distribution, rather than directly optimizing the training input points themselves. This
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Figure 2: Regression problem.

seems to be a popular approach in batch active learning research (Wiens, 2000; Kanamori and
Shimodaira, 2003).

Organization: The rest of this paper is organized as follows. We derive a new active learning
method in Section 2, and we discuss relations between the proposed method and the existing meth-
ods in Section 3. We report numerical results using toy and benchmark datasets in Section 4.
Finally, we state conclusions and future prospects in Section 5.

2. Derivation of New Active Learning Method

In this section, we formulate the active learning problem in regression scenarios, and derive a new
active learning method.

2.1 Problem Formulation

Let us discuss the regression problem of learning a real-valued function f (x) defined onRd from
training examples (see Figure 2). Training examples are given as

{(xi ,yi) | yi = f (xi)+ εi}n
i=1,

where{εi}n
i=1 are i.i.d. noise with mean zero and unknown varianceσ2. We suppose that the training

input points{xi}n
i=1 are independently drawn from a user-defined distribution with densityp(x).

Let f̂ (x) be a learned function obtained from the training examples{(xi ,yi)}n
i=1. We evaluate

the goodness of the learned functionf̂ (x) by the expected squared test error over test input points,
to which refer as thegeneralization error. When the test input points are drawn independently from
a distribution with densityq(x), the generalization errorG′ is expressed as

G′ =
Z (

f̂ (x)− f (x)
)2

q(x)dx. (1)

We suppose thatq(x) is known (or its reasonable estimate is available). This seems to be a com-
mon assumption in active learning literature (e.g., Fukumizu, 2000; Wiens, 2000; Kanamori and
Shimodaira, 2003). If a large number ofunlabeled samples1 are easily gathered, a reasonably good

1. Unlabeled samples are input points without output values. We assume that unlabeled samples are independently
drawn from the distribution with densityq(x).
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estimate ofq(x) may be obtained by some standard density estimation method. Therefore, the
assumption thatq(x) is known or its reasonable estimate is available may not be so restrictive.

In the following, we discuss the problem of optimizing the training input densityp(x) so that
the generalization error is minimized.

2.2 Approximately Correct Linear Regression

We learn the target functionf (x) by the following linear regression model:

f̂ (x) =
b

∑
i=1

α̂iϕi(x), (2)

where{ϕi(x)}b
i=1 are fixed linearly independent functions2 andα̂ = (α̂1, α̂2, . . . , α̂b)

> are parameters
to be learned (by a variant of least-squares, see Section 2.4 for detail).

Suppose the regression model (2) does not exactly include the learning target functionf (x), but
it approximatelyincludes it, i.e., for a scalarδ such that|δ| is small, f (x) is expressed as

f (x) = g(x)+δr(x), (3)

whereg(x) is the optimal approximation tof (x) by the model (2):

g(x) =
b

∑
i=1

α∗
i ϕi(x).

α∗ = (α∗
1,α∗

2, . . . ,α∗
b)

> is the unknown optimal parameter defined by

α∗ = argmin
α

Z

(
b

∑
i=1

αiϕi(x)− f (x)

)2

q(x)dx.

δr(x) in Eq.(3) is the residual, which is orthogonal to{ϕi(x)}b
i=1 underq(x) (see Figure 3):

Z

r(x)ϕi(x)q(x)dx= 0 for i = 1,2, . . . ,b. (4)

The functionr(x) governs the nature of the model error, andδ is the possible magnitude of this error.
In order to separate these two factors, we further impose the following normalization condition on
r(x):

Z

r2(x)q(x)dx= 1. (5)

Note that we are essentially estimating the projectiong(x), rather than the true target functionf (x).

2. Note that we do not impose any restrictions on the choice of basis functions. Therefore, Eq.(2) includes a variety
of models such as polynomial models, trigonometric polynomial models, and Gaussian kernel models with fixed
centers.
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Figure 3: Orthogonal decomposition off (x).

2.3 Bias/Variance Decomposition of Generalization Error

As described in Section 1, we evaluate the generalization error in terms of theexpectation over only
the training output noise{εi}n

i=1, not over the training input points{xi}n
i=1.

Let E{εi} denote the expectation over the noise{εi}n
i=1. Then, the generalization error expected

over the training output noise can be decomposed into the (squared)bias termB, thevarianceterm
V, and the model errorC:

E
{εi}

G′ = B+V +C,

where

B =
Z

(

E
{εi}

f̂ (x)−g(x)

)2

q(x)dx,

V = E
{εi}

Z

(
f̂ (x)− E

{εi}
f̂ (x)

)2

q(x)dx,

C =
Z

(g(x)− f (x))2q(x)dx. (6)

SinceC is constant which depends neither onp(x) nor{xi}n
i=1, we subtractC from G′ and define it

by G.
G = G′−C.

2.4 Importance-Weighted Least-Squares Learning

Let X be thedesign matrix, i.e.,X is then×b matrix with the(i, j)-th element

Xi, j = ϕ j(xi).

A standard way to learn the parameters in the regression model (2) is theordinary least-squares
(OLS) learning, i.e., parameter vectorα is determined as follows.

α̂O = argmin
α

[
n

∑
i=1

(
f̂ (xi)−yi

)2
]

, (7)

where the subscript ‘O’ indicates the ordinary LS.̂αO is analytically given by

α̂O = LOy,
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where

LO = (X>X)−1X>,

y = (y1,y2, . . . ,yn)
>.

When the training input points{xi}n
i=1 are drawn fromq(x), OLS is asymptotically unbiased even for

misspecified models. However, the current situation is under thecovariate shift(Shimodaira, 2000),
where the training input densityp(x) is generally different from the test input densityq(x). Under
the covariate shift, OLS is no longer unbiased even asymptotically for misspecified models. On the
other hand, it is known that the followingweighted least-squares (WLS) learningis asymptotically
unbiased (Shimodaira, 2000).

α̂W = argmin
α

[
n

∑
i=1

q(xi)

p(xi)

(
f̂ (xi)−yi

)2
]

, (8)

where the subscript ‘W’ indicates the weighted LS. Asymptotic unbiasedness ofα̂W would be intu-
itively understood by the following identity, which resembles theimportance sampling:

Z (
f̂ (x)− f (x)

)2
q(x)dx=

Z (
f̂ (x)− f (x)

)2 q(x)
p(x)

p(x)dx.

In the following, we assume thatp(x) andq(x) are strictly positive for allx.
Let D be the diagonal matrix with thei-th diagonal element

Di,i =
q(xi)

p(xi)
.

Thenα̂W is analytically given by
α̂W = LWy, (9)

where
LW = (X>DX)−1X>D.

2.5 Active Learning Based on Importance-Weighted Least-Squares Learning

Let GW, BW andVW beG, B andV for the learned function obtained by WLS, respectively. LetU
be theb-dimensional square matrix with the(i, j)-th element

Ui, j =
Z

ϕi(x)ϕ j(x)q(x)dx.

Then we have the following lemma (Proofs of all lemmas are provided in appendices).

Lemma 1 For the approximately correct model (3), we have

BW = Op(δ2n−1), (10)

VW = σ2tr(ULWL>
W) = Op(n

−1).
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Input: A finite setP̂ of strictly positive probability densities

CalculateU .
For eachp∈ P̂

Create training input points{x(p)
i }n

i=1 following p(x).
CalculateLW.
CalculateJ(p).

End
Choosêp that minimizesJ.

Putxi = x(p̂)
i for i = 1,2, . . . ,n.

Observe the training output values{yi}n
i=1 at{xi}n

i=1.
CalculatêαW by Eq.(9).

Output: α̂W

Figure 4: Proposed ALICE algorithm.

Note that the asymptotic order in the above lemma is in probability since random variables
{xi}n

i=1 are included. This lemma implies that ifδ = op(1),

E
{εi}

GW = σ2tr(ULWL>
W)+op(n

−1). (11)

Motivated by Eq.(11), we propose determining the training input densityp(x) as follows: For a
setP of strictly positive probability densities,

p∗ = argmin
p∈P

J(p),

where
J = tr(ULWL>

W). (12)

Practically, we may prepare a finite setP̂ of strictly positive probability densities and choose the
one that minimizesJ from the set̂P . A pseudo code of the proposed active learning algorithm is
described in Figure 4, which we callALICE (Active Learning using the Importance-weighted least-
squares learning based on Conditional Expectation of the generalization error). Note that the value
of J depends not only onp(x), but also on the realization of the training input points{x(p)

i }n
i=1.

3. Relation to Existing Methods

In this section, we qualitatively compare the proposed active learning methodwith existing methods.

3.1 Active Learning with OLS

Let GO, BO andVO beG, B andV for the learned function obtained by OLS, respectively. Ifδ = 0
in Eq.(3), i.e., the model is correctly specified,BO vanishes under a mild condition (Fedorov, 1972)
and we have

E
{εi}

GO = VO = σ2tr(ULOL>
O).
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Based on the above expression, the training input densityp(x) is determined3 as follows (Fe-
dorov, 1972; Cohn et al., 1996; Fukumizu, 2000).

p∗O = argmin
p∈P

JO(p),

where
JO = tr(ULOL>

O). (13)

Comparison with J: We investigate the validity ofJO for approximately correct models based on
the following lemma.

Lemma 2 For the approximately correct model (3), we have

BO = O(δ2),

VO = Op(n
−1).

The above lemma implies that ifδ = op(n−
1
2 ),

E
{εi}

GO = σ2JO +op(n
−1).

Therefore, ifδ = op(n−
1
2 ), the use ofJO can be still justified. On the other hand, the proposed

J is valid whenδ = op(1). This implies thatJ has a wider range of applications thanJO. As
experimentally shown in Section 4, this difference is highly significant in practice.

3.2 Active Learning with WLS: Variance-Only Approach

For the importance-weighted least-squares learning (8), Kanamori and Shimodaira (2003) proved
that the generalization error expected over training input points{xi}n

i=1 and training output noise
{εi}n

i=1 is asymptotically expressed as

E
{xi}

E
{εi}

GW =
1
n

tr(U−1H)+O(n−
3
2 ), (14)

whereE{xi} is the expectation over training input points{xi}n
i=1 andH is theb-dimensional square

matrix defined by
H = S+σ2T.

SandT are theb-dimensional square matrices with the(i, j)-th elements

Si, j =
Z

ϕi(x)ϕ j(x)(δr(x))2q(x)2

p(x)
dx, (15)

Ti, j =
Z

ϕi(x)ϕ j(x)
q(x)2

p(x)
dx.

(16)

3. p(x) is not explicitly used in OLS. Therefore, we do not have to optimize the training input densityp(x), but we can
directly optimize training input points{xi}n

i=1. However, to be consistent with the WLS-based methods, we optimize
p(x) in this paper. This also helps to avoid the simultaneous optimization ofn input points which is computationally
very demanding in general.
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Note that1ntr(U−1S) corresponds to the squared bias whileσ2

n tr(U−1T) corresponds to the variance.
Eq.(14) suggests that tr(U−1H) may be used as an active learning criterion. However,H includes
the inaccessible quantitiesδr(x) andσ2, so tr(U−1H) can not be directly calculated.

To cope with this problem, Wiens (2000) proposed4 ignoringS(the bias term), which yields

E
{xi}

E
{εi}

GW ≈ σ2

n
tr(U−1T).

Note thatT is accessible under the current setting. Based on this approximation, the training input
densityp(x) is determined as follows.

p∗W = argmin
p∈P

JW(p),

where

JW =
1
n

tr(U−1T). (17)

Comparison with J: A notable feature ofJW is that the optimal training input densityp∗W(x) can
be obtained analytically (Wiens, 2000):

p∗W(x) =
ĥ(x)

R

ĥ(x)dx
, (18)

where

ĥ(x) = q(x)

(
b

∑
i, j=1

U−1
i, j ϕi(x)ϕ j(x)

) 1
2

.

This may be confirmed by the fact thatJW can be expressed as

JW(p) =
1
n

(
Z

ĥ(x)dx

)2(
1+

Z

(p∗W(x)− p(x))2

p(x)
dx

)
.

On the other hand, we do not yet have an analytic form of a minimizer for the criterionJ.
It seems that in Wiens (2000), ignoringShas not been well justified. Here, we investigate the

validity based on the following corollary immediately obtained from Eqs.(14) and(15).

Corollary 1 For the approximately correct model (3), we have

E
{xi}

E
{εi}

GW = σ2JW +O(δ2n−1 +n−
3
2 ),

whereσ2JW = O(n−1).

4. In the original paper, discussion is restricted to the cases where the input domain is bounded andq(x) is uniform over
the domain. However, it may be easily extended to an arbitrary strictly-positive q(x). For this reason, we deal with
the extended version here.
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This corollary implies that ifδ = o(1),

E
{xi}

E
{εi}

GW = σ2JW +o(n−1),

by which the use ofJW can be justified asymptotically. Since the order is the same as that of the
proposed criterion,J andJW may be comparable in the robustness against the misspecification of
models.

Now the following lemma reveals a more direct relation betweenJ andJW.

Lemma 3 J and JW satisfy
J = JW +Op(n

− 3
2 ). (19)

This lemma implies thatJ is asymptotically equivalent toJW. However, they are still different
in the order ofn−1. In the following, we show that this difference is important.

In the active learning context, we are interested in accurately predicting thesingle-trial gener-
alization errorGW, which depends on the realization of the training examples. Let us measure the
goodness of a generalization error predictorĜ by

E
{εi}

(Ĝ−GW)2. (20)

Then we have the following lemma.

Lemma 4 Supposeδ = op(n−
1
4 ). If terms of op(n−3) are ignored, we have

E
{εi}

(σ2JW −GW)2 ≥ E
{εi}

(σ2J−GW)2.

This lemma states that underδ = op(n−
1
4 ), σ2J is asymptotically a more accurate estimator of

the single-trial generalization errorGW thanσ2JW in the sense of Eq.(20).
In Section 4, we experimentally evaluate the difference betweenJ andJW.

3.3 Active Learning with WLS: Bias-and-Variance Approach

Another idea of approximatingH in Eq.(14) is a two-stage sampling scheme proposed5 by Kanamori
and Shimodaira (2003): the training examples sampled in the first stage are used for estimatingH
and in the second stage, the distribution of the remaining training input points is optimized based
on the estimatedH. We explain the details of the algorithm below.

First, ` (≤ n) training input points{x̃i}`
i=1 are created independently following the test input

distribution with densityq(x), and corresponding training output values{ỹi}`
i=1 are observed. Let

D̃ andQ̃ be thè -dimensional diagonal matrices with thei-th diagonal elements

D̃i,i =
q(x̃i)

p(x̃i)
,

Q̃i,i = [̃y− X̃(X̃
>

X̃)−1X̃
>

ỹ]i ,

5. In the original paper, the method is derived within a slightly different setting of estimating the conditional probability
of the output valuey given an input pointx for regular statistical models. Here, we focus on the cases where the
conditional distirbution is Gaussian and the statistical model is linear, by whichthe setting becomes comparable to
that of the current paper.

152



ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

where[·]i denotes thei-th element of a vector.̃X is the design matrix for{x̃i}`
i=1, i.e., the`× b

matrix with the(i, j)-th element
X̃i, j = ϕ j(x̃i),

and
ỹ = (ỹ1, ỹ2, . . . , ỹ`)

>.

Then an approximatioñH of the unknown matrixH in Eq.(14) is given by

H̃ =
1
`

X̃
>

D̃Q̃
2
X̃.

AlthoughU−1 is accessible in the current setting, Kanamori and Shimodaira (2003) also replaced it

by a consistent estimatẽU
−1

, where

Ũ =
1
`

X̃
>

X̃.

Based on the above approximations, the training input densityp(x) is determined as follows:

p∗OW = argmin
p∈P

JOW(p),

where

JOW =
1
n

tr(Ũ
−1

H̃). (21)

Note that the subscript ‘OW’ indicates the combination of the ordinary LS and weighted LS (see
below for details).

After determining the optimal densityp∗OW, the remainingn− ` training input points{xi}n−`
i=1

are created independently followingp∗OW(x), and corresponding training output values{yi}n−`
i=1 are

observed. Then the learned parameterα̂OW is obtained using{(x̃i , ỹi)}`
i=1 and{(xi ,yi)}n−`

i=1 as

α̂OW = argmin
α

[
`

∑
i=1

(
f̂ (x̃i)− ỹi

)2
+

n−`

∑
i=1

q(xi)

p(xi)

(
f̂ (xi)−yi

)2
]

. (22)

Note thatJOW depends on the realization of{x̃i}`
i=1, but is independent of the realization of{xi}n−`

i=1 .

Comparison with J: Kanamori and Shimodaira (2003) proved that for` = o(n), limn→∞ ` = ∞,
andδ = O(1),

E
{xi}

E
{εi}

GW =
1
n

JOW +o(n−1),

by which the use ofJOW can be justified. The order ofδ required above is weaker than that required
in J. Therefore,JOW may have a wider range of applications thanJ. However, this property may
not be practically valuable since learning with totally misspecified models (i.e.,δ = O(1)) may not
work well because of the model error.

Due to the two-stage sampling scheme, the above method has several weaknesses. First,̀
training input points should be gathered followingq(x) in the first stage, which implies that users
are only allowed to optimize the location ofn− ` remaining training input points. This may be
critical when the total numbern is not so large. Second, the performance depends on the choice of
`, so it has to be appropriately determined. Using` = O(n1/2) is recommended in Kanamori and
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Shimodaira (2003), but the exact choice of` seems still open. Third,JOW is an estimator ofGW, but
the finally obtained parameter by this algorithm is notα̂W but α̂OW. Therefore, this difference can
degrade the performance.6

In Section 4, we experimentally compareJ andJOW.

4. Numerical Examples

In this section, we quantitatively compare the proposed and existing active learning methods through
numerical experiments.

4.1 Toy Data Set

We first illustrate how the proposed and existing methods behave under a controlled setting.

Setting: Let the input dimension bed = 1 and the learning target function be

f (x) = 1−x+x2 +δr(x),

where

r(x) =
z3−3z√

6
with z=

x−0.2
0.4

. (23)

Let the number of training examples to gather ben = 100 and{εi}n
i=1 be i.i.d. Gaussian noise with

mean zero and standard deviation 0.3. Let the test input densityq(x) be the Gaussian density with
mean 0.2 and standard deviation 0.4, which is assumed to be known in this illustrative simulation.
See the bottom graph of Figure 5 for the profile ofq(x). Let the number of basis functions beb = 3
and the basis functions be

ϕi(x) = xi−1 for i = 1,2, . . . ,b.

Note that for these basis functions, the residual functionr(x) in Eq.(23) fulfills Eqs.(4) and (5). Let
us consider the following three cases.

δ = 0,0.005,0.05, (24)

which correspond to “correctly specified”, “ approximately correct”, and “misspecified” cases, re-
spectively. See the top graph of Figure 5 for the profiles off (x) with differentδ.

As a set of training input densities,P̂ , we use the Gaussian densities with mean 0.2 and standard
deviation 0.4c, where

c = 0.8,0.9,1.0, . . . ,2.5.

See the bottom graph of Figure 5 again for the profiles ofp(x) with differentc.
In this experiment, we compare the performance of the following methods:

(ALICE): c is determined so thatJ given by Eq.(12) is minimized. WLS given by Eq.(8) is used
for estimating the parameters.

6. It is possible to resolve this problem by not using{(x̃i , ỹi)}`
i=1 gathered in the first stage for estimating the parameter

(cf. Eq.(22)). However, this may yield further degradation of the performance because onlyn− ` training examples
are used for learning.
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Figure 5: Learning target function and input density functions.

(W): c is determined so thatJW given by Eq.(17) is minimized. WLS is used for estimating the
parameters.

(W*): p∗W(x) given by Eq.(18) is used as the training input density. The profile ofp∗W(x) under the
current setting is illustrated in the bottom graph of Figure 5, showing thatp∗W(x) is similar to
the Gaussian density withc = 1.3. WLS is used for estimating the parameters.

(OW): First, ` training input points are created following the test input densityq(x), and corre-
sponding training output values are observed. Based on the` training examples,c is deter-
mined so thatJOW given by Eq.(21) is minimized. Thenn− ` remaining training input points
are created following the determined input density. The combination of OLS and WLS given
by Eq.(22) is used for estimating the parameters. We set` = 25, which we experimentally
confirmed to be a reasonable choice in this illustrative simulation.

(O): c is determined so thatJO given by Eq.(13) is minimized. OLS given by Eq.(7) is used for
estimating the parameters.

(Passive): Following the test input densityq(x), training input points{xi}n
i=1 are created. OLS is

used for estimating the parameters.

For (W*), we generate the random number followingp∗W(x) by the rejection method (see e.g.,
Knuth, 1998). We run this simulation 1000 times for eachδ in Eq.(24).

Accuracy of Generalization Error Prediction: First, we evaluate the accuracy ofJ, JW, JOW,
andJO as predictors of the generalization error. Note thatJ andJW are predictors ofGW. JOW is also
derived as a predictor ofGW, but the finally obtained generalization error by (OW) isGOW, which
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Figure 6: The means and (asymmetric) standard deviations ofGW, J, JW, GOW, JOW, GO, andJO

over 1000 runs as functions ofc. The dashed curves show the means of the generalization
error that corresponding active learning criteria are trying to predict.
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is the generalization errorG for the learned function obtained by the combination of OLS and WLS
(see Eq.(22)). Therefore,JOW should be evaluated as a predictor ofGOW. JO is a predictor ofGO.

In Figure 6, the means and standard deviations ofGW, J, JW, GOW, JOW, GO, andJO over 1000
runs are depicted as functions ofc by the solid curves. Here the upper and lower error bars are
calculated separately since the distribution is not symmetric. The dashed curves show the means of
the generalization error that corresponding active learning criteria aretrying to predict. Note that
J, JW, andJO are multiplied byσ2 = (0.3)2 so that comparison withGW andGO are clear. By
definition,GW, GOW, andGO do not include the constantC defined by Eq.(6). The values ofC for
δ = 0, 0.005, and 0.05 are 0, 2.32×10−5, and 2.32×10−3, respectively.

These graphs show that whenδ = 0 (“correctly specified”), J andJW give accurate predictions
of GW. Note thatJW does not depend on the training input points{xi}n

i=1 so it does not fluctuate
over 1000 runs.JOW is slightly biased toward the negative direction for smallc. We conjecture that
this is caused by the small sample effect. However, the profile ofJOW still roughly approximates
that ofGOW. JO gives accurate predictions ofGO. Whenδ = 0.005 (“approximately correct”), J,
JW, andJOW work similarly to the case withδ = 0, i.e.,J andJW are accurate andJOW is negatively
biased. On the other hand,JO behaves slightly differently: it tends to be biased toward the negative
direction for largec. Finally, whenδ = 0.05 (“misspecified”), J andJW still give accurate predic-
tions, although they slightly have a negative bias for smallc. JOW still roughly approximatesGOW,
while JO gives totally different profile fromGO.

These results show that as approximations of the generalization error,J andJW are accurate and
robust against the misspecification of models.JOW is also reasonably accurate, although it tends to
be rather inaccurate for smallc. JO is accurate in the correctly specified case, but it becomes totally
inaccurate once the correctness of the model is violated.

Note that, by definition,J, JW andJO do not depend on the learning target function. Therefore,
in the simulation, they give the same values for allδ (J andJO depend on the realization of{xi}n

i=1 so
they may have a small fluctuation). On the other hand, the generalization error, of course, depends
on the learning target function even if the constantC is not included, since the training output values
depend on it. Note that the bias depends onδ, but the variance does not. The simulation results show
that the profile ofGO changes heavily as the degree of model misspecification increases. This would
be caused by the increase of the bias since OLS is not unbiased even asymptotically. On the other
hand,JO stays the same asδ increases. As a result,JO becomes a very poor predictor for a large
δ. In contrast, the profile ofGW appears to be very stable against the change inδ, which is in good
agreement with the theoretical fact that WLS is asymptotically unbiased. Thanks to this property,J
andJW are more accurate thanJO for misspecified models.

Obtained Generalization Error: In Table 1, the mean and standard deviation of the generaliza-
tion error obtained by each method are described. The best method and comparable ones by the
t-test(e.g., Henkel, 1979) at the significance level 5% are indicated with boldface. In Figure 7, the
box-plot expression of the obtained generalization error is depicted. Note that the values described
in Figure 6 correspond toG (the constantC is not included), while the values in Table 1 and Figure 7
correspond toG′ which includesC (see Eq.(1)).

Whenδ = 0, (O) works significantly better than other methods. Actually, in this case, training
input densities that approximately minimizeGW, GO, andGOW were successfully found by (AL-
ICE), (W), (OW), and (O). This implies that the difference in the error is caused not by the quality
of the active learning criteria, but by the difference between WLS and OLS: WLS generally has
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δ = 0 δ = 0.005 δ = 0.05
(ALICE) 2.08±1.95 2.10±1.96 4.61±2.12

(W) 2.40±2.15 2.43±2.15 4.89±2.26
(W*) 2.32±2.02 2.35±2.02 4.84±2.14
(OW) 3.09±3.03 3.13±3.00 5.95±3.58
(O) 1.31±1.70 2.53±2.23 124±67.4

(Passive) 3.11±2.78 3.14±2.78 6.01±3.43

All values in the table are multiplied by 103.

Table 1: The mean and standard deviation of the generalization error obtained by each method for
the toy data set. Here we describe the valueG′ that includes the constantC (see Eq.(6)).
The best method and comparable ones by the t-test at the significance level5% are in-
dicated with boldface. The value of (O) forδ = 0.05 is extremely large but it is not a
typo.
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Figure 7: Box-plots of the generalization error obtained by each method for the toy data set. Here
we plot the valueG′ that includes the constantC (see Eq.(6)). The value of (O) for
δ = 0.05 is not plotted because it is extremely large.
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larger variance than OLS (Shimodaira, 2000). Therefore, whenδ = 0, OLS would be more accurate
than WLS since both WLS and OLS are unbiased. Although (ALICE), (W),(W*), and (OW) are
outperformed by (O), they still work better than (Passive). Note that (ALICE) is significantly better
than (W), (W*), (OW), and (Passive) by the t-test. The box-plot shows that (ALICE) outperforms
(W), (W*), and (OW) particularly in upper quantiles.

Whenδ = 0.005, (ALICE) gives significantly smaller errors than other methods. All themeth-
ods except (O) work similarly to the case withδ = 0, while (O) tends to perform poorly. This result
is surprising since the learning target functions withδ = 0 andδ = 0.005 are visually almost the
same, as illustrated in the top graph of Figure 5. Therefore, it intuitively seems that the result when
δ = 0.005 is not much different from the result whenδ = 0. However, this slight difference appears
to make (O) unreliable.

Whenδ = 0.05, (ALICE) again works significantly better than others. (W) and (W*) still work
reasonably well. The box-plot shows that (ALICE) is better than (W) and(W*) particularly in upper
quantiles. The performance of (OW) is slightly degraded, although it is still better than (Passive).
(O) gives extremely large errors.

The above results are summarized as follows. For all three cases (δ = 0,0.005,0.05), (ALICE),
(W), (W*), and (OW) work reasonably well and consistently outperform (Passive). Among them,
(ALICE) appears to be better than (W), (W*), and (OW) for all three cases. (O) works excellently in
the correctly specified case, although it tends to perform poorly once thecorrectness of the model is
violated. Therefore, (ALICE) is found to work well overall and is robust against the misspecification
of models for this toy data set.

4.2 Benchmark Data Sets

Here we use eight regression benchmark data sets provided by DELVE (Rasmussen et al., 1996):
Bank-8fm, Bank-8fh, Bank-8nm, Bank-8nh, Kin-8fm, Kin-8fh, Kin-8nm, andKin-8nh. Each data set
includes 8192 samples, consisting of 8-dimensional input points and 1-dimensional output values.
For convenience, every attribute is normalized into[0,1].

Suppose we are given all 8192inputpoints (i.e., unlabeled samples). Note that output values are
kept unknown at this point. From this pool of unlabeled samples, we choose n = 300 input points
{xi}n

i=1 for training and observe the corresponding output values{yi}n
i=1. The task is to predict the

output values of all 8192 unlabeled samples.
In this experiment, the test input densityq(x) is unknown. So we estimate it using the uncorre-

lated multi-dimensional Gaussian density:

q(x) =
1

(2πγ̂2
MLE)

d
2

exp

(
−‖x− µ̂MLE‖2

2̂γ2
MLE

)
,

whereµ̂MLE and γ̂MLE are the maximum likelihood estimates of the mean and standard deviation
obtained from all 8192 unlabeled samples. Letb = 50 and the basis functions be Gaussian basis
functions with variance 1:

ϕi(x) = exp

(
−‖x− t i‖2

2

)
for i = 1,2, . . . ,b,

where{t i}b
i=1 are template points randomly chosen from the pool of unlabeled samples.
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Bank-8fm Bank-8fh Bank-8nm Bank-8nh
(ALICE) 2.10±0.17 6.83±0.44 1.11±0.09 4.19±0.29

(W) 2.26±0.21 7.21±0.52 1.22±0.12 4.40±0.38
(OW) 2.31±0.25 7.39±0.63 1.25±0.15 4.52±0.39
(O) 1.91±0.16 6.20±0.24 1.32±0.14 4.02±0.21

(Passive) 2.31±0.26 7.45±0.61 1.26±0.14 4.51±0.38

Kin-8fm Kin-8fh Kin-8nm Kin-8nh
(ALICE) 1.62±0.58 3.50±0.63 34.97±1.90 47.21±1.97

(W) 1.70±0.62 3.64±0.73 36.60±2.05 49.15±2.88
(OW) 1.73±0.63 3.73±0.78 37.29±2.94 49.64±3.11
(O) 3.03±1.60 4.85±1.96 38.65±3.09 48.86±2.66

(Passive) 1.77±0.68 3.73±0.79 37.38±3.05 49.69±3.06

All values in the table are multiplied by 103.

Table 2: The means and standard deviations of the test error for DELVE data sets. The best method
and comparable ones by the t-test at the significance level 5% are indicatedwith boldface.

Bank−8fm Bank−8fh Bank−8nm Bank−8nh Kin−8fm Kin−8fh Kin−8nm Kin−8nh 
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Figure 8: The means of the test error of (ALICE), (W), (OW), and (O)normalized by the test error
of (Passive).
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We select the training input densityp(x) from the set of uncorrelated multi-dimensional Gaus-
sian densities with mean̂µMLE and standard deviationĉγMLE, where

c = 0.7,0.75,0.8, . . . ,2.4.

We again compare the active learning methods tested in Section 4.1. However,we do not test (W*)
here because we could not efficiently generate random numbers following p∗W(x) by the rejection
method. For (OW), we set̀= 100 which we experimentally confirmed to be reasonable.

In this simulation, we can not create the training input points in an arbitrary location because
we only have 8192 samples in the pool. Here, we first create provisional input points following
the determined training input density, and then choose the input points from the pool of unlabeled
samples that are closest to the provisional input points. In this simulation, the expectation over the
test input densityq(x) in the matrixU is calculated by the empirical average over all 8192 unlabeled
samples since the true test error is also calculated as such. For each data set, we run this simulation
100 times, by changing the template points{t i}b

i=1 in each run.
The means and standard deviations of the test error over 100 runs are described in Table 2. This

shows that (ALICE) works very well for five out of eight data sets. For the other three data sets,
(O) works significantly better than other methods. (W) works well and is comparable to (ALICE)
for two data sets, but is outperformed by (ALICE) for the other six data sets. (OW) is overall
comparable to (Passive).

Figure 8 depicts the means of the test error of (ALICE), (W), (OW), and(O) normalized by the
test error of (Passive): For each run, the test errors of (ALICE), (W), (OW), and (O) are divided by
the test error of (Passive), and then the values are averaged over 100 runs. This graph shows that
(ALICE) is better than (W), (OW), and (Passive) for all eight data sets. (O) works very well for
three data sets, but it is comparable or largely outperformed by (Passive) for the other five data sets.
(W) also works reasonably well, although it is outperformed by (ALICE) overall. (OW) is on par
with (Passive). Overall, (ALICE) is shown to be stable and works well for the benchmark data sets.

We also carried out similar simulations for Gaussian basis functions with variance 0.5 and 2.
The results had similar tendencies, i.e., (ALICE) is overall shown to be stableand works well, so
we omit the detail.

5. Conclusions

In this paper, we proposed a new active learning method based on the importance-weighted least-
squares learning. The numerical study showed that the proposed methodworks well overall and
compares favorably to existing WLS-based methods and the passive learning scheme. Although the
proposed method is outperformed by the existing OLS-based method when themodel is correctly
specified, the existing OLS-based method tends to perform very poorly once the correctness of
the model is violated. Therefore, the existing OLS-based method may not be reliable in practical
situations where the correctness of the model may not be fulfilled. On the other hand, the proposed
method is shown to be robust against the misspecification of models and therefore reliable.

Our criterion is shown to be a variant of the criterion proposed by Wiens (2000). Indeed, we
showed that they are asymptotically equivalent. However, an important difference is that we predict
the conditional expectation of the generalization error given training inputpoints, while in Wiens
(2000), the full expectation of the generalization error is predicted. As described in Section 1,
the conditional-expectation approach conceptually gives a finer choice of the training input density
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than the full-expectation approach. Theoretically, we proved that the proposed criterion is a better
estimate of the single-trial generalization error than Wiens’s criterion (see Section 3.2).

An advantage of Wiens’s criterion is that the optimal training input density canbe obtained
analytically, while we do not yet have such an analytic solution for the proposed criterion. In the
current paper, we resorted to a naive optimization scheme: prepare a finite set of input densities
and choose the best one from the set. The performance of this naive optimization scheme depends
heavily on the choice of the set of densities. In practice, using a set of input densities which consist
of the optimal density analytically found by Wiens’s criterion and its variants would be a reasonable
choice. It is also important to devise a better optimization strategy for the proposed active learning
criterion, which currently remains open.

In theory, we assumed that the test input density is known. However, this may not be satisfied
in practice. In experiments with benchmark data sets, the test input density is indeed unknown and
is approximated by a Gaussian density. Although the simulation results showed that the proposed
method consistently outperforms the passive learning scheme (given unlabeled samples), a more
detailed analysis should be carried out to see how approximating the test input density affects the
performance.

We discussed the active learning problem forweaklymisspecified models. A natural extension
of the proposed method is to be applicable tostronglymisspecified models, as achieved in Kanamori
and Shimodaira (2003). However, when the model is totally misspecified, even learning with the
optimal training input points may not work well because of the model error. In such cases, it is
important to carry outmodel selection(Akaike, 1974; Schwarz, 1978; Rissanen, 1978; Vapnik,
1998). In most of the active learning research—including the current paper, the location of the
training input points are designed for asinglemodel at hand. That is, the model should have been
chosenbeforeactive learning is carried out. However, in practice, we may want to selectthe model
as well as the location of the training input points. Devising a method for simultaneously optimizing
the model and the location of the training input points would therefore be a moreimportant and
promising future direction. In Sugiyama and Ogawa (2003), a method ofactive learning with
model selectionhas been proposed for the trigonometric polynomial models. However, its range of
application is rather limited. We expect that the results given in this paper forma solid basis for
further pursuing this challenging issue.
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Appendix A. Proof of Lemma 1

A simple calculation yields thatB andV are expressed as

B = 〈U( E
{εi}

α̂−α∗), E
{εi}

α̂−α∗〉,

V = E
{εi}

〈U(α̂− E
{εi}

α̂), α̂− E
{εi}

α̂〉.

Let

zg = (g(x1),g(x2), . . .g(xn))
>,

zr = (r(x1), r(x2), . . . r(xn))
>.

By definition, it holds that
zg = Xα∗.

Then we have

E
{εi}

α̂W −α∗ = LW(zg +δzr)−α∗

= (1
nX>DX)−1 1

nX>D(Xα∗ +δzr)−α∗

= δ(1
nX>DX)−1 1

nX>Dzr .

By the law of large numbers (Rao, 1965), we have

lim
n→∞

[1
nX>DX]i, j = lim

n→∞

(
1
n

n

∑
k=1

q(xk)

p(xk)
ϕi(xk)ϕ j(xk)

)

=
Z

D

q(x)
p(x)

ϕi(x)ϕ j(x)p(x)dx

= Op(1).

Furthermore, by the central limit theorem (Rao, 1965), it holds for sufficiently largen,

[1
nX>Dzr ]i =

1
n

n

∑
k=1

r(xk)ϕi(xk)
q(xk)

p(xk)

=
Z

D

r(x)ϕi(x)
q(x)
p(x)

p(x)dx+Op(n
− 1

2 )

= Op(n
− 1

2 ),

where the last equality follows from Eq.(4). Therefore, we have

BW = 〈U( E
{εi}

α̂W −α∗), E
{εi}

α̂W −α∗〉

= Op(δ2n−1).

It holds thatU = Op(1) and

LWL>
W = (1

nX>DX)−1 1
n2 X>D2X(1

nX>DX)−1

= Op(n
−1).
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Then we have

VW = E
{εi}

〈U(α̂W − E
{εi}

α̂W), α̂W − E
{εi}

α̂W〉

= σ2tr(ULWL>
W)

= Op(n
−1),

which concludes the proof.

Appendix B. Proof of Lemma 2

It holds that

E
{εi}

α̂O−α∗ = LO(zg +δzr)−α∗

= (1
nX>X)−1 1

nX>(Xα∗ +δzr)−α∗

= δ(1
nX>X)−1 1

nX>zr .

By the law of large numbers, we have

lim
n→∞

[1
nX>X]i, j = lim

n→∞

(
1
n

n

∑
k=1

ϕi(xk)ϕ j(xk)

)

=
Z

D

ϕi(x)ϕ j(x)p(x)dx

= Op(1).

Furthermore, by the central limit theorem, it holds for sufficiently largen,

[1
nX>zr ]i =

1
n

n

∑
k=1

r(xk)ϕi(xk)

=
Z

D

r(x)ϕi(x)p(x)dx+Op(n
− 1

2 )

= Op(1).

Therefore, we have

BO = 〈U( E
{εi}

α̂O−α∗), E
{εi}

α̂O−α∗〉

= Op(δ2).

It holds thatU = Op(1) and

LOL>
O = (1

nX>X)−1 1
n2 X>X(1

nX>X)−1

= Op(n
−1).

Then we have

VO = E
{εi}

〈U(α̂O− E
{εi}

α̂O), α̂O− E
{εi}

α̂O〉

= σ2tr(ULOL>
O)

= Op(n
−1),
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which concludes the proof.

Appendix C. Proof of Lemma 3

The central limit theorem (see e.g., Rao, 1965) asserts that

LWL>
W = 1

nU−1TU−1 +Op(n
− 3

2 ),

from which we have Eq.(19)

Appendix D. Proof of Lemma 4

It holds that

E
{εi}

(σ2JW −GW)2 = E
{εi}

(σ2JW −σ2J+σ2J−GW)2

= (σ2JW −σ2J)2 + E
{εi}

(σ2J−GW)2

+2 E
{εi}

(σ2JW −σ2J)(σ2J−GW). (25)

Eq.(19) implies
(σ2JW −σ2J)2 = Op(n

−3).

Eqs.(19) and (10) imply

2 E
{εi}

(σ2JW −σ2J)(σ2J−GW) = 2(σ2JW −σ2J)(σ2J− E
{εi}

GW)

= −2(σ2JW −σ2J)BW

= Op(δ2n−
5
2 ). (26)

If δ = op(n−
1
4 ) and the term of orderop(n−3) (i.e., Eq.(26)) is ignored in Eq.(25), we have

E
{εi}

(σ2JW −GW)2 = (σ2JW −σ2J)2 + E
{εi}

(σ2J−GW)2

≥ E
{εi}

(σ2J−GW)2,

which concludes the proof.
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