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Abstract

Active learning is the problem in supervised learning to design the loca-
tionsof training input points so that the generalization error is minimized.
Existing active learning methods often assume that the model used for
learning is correctly specified, i.e., thelearning target function can be ex-
pressed by the model at hand. In many practical situations, however, this
assumption may not be fulfilled. In this paper, we first show that the ex-
isting active learning method can be theoretically justified under dlightly
weaker condition: the model does not have to be correctly specified, but
slightly misspecified models are also alowed. However, it turns out that
the weakened condition is still restrictive in practice. To cope with this
problem, we propose an alternative active learning method which can be
theoretically justified for a wider class of misspecified models. Thus,
the proposed method has a broader range of applications than the exist-
ing method. Numerical studies show that the proposed active learning
method is robust against the misspecification of models and is thus reli-
able.

1 Introduction and Problem Formulation

Let us discuss the regression problem of learning a real-valued function f(x) defined on
R4 from training examples

Wiy yi) v = f@s) + e ki,

where {¢;}7_, are i.i.d. noise with mean zero and unknown variance o*. We use the fol-
lowing linear regression model for learning.

fla) = Zam(ﬂf),

where {p;(=)}/_, are fixed linearly independent functionsand o« = (a1, v, ..., ) "
are parameters to be learned.

~

We evaluate the goodness of the learned function f(x) by the expected squared test error
over test input points and noise (i.e., the generalization error). When the test input points
are drawn independently from a distribution with density p (), the generalization error is
expressed as

G =T, / (f(az) _ f(az))zpt(az)daz,



where . denotes the expectation over the noise {¢; } 7, . Inthefollowing, we suppose that
pe(x) isknown?,

In astandard setting of regression, the training input points are provided from the environ-
ment, i.e., {; }/'_, independently follow the distribution with density p ;(#). On the other
hand, in some cases, the training input points can be designed by users. In such cases,
it is expected that the accuracy of the learning result can be improved if the training input
points are chosen appropriately, e.g., by densely locating training input pointsinthe regions
of high uncertainty.

Active learning—al so referred to as experimental design—isthe problem of optimizing the
location of training input points so that the generalization error is minimized. In active
learning research, it is often assumed that the regression model is correctly specified [2,
1, 3], i.e, the learning target function f(x) can be expressed by the model. In practice,
however, this assumption is often violated.

In this paper, we first show that the existing active learning method can still be theoreti-
cally justified when the model is approximately correct in a strong sense. Then we propose
an aternative active learning method which can also be theoretically justified for approx-
imately correct models, but the condition on the approximate correctness of the modelsis
weaker than that for the existing method. Thus, the proposed method has a wider range of
applications.

Inthefollowing, we supposethat the training input points {« ; }7_, are independently drawn
from a user-defined distribution with density p . («), and discuss the problem of finding the
optimal density function.

2 Existing Active Learning Method

The generalization error G defined by Eq.(1) can be decomposed as
G=B+YV,
where B isthe (squared) biasterm and V' is the variance term given by

B:/(Ef(m)—f(az))zpt(w)dw and V:EG/(f(w)—Eef(w))zpt(w)dw.

A standard way to learn the parameters in the regression model (1) is the ordinary least-
sgquares learning, i.e., parameter vector « is determined as follows.

n

aors = afg;niﬂ [Z (f(wz) - yi)zl .

i=1
Itisknownthat ccor s isgiven by
aors = Lorsy,
where
v Tyl T _ _ T
Lors = (X X)7' X', X;;=9j(x:), and y=(y1,92,...,¥n) -

Let Gors, Bors and Vors be G, B and V' for the learned function obtained by the
ordinary least-squares learning, respectively. Then the following propasition holds.

In some application domains such as web page analysis or bicinformatics, a large number of
unlabeled samples—input points without output values independently drawn from the distribution
with densty p.(x)—are easily gathered. In such cases, a reasonably good estimate of p () may
be obtained by some standard density estimation method. Therefore, the assumption that p ;(x) is
known may not be so restrictive.



Proposition 1 ([2, 1, 3]) Suppose that the model is correctly specified, i.e,, the learning
target function f(x) is expressed as

fa) =Y aipile).

Then Bors and Vo s are expressed as
Bors =0 and Vors =c*Jors,

where

Jors =tr(ULorsLrs) and U ; = /soi(w)soj(w)pt(w)dw

Therefore, for the correctly specified model (1), the generaization error G 1, ¢ isexpressed
as

Gors =’ Jors.
Based on this expression, the existing active learning method determines the location of
training input points {x; }?_, (or the training input density p,(«)) so that Jor s is mini-
mized [2, 1, 3].

3 Analysisof Existing Method under Misspecification of Models
In this section, we investigate the validity of the existing active learning method for mis-
specified models.

Suppose the model does not exactly include the learning target function f(), but it ap-
proximately includesit, i.e., for ascalar ¢ such that || issmall, f(«) isexpressed as

f(®) = g(x) + or(=),

where g(x) is the orthogonal projection of f(x) onto the span of {¢;(x)}'_, and the
residual r() isorthogonal to {¢; (=) }_;:

g(z) = Zp:a;‘goi(az) and /r(az)gpi(az)pt(az)daz =0 fori=1,2,...,p.
i=1
In this case, the biasterm B isexpressed as
B= / (Eef(w) —g(w))zpt(w)dawr(}, where ¢ :/(g(w) — [(2))? pe(w)da.
Since C'is constant which does not depend on the training input density p . (), we subtract

C inthe following discussion.
Then we have the following lemma?.

Lemma2 For the approximately correct model (3), we have
Bors —C =6*(ULorsz,, Lorsz,) = O(6%),
Vors = 0*Jors = Op(n™1),

where
zp = (r(®1), r(®2), .. .,r(azn))T.

2Proofs of lemmasare provided in an extended version [6].



Note that the asymptotic order in Eq.(1) isin probability since Vo1 s isarandom variable
that includes {«; }7_, . The above lemma implies that

Gors — C =0"Jors +o0p(n~") if6=o0,(n 7).
Therefore, the existing active learning method of minimizing Jor ¢ is still justified if § =
0,(n™%). However, when § # o,(n~ %), the existing method may not work well because

the bias term Bor s — C is not smaler than the variance term Vo5, SO it can not be
neglected.

4 New ActiveLearning Method

In this section, we propose a new active learning method based on the weighted least-
sguares learning.

4.1 Weighted Least-Squares Learning

When the modedl is correctly specified, aor. s isan unbiased estimator of «*. However, for
misspecified models, o1 s isgenerally biased even asymptotically if 6 = O, (1).

The bias of ao 15 isactually caused by the covariate shift [5]—the training input density
ps (®) is different from the test input density p.(«). For correctly specified models, in-
fluence of the covariate shift can be ignored, as the existing active learning method does.
However, for misspecified models, we should explicitly cope with the covariate shift.

Under the covariate shift, it is known that the following weighted least-squares learning is
asymptotically unbiased even if 6 = 0, (1) [5].

el (e ) |

i=1 Pa

Qw s = argmin
(a4

Asymptotic unbiasedness of a1 s would beintuitively understood by the following iden-
tity, which is similar in spirit to importance sampling:

[ (7@ = 1) nizide = [ (Flw) = @) 25 ()

In the following, we assume that p, («) isstrictly positive for al . Let D be the diagonal
matrix with the i-th diagonal element

Pt(ﬂfz’)
px(wz)
Then it can be confirmed that a1 5 is given by
aWwrLs = Lwrsy, where Lyrs= (XTDX)_lXTD.

D;; =

4.2 ActivelLearning Based on Weighted L east-Squares L earning

Let Gwrs, Bwrs and Viyrs be G, B and V' for the learned function obtained by the
above weighted |east-sguares learning, respectively. Then we have the following lemma.

Lemma 3 For the approximately correct model (3), we have
Bwirs —C=6*(ULwrszr, Lwrsz) = Op(6°n7 1),
Vives = o2 Jwirs = Op(n™1),

where T
Jwrs =tr(ULwrsLyps)-



Thislemma implies that
Gwrs —C = U'ZJWLS + Op(n_l) if 6§ = Op(l).

Based on this expression, we propose determining the training input density p , («) so that
Jw s isminimized.

The use of the proposed criterion Jy-1s can be theoretically justified when § = o,(1),

while the existing criterion Jor.s requiresd = o, (n~ 7). Therefore, the proposed method
has awider range of applications. The effect of thisextension isexperimentally investigated
in the next section.

5 Numerical Examples
We evaluate the usefulness of the proposed active learning method through experiments.

Toy Data Set:  We first illustrate how the proposed method works under a controlled
Setting.

Let d = 1 and thelearning target function f(z) be f(z) = 1 — z + %+ dz>. Let n = 100
and {¢; }12} bei.i.d. Gaussian noise with mean zero and standard deviation 0.3. Let p; ()
be the Gaussian density with mean (.2 and standard deviation 0.4, which is assumed to be
known here. Let p = 3 and the basis functions be ¢, (z) = =zi~! fori = 1,2,3. Let us
consider the following three cases. § = 0,0.04, 0.5, where each case corresponds to “cor-
rectly specified”, “approximately correct”, and “misspecified” (see Figure 1). We choose
the training input density p.(x) from the Gaussian density with mean 0.2 and standard
deviation 0.4¢, where
¢=0.8,09,1.0,...,2.5.

We compare the accuracy of the following three methods:

(A) Proposed activelearning criterion + WLSlearning : The training input density is
determined so that Jy s is minimized. Following the determined input density,
traininginput points {z ; } 29 are created and corresponding output values {y; } 129
are observed. Then WLS learning is used for estimating the parameters.

(B) Existing active learning criterion + OLSlearning [2, 1, 3]: The training input den-
sity isdetermined so that Jo1.s isminimized. OLS learning is used for estimating
the parameters.

(C) Passivelearning + OLSlearning: Thetest input density p. () is used as thetraining
input density. OLS learning is used for estimating the parameters.

First, we evaluatethe accuracy of Jy s and Jor s asapproximationsof Gy s andGors.
The means and standard deviationsof G'w s, Jwrs, Gors, and Jors over 100 runsare
depicted as functions of ¢ in Figure 2. These graphs show that when 6 = 0 (“correctly
specified”), both Jyw s and Jors give accurate estimates of Gy s and Gors. When
d = 0.04 (“approximately correct”), Jywrs again works well, while Jops tends to be
negatively biased for large ¢. This result is surprising since as illustrated in Figure 1, the
learning target functionswith = 0 and § = 0.04 are visually quite similar. Therefore,
it intuitively seems that the result of § = 0.04 is not much different from that of 6 = 0.
However, the simulation result shows that this slight difference makes Jors unreliable.
When § = 0.5 (“misspecified”), Jw s is il reasonably accurate, while Jo 1 ¢ is heavily
biased.

These results show that as an approximation of the generalization error, Jw s is more
robust against the misspecification of modelsthan Jo 1 s, which isin good agreement with
the theoretical analyses given in Section 3 and Section 4.
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—_—5=0 R

Hiiecs Table 1: The means and standard deviations of

: the generalization error for Toy data set. The best

method and comparable ones by the t-test at the

* significance level 5% are described with boldface.

s 4 05 0 05 1 15 2 The value of method (B) for § = 0.5 is extremely
Input density functions large but it is not a typo.

| s=0 =004 §=05
(A) | 1.994£0.07 2.024+0.07 5.94+0.80
(B) | 1.34£0.04 327123  303%197
(C) | 2604044 2624043 687+ 1.15

Figure 1. Learning target function
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Figure 2: The means and error bars of Gw s, Jwrs, Gors, and Jors over 100 runs as
functions of c.

In Table 1, the mean and standard deviation of the generalization error obtained by each
method is described. When ¢ = 0, the existing method (B) works better than the proposed
method (A). Actudly, in this case, training input densities that approximately minimize
Gwirs and Gors werefound by Jyy s and Jors. Therefore, the difference of the errors
is caused by the difference of WLS and OLS: WLS generally has larger variance than
OLS. Since hias is zero for both WLS and OLS if 6 = 0, OLS would be more accurate
than WLS. Although the proposed method (A) is outperformed by the existing method (B),

it still works better than the passive learning scheme (C). When § = 0.04 and 6 = 0.5 the
proposed method (A) gives significantly smaller errors than other methods.

Overall, we found that for all three cases, the proposed method (A) works reasonably well
and outperforms the passive learning scheme (C). On the other hand, the existing method
(B) works excellently in the correctly specified case, athough it tends to perform poorly
once the correctness of the model is violated. Therefore, the proposed method (A) isfound
to be robust against the misspecification of models and thusit isreliable.



Table 2: The means and standard deviations of the test error for DELVE data sets. All
valuesin the table are multiplied by 103.

Bank-8fm Bank-8fh Bank-8nm Bank-8nh

(A) | 0.31+0.04 2104+0.05 24.66+1.20 37.98+1.11
(B) | 0.444+0.07 2.21£0.09 27.67£1.50 39.71+1.38
(C) | 0.354+0.04 2.20£0.06 26.34%£1.35 39.84+1.35

Kin-8fm Kin-8fh Kin-8nm Kin-8nh

(A) | 1.594+0.07 5.9040.16 0.7240.04 3.684+0.09
(B) | 1.494+0.06 563+£0.13 0.85+£0.06 3.60+0.09
(C©) | 1.704£0.08 6.27£0.24 0.81+£0.06 3.8904+£0.14
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Figure 3: Mean relative performance of (A) and (B) compared with (C). For each run,
the test errors of (A) and (B) are normalized by the test error of (C), and then the values
are averaged over 100 runs. Note that the error bars were reasonably small so they were
omitted.

Realistic Data Set: Here we use eight practical data sets provided by DELVE [4]: Bank-
8fm, Bank-8fh, Bank-8nm, Bank-8nh, Kin-8fm, Kin-8fh, Kin-8nm, and Kin-8nh. Each data
set includes 8192 samples, consisting of 8-dimensional input and 1-dimensional output
values. For convenience, every attributeis normalized into [0, 1].

Suppose we are given al 8192 input points (i.e., unlabeled samples). Note that output
values are unknown. From the pool of unlabeled samples, we choose » = 1000 input
points {=;}129° for training and observe the corresponding output values {y,}123°. The
task isto predict the output values of all unlabeled samples.

In this experiment, the test input density p.(«) is unknown. So we estimate it using the
independent Gaussian density.

o~ _d ~ o~
pe(x) = (27T’712\/1LE) 2 exp (‘”93 - NMLE||2/(2’712V1LE)) )

where ziy, 1 » ad Jar L g are the maximum likelihood estimates of the mean and standard
deviation obtained from all unlabeled samples. Let p = 50 and the basis functions be

wi(®) = exp (—||az — ti||2/2) fori=1,2,...,50,
where {t;}°2, are template points randomly chosen from the pool of unlabeled samples.
We select the training input density p, () from the independent Gaussian density with
mean fi,, ;  and standard deviation ¢y 1 g, Where
¢=0.7,0.75,0.8,...,2.4.

In this simulation, we can not create the training input points in an arbitrary location be-
cause we only have 8192 samples. Therefore, we first create temporary input points fol-
lowing the determined training input density, and then choose the input points from the
pool of unlabeled samples that are closest to the temporary input points. For each data set,
we repeat this simulation 100 times, by changing the template points {¢;}?°, ineach run.



The means and standard deviations of the test error over 100 runsare described in Table 2.
The proposed method (A) outperforms the existing method (B) for five data sets, while it
is outperformed by (B) for the other three data sets. We conjecture that the model used
for learning is almost correct in these three data sets. This result implies that the proposed
method (A) is dightly better than the existing method (B).

Figure 3 depicts the relative performance of the proposed method (A) and the existing
method (B) compared with the passive learning scheme (C). This shows that (A) outper-
forms (C) for all eight data sets, while (B) iscomparable or is outperformed by (C) for five
data sets. Therefore, the propased method (A) is overall shown to work better than other
schemes.

6 Conclusions

We argued that active learning is essentially the situation under the covariate shift—the
training input density is different from the test input density. When the model used for
learning is correctly specified, the covariate shift does not matter. However, for misspeci-
fied models, we have to explicitly cope with the covariate shift. In this paper, we proposed
anew active learning method based on the weighted |east-squares learning.

The numerical study showed that the existing method works better than the proposed
method if model is correctly specified. However, the existing method tends to perform
poorly once the correctness of the model is violated. On the other hand, the proposed
method overall worked reasonably well and it consistently outperformed the passive learn-
ing scheme. Therefore, the proposed method would be robust against the misspecification
of modelsand thusitisreliable.

The proposed method can be theoretically justified if the model is approximately correct
in aweak sense. However, it is no longer valid for totally misspecified models. A natural
future direction would be therefore to devise an active learning method which has theoret-
ical guarantee with totally misspecified models. It isalso important to notice that when the
model is totally misspecified, even learning with optimal training input points would not
be successful anyway. In such cases, it is of course important to carry out model selection.
In active learning research—including the present paper, however, the location of train-
ing input points are designed for a single model at hand. That is, the model should have
been chosen before performing active learning. Devising a method for simultaneously op-
timizing models and the location of training input points would be a more important and
promising future direction.
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