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Introduction

•We want to perform dimensionality reduction on high-dimensional data.

•Manifold learning and other non-linear methods generally assume that the data
is concentrated around a lower-dimensional structure (manifold)

•We consider here a different problem: assume the data can be decomposed into
different linear components:

- A purely Gaussian, “uninteresting”, part

- A non-Gaussian, “interesting”, component

• Important: we do not assume that the Gaussian component is of lower order.
This excludes manifold learning methods.

•Our goal is to recover the non-Gaussian component.

The Projection Pursuit method

(Friedman & Tukey, 1975)

Principle: find a direction w ∈ R
d maximaxing a “non-Gaussianity” measure:

max
‖w‖=1

|E [G(〈w, x〉)− Eν [G(ν)]]| ,

where ν ∼ N (0, 1).

Popular choices for G:

G1(η) = η4 G2(η) = b−1 log cosh(bη) .

The FastICA algorithm

FastICA (Hyvärinen & Oja 1997): efficient instantiation of Projection Pursuit.
After data whitening the following equations are iterated:

(i) w ← E [xg(〈w, x〉)]− E
[
g′(〈w, x〉)

]
w

(ii) w ← w/ ‖w‖

where g ∝ G′, G being the Projection Pursuit criterion, e.g.,

g1(x) = x3 g2(x) = tanh(bx) .

I Drawbacks: g1 is appropriate to find sub-Gaussian (light-tailed) distributions,
g2 to find super-Gaussian (heavy-tailed) distributions.
However, one does not always know a priori which index is the more appropriate.
The choice of the parameter b also affects performance.

I Interesting goal: to be able to combine information from different non-
Gaussianity indices.

A new semiparametric framework

We adopt the following model for the density of the observations:

p(x) = g(Tx)φΓ(x), (1)

where:

• T : unknown linear mapping R
d→ R

m .

• g: unknown function R
m→ R.

• φΓ: centered Gaussian density, unknown covariance matrix Γ.

Target space: the goal is to recover the non-Gaussian subspace defined as

I = Ker(T )⊥ = Range(T>) .

Note that we do not estimate Γ, g, and T when estimating I.

Independent Components Interpretation

The model (1) has the following equivalent interpretation: the data X ∈ R
d can

be decomposed as
X = S u N ,

where:

• S ∈ E is a non-Gaussian signal belonging to a lower-dimensional subspace;

•N ∈ F is a Gaussian component belonging to a subspace F in direct sum with
E, and independent of S.

In this representation I = F>.
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Key Property

Proposition:

Let X be a random variable whose density function p(x) satisfies (1) and suppose

that h(x) is a smooth real function on R
d. Assume furthermore that Σ =

E

[
XX>

]
= Id. Then under mild regularity conditions the following vector

belongs to the target space I:

β(h) = E [Xh(X) − ∇h] . (2)

Main roadmap of the algorithm

1. Apply whitening to the data so that it has covariance identity.

2. Consider a family of smooth functions (hi). Apply (2), replacing the true
expectation by the empirical expectation over the training sample. This yields
a family of estimated vectors (β̂i).

3. Apply PCA to the family of (β̂i) to recover m principal directions.

4. Pull back in original (non-whitened) data space.
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Vector Normalization

• The mapping h 7→ β(h) is linear, implying that ‖β(h)‖ can be arbitrary if h
has an arbitrarily scaling.
•We would like ‖β‖ to be representative of the information brought forth by this
vector about the target space I : this will justify applying PCA to the estimated
vector family.
• It is necessary to introduce a suitable normalization.

• We propose a renormalization by an estimated value of E

[∥∥∥β̂(h)− β(h)
∥∥∥

2
]1

2

:

the scaled vector norm is then proportional to its signal-to-noise ratio. Equiva-
lently, this ensures that the estimation error is of the same order for all vectors.

Searching for informative vectors

•After renormalization, vectors β̂(h) with a larger norm are more informative.

•We would like to search a potentially large function family H for the functions
giving rise to more informative vectors.

•Observation: if we consider functions of the form h(x) = f (〈w, x〉) , with
f : R→ R , w ∈ R

d, then equation (2) is equivalent to step (i) of FastICA.

•We use FastICA iterations as a proxy to find good candidates values of w for
a fixed f . Note: since the Key Property is valid for any w, convergence is not
an issue. We use a fixed number of iterations.

• This is repeated over a collection of different choices for f .

• This makes the NGCA algorithm comparable to a multi-index FastICA.

The NGCA algorithm

Input: Data points (Xi) ∈ R
d, dimension m of target subspace.

Parameters: Number Tmax of FastICA iterations; threshold ε;
family of real functions (fk).

Whitening.
The data Xi is recentered by subtracting the empirical mean.

Let Σ̂ be the empirical covariance matrix of the data sample (Xi) .

Put Ŷi = Σ̂−
1

2Xi the empirically whitened data.
Main Procedure.

Loop on k = 1, . . . , L:

Draw ω0 at random on the unit sphere of R
d.

Loop on t = 1, . . . , Tmax: [FastICA loop]

Put β̂t←
1

n

n∑

i=1

(
Ŷifk(〈ωt−1, Ŷi〉)− f ′k(〈ωt−1, Ŷi〉)ωt−1

)
.

Put ωt← β̂t/‖β̂t‖.
End Loop on t

Let Ni be the trace of the empirical covariance matrix of β̂Tmax
:

Ni =
1

n

n∑

i=1

∥∥∥Ŷifk(〈ωTmax−1, Ŷi〉)− f ′k(〈ωTmax−1, Ŷi〉)ωTmax−1

∥∥∥
2
−
∥∥∥β̂Tmax

∥∥∥
2
.

Store v(k)← β̂Tmax
∗
√

n/Ni. [Normalization]
End Loop on k

Thresholding.

From the family v(k), throw away vectors having norm smaller
than threshold ε.

PCA step.

Perform PCA on the set of remaining v(k).
Let Vm be the space spanned by the first m principal directions.

Pull back in original space.

Output: Wm = Σ̂−
1

2Vm.

Families of functions

We have used the following forms of the functions fk:

f
(1)
σ (z) = z3 exp

(
−

z2

2σ2

)
, (Gauss-Pow3)

f
(2)
b (z) = tanh(bz), (Hyperbolic Tangent)

f
(3)
a (z) = exp (iaz) , (Fourier)

More precisely, we consider discretized ranges for σ ∈ [σmin, σmax], b ∈ [0, B],
and a ∈ [0, A], giving rise to a finite collection {fk} (which therefore includes
simultaneously functions of the three different above families).



Numerical Examples

Synthetic data

Gaussian mixt. Super-Gauss. Sub-Gauss. Sub/Super-Gauss.
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• Each dataset has 2 non-Gaussian components + 8 Gaussian components; 1000 data points per trial.

• The same parameters (defining the function families) have been used in all experiments. No dataset-
specific tuning. Parameter values are discretized so that each family gives rise to a collection of 1000
functions.

• The criterion for measuring performance is

E(Î, I) = (2m)−1
∥∥∥ΠI − Π

Î

∥∥∥
2

Frob
= m−1

m∑

i=1

‖(Id − Π
Î
)vi‖

2,

where ΠV denotes the orthogonal projection on V , and {vi}
m
i=1 is an orthonormal basis of I.

Robustness / Failure modes

We investigate the limit conditions under which NGCA correctly estimates the target space I.
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• Top row shows the error criterion vs. increasing data dimensionality (all other parameters being equal).

• Bottom rows shows the error criterion for increasingly worse conditioning of the covariance matrix of
the Gaussian part.

Application to the “oil flow” dataset

Proj. Pursuit (tanh) Proj. Pursuit (power3) NGCA

• 12-dimensional data coming from a complex simulated model of oil flow, used as an example for other
methods of dimensionality reduction (Bishop et al. 1998).

• Clustered structure is expected. The data is divided into 3 classes but this information is not used here.

•We used the different methods to yield a 3D projection out of which the best 2D representation was
chosen visually to exhibit the clearer cluster structure.

Application to clustering

Data set Nb. of Classes Nb. of samples Total dimension Projection Dim.
Oil 3 2000 12 3

Wine 3 178 13 3
Vowel 11 528 10 3
USPS 10 7291 30 (KPCA) 10

•We study the influence of different dimensionality reduction methods on clustering on several datasets.

• There is no single well-defined performance measure for the performance of clustering. Here we use the
following criteria:

- Label cross-information. The datasets used have label information Y not used for the dimension-
ality reduction. If C is the cluster labelling, we compute the scaled mutual information I(C, Y )/H(Y )
as a measure of relevance of the cluster structure found.

- Stability. Inspired by recent work on clustering (Lange et al. 2004), we measure the stability of the
cluster structure found by applying the clustering algorithm on two separate subsamples of equal size
and compute I(C1, C2)/H(C1, C2).
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Theoretical guarantees on the estimation error

Goals of a theoretical control of the estimation error:

•Obtain a uniform control of the estimation error over a whole family of functions, since considering
many functions simultaneously plays a crucial role in the method.

•Make the variance dependence appear explicilty in the error control to justify the renormalization
procedure.

• Take into account explicitly the effect of empirical whitening/dewhitening.

Theorem 1 (identity covariance matrix case).
Let {hk}

L
k=1 be a family of smooth functions. Assume that supk,y max (‖∇hk(y)‖ , ‖hk(y)‖) < B , that

X has covariance matrix E

[
XX>

]
= Id , and is such that for some λ0 > 0:

E [exp (λ0 ‖X‖)] ≤ a0 <∞.

Denote h̃(x) = ∇h(x)− xh(x). Suppose X1, . . . , Xn are i.i.d. copies of X and define

β̂(h) =
1

n

n∑

i=1

h̃(Xi) , and σ̂(h) =
1

n

n∑

i=1

∥∥∥h̃(Xi)− β̂(h)
∥∥∥

2
;

then with probability 1− 4δ the following holds simultaneously for all k ∈ {1, . . . , L}:

dist
(
β̂(hk), I

)
≤ 2

√
σ̂2(hk)

log(Lδ−1) + log d

n
+ C

(
log(nLδ−1) log(Lδ−1)

n
3

4

)
,

where C depends only on the parameters (d, λ0, a0, B, K).

Theorem 2 (general case).
Let us assume the following :

(i) There exists λ0 > 0, a0 > 0 such that

E

[
exp
(
λ0 ‖X‖

2
)]

= a0 <∞ ;

(ii) The covariance matrix Σ of X is such that
∥∥Σ−1

∥∥ ≤ K2 ;

(iii) supk,y max (‖∇hk(y)‖ , ‖hk(y)‖) < B ;

(iv) The functions h̃k(y) = ∇hk(y)− yhk(y) are all Lipschitz with constant M .

Then for big enough n, with probability at least 1− 4
n− 4δ the following bounds hold true simultaneously

for all k ∈ {1, . . . , L} :

dist(β̂(hk), I) ≤ C1

√
d log n

n
+ 2K

√
σ̂2

Ŷ
(hk)

log(Lδ−1) + log d

n
+ C2

log(nLδ−1) log(Lδ−1)

n
3

4

,

where C1 depends on parameters (λ0, a0, B, K, M) only and C2 on (d, λ0, a0, B, K, M) . Here β̂(h) is
obtained as in the actual algorithm: equation (2) is applied using the (empirically) whitened data, and

the resulting vector is pulled back again in original data space by application of Σ̂−
1
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