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Abstract

A common assumption in supervised learning is that the training and test input
points follow the same probability distribution. However, this assumption is not
fulfilled, e.g., in interpolation, extrapolation, active learning, or classification with
imbalanced data. The violation of this assumption—known as the covariate shift—
causes a heavy bias in standard generalization error estimation schemes such as
cross-validation or Akaike’s information criterion, and thus they result in poor model
selection. In this paper, we propose an alternative estimator of the generalization
error for the squared loss function when training and test distributions are different.
The proposed generalization error estimator is shown to be exactly unbiased for fi-
nite samples if the learning target function is realizable and asymptotically unbiased
in general. We also show that, in addition to the unbiasedness, the proposed gener-
alization error estimator can accurately estimate the difference of the generalization
error among different models, which is a desirable property in model selection. Nu-
merical studies show that the proposed method compares favorably with existing
model selection methods in regression for extrapolation and in classification with
imbalanced data.
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1 Introduction

It is most commonly assumed in supervised learning that the training and test input
points follow the same probability distribution [50, 49, 13, 32]. However, this assumption
is not fulfilled, for example, in interpolation or extrapolation scenarios: only few (or no)
training input points exist in the regions of interest, implying that the test distribution is
significantly different from the training distribution. Active learning also corresponds to
such cases because the locations of training input points are designed by users while test
input points are provided from the environment [9, 25, 28, 7, 11, 41, 42, 51, 19]. Another
example is classification with imbalanced data, where the ratio of samples in each category
is different between training and test phases.

The situation where the training and test distributions are different is referred to as
the situation under the covariate shift [35] or the sample selection bias [14]. In such
cases, two difficulties arise in a learning process. The first difficulty is parameter learning.
The standard maximum likelihood estimation (MLE) tries to fit the data well in the
region with high training data density, implying that the prediction can be inaccurate
if the region with high test data density has low training data density. Theoretically,
it is known that when the training and test distributions are different and the model is
misspecified (i.e., the model can not express the learning target function), MLE is no
longer consistent (i.e., the learned parameter does not converge to the optimal one even
when the number of training examples goes to infinity)1. This problem can be overcome
by using MLE weighted by the ratio of test and training data densities [35]. A key idea
of this modification is that the training data density is adjusted to the test data density
by the density ratio, which is similar in spirit to importance sampling. Although the
consistency becomes guaranteed by this modification, the weighted version of MLE tends
to have large variance. Indeed, it is no longer asymptotically efficient (i.e., its variance
does not asymptotically attain the Cramér-Rao lower-bound). Therefore, in practical
situations with finite samples, a stabilized estimator by means of, for example, changing
the weight or adding a regularizer may be more appropriate. Thus, the parameter learning
problem is now relocated to the model selection problem.

However, the second difficulty when the distributions of training and test input points
are different is model selection itself. Standard unbiased generalization error estimation
schemes such as cross-validation [24, 38, 50] or Akaike’s information criterion [1, 46,
20, 17] are heavily biased, because the generalization error is over-estimated in the high
training data density region and it is under-estimated in the high test data density region.

So far, there appear to be two attempts to cope with this problem. One attempt is an
asymptotic statistical approach in the context of modifying AIC such that the asymptotic
unbiasedness of AIC is still maintained even when the training and test distributions are
different [35]. In the following, we refer to this method as the modified AIC (MAIC). A
key idea of MAIC is again the use of the density ratio for compensating for the difference of
training and test data densities. This approach assumes the availability of a large number

1Note, however, that when the model is correct (i.e., the model can express the learning target func-
tion), the standard MLE is consistent even under the covariate shift.
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Table 1: Comparison of generalization error estimation methods under the covariate shift.
px(x) and pt(x) are probability density functions of training input points and test input
points, respectively.

MAIC [35] SIC [43] Proposed

Exactly unbiased
when realizable

No Yes Yes

Asymptotically unbiased
when unrealizable

Yes No Yes

px(x) should be known Yes No Yes
pt(x) should be known Yes Yes Yes

of training examples. Therefore, it can have a large bias in small sample cases. The other
attempt is a function approximation approach in terms of a fixed location of training input
points [43], which yields an exactly unbiased estimator of the generalization error for finite
samples under the realizability assumption (i.e., the learning target function is included in
the model). The generalization error estimator is called the subspace information criterion
(SIC). Although in the original literature, SIC is not explicitly derived for the covariate
shift, it is applicable since the fixed training input points can be regarded as realizations
of any distribution. Therefore, the unbiasedness of SIC is still maintained even when the
training and test distributions are different. However, since this approach assumes the
realizability of the learning target function, SIC can be inaccurate in unrealizable cases.
Indeed, it is biased in unrealizable cases and the bias does not vanish even asymptotically.

In this paper, we try to integrate the advantages of the above methods. More specifi-
cally, we apply the density modification idea used in the former asymptotic approach to
the latter function approximation approach. As a result, we obtain a generalization error
estimator for the squared loss function which is exactly unbiased with finite samples in
realizable cases and asymptotically unbiased in general (see Table 1).

Conventionally, the accuracy of generalization error estimators are investigated in
terms of their unbiasedness [24, 1, 50, 20, 35, 43]. On the other hand, the purpose of
estimating the generalization error is to discriminate good models from poor ones. To
this end, we would like to accurately estimate the difference of the generalization error
among different models. We show that, in addition to the unbiasedness, the proposed
generalization error estimator can accurately estimate the difference of the generalization
error for a general class of models.

The rest of this paper is organized as follows. In Section 2, the learning problem is
formulated. In Section 3, a generalization error estimator is derived and its properties
are investigated. In Section 4, numerical examples of regression for extrapolation and
classification with imbalanced data are shown. Finally, in Section 5, conclusions and
future prospects are described.
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Figure 1: Supervised regression problem.

2 Problem Formulation

In this section, we formulate the learning problem discussed in this paper.
Let f(x) be a fixed, real-valued function of d variables defined on the domain D

(⊂ Rd), which is our learning target function. Since we deal with the values of f(x) at
some input points, we suppose that f(x) is pointwise-defined2. We are given a set of n
training examples, each of which consists of a training input point xi in D and a training
output value yi in R. The training input points {xi}ni=1 are drawn independently from
a distribution with the probability density function px(x). We suppose that px(x) is
strictly positive for any x in D. The training output value yi is degraded by unknown
independent additive noise ϵi with mean zero and unknown variance σ2 (Figure 1).

{(xi, yi) | yi = f(xi) + ϵi}ni=1. (1)

For the moment, we assume that px(x) is known. In active learning scenarios, for example,
px(x) is naturally available since it is designed by users. Later, we theoretically and
experimentally investigate the cases where px(x) is unknown.

We use the following linear regression model for learning3.

f̂(x) =

p∑
i=1

αiφi(x). (2)

Here Φ = {φi(x)}pi=1 are fixed linearly independent functions which are pointwise-defined,
α = (α1, α2, . . . , αp)

⊤ are parameters to be learned, and ⊤ denotes the transpose of a
vector or matrix. We assume that the number p of basis functions satisfies

p < n. (3)
2Theoretically, we do not require f(x) to be smooth. This implies that we are not trying to estimate

the value of the function f at some input points, but we are trying to obtain an approximation f̂(x)
which minimizes the generalization error J defined by Eq.(13). However, practically, we may consider a
smooth function f(x).

3Note that, under some mild conditions, the results in this paper are still valid even in non-parametric
cases where p is increased as p = o(n

1
2 ), which is discussed later.
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Let X be the design matrix, which is the n× p matrix with the (i, j)-th element

X i,j = φj(xi). (4)

We assume
rank (X) = p. (5)

The parameters {αi}pi=1 in the regression model (2) are learned by a linear learning
method, i.e., with an p × n matrix L which does not depend on the noise {ϵi}ni=1, the
learned parameter vector α̂ = (α̂1, α̂2, . . . , α̂p)

⊤ is given by

α̂ = Ly, (6)

where
y = (y1, y2, . . . , yn)

⊤. (7)

The matrix L is called the learning matrix. We suppose that L satisfies for sufficiently
large n

L = Op(n
−1), (8)

where the order notation for a matrix means that all the elements are of that order. Note
that the above asymptotic order is in probability because L can depend on the random
variables {xi}ni=1 (but it does not depend on {ϵi}ni=1, as assumed above). Standard linear
learning methods such as the weighted least-squares learning with a quadratic regularizer
generally satisfy the condition (8):

min
{αi}pi=1

[
1

n

n∑
i=1

w(xi)
(
f̂(xi)− yi

)2
+ ⟨Rα,α⟩

]
, (9)

where w(x) is a strictly positive function called the weight function and R is a p-
dimensional positive semi-definite matrix called the regularization matrix.

The aim of learning is to obtain a function f̂(x) which attains a small generalization
error. In this paper, the generalization error is measured by the expected squared error
over all test input points. We suppose that the test input points are drawn independently
from a distribution with the probability density function pt(x), which is assumed to be
strictly positive for any x in D. For the moment, we treat pt(x) as a known function.
Later, we theoretically and experimentally investigate the cases where pt(x) is unknown

4.
Let us consider a functional Hilbert space H spanned by the following functions.

{f | ∥f∥H < ∞}, (10)

where the inner product and norm are defined by

⟨f, g⟩H =

∫
D
f(x)g(x)pt(x)dx, (11)

∥f∥H =
√
⟨f, f⟩H. (12)

4In interpolation or extrapolation scenarios, we may define pt(x) by ourselves because it can be
interpreted as a weight function representing the degree-of-interestingness of the region.
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Figure 2: Decomposition of f(x). S is the subspace spanned by {φi(x)}pi=1.

We suppose that the learning target function f(x) and the basis functions {φi(x)}pi=1 are
included in the above function space H. Then the generalization error is expressed as

J =

∫
D

(
f̂(x)− f(x)

)2
pt(x)dx

= ∥f̂ − f∥2H. (13)

Note that J = 0 does not generally imply f̂(x) = f(x) for all x in D. If the functional
Hilbert space H has the reproducing kernel [3, 30, 50, 31, 49, 32], J = 0 if and only if

f̂(x) = f(x) for all x in D.

A main purpose of this paper is to give an estimator Ĵ of the generalization error J
which is useful for comparing the generalization error among different models. Here, a
model refers to the basis functions Φ and some factors which control the learning matrix
L (e.g., w(x) or R in Eq.(9)).

3 Generalization Error Estimator

In this section, we derive an estimator of the generalization error J , investigate its theo-
retical properties, and discuss its relation to existing methods.

3.1 Derivation

Since the learning target function f(x) belongs to the Hilbert space H, its projection onto
any subspace always exists. Therefore, without loss of generality, it can be decomposed
as (see Figure 2)

f(x) = g(x) + r(x), (14)

where the first component is the orthogonal projection of f(x) onto the span of {φi(x)}pi=1

and the second component is orthogonal to {φi(x)}pi=1, i.e., for i = 1, 2, . . . , p,

⟨r, φi⟩H =

∫
D
r(x)φi(x)pt(x)dx = 0. (15)
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Since g(x) is included in the span of {φi(x)}pi=1, it is expressed by

g(x) =

p∑
i=1

α∗
iφi(x), (16)

where α∗ = (α∗
1, α

∗
2, . . . , α

∗
p)

⊤ are unknown optimal parameters. Note that r(x) is
pointwise-defined because both f(x) and g(x) are pointwise-defined. In the following,
we say that f(x) is realizable if r(x) = 0 for all x in D.

Let U be a p-dimensional matrix with the (i, j)-th element

U i,j = ⟨φi, φj⟩H =

∫
D
φi(x)φj(x)pt(x)dx, (17)

which is assumed to be accessible in the current setting. Then the generalization error J
is expressed as

J = ∥f̂∥2H − 2⟨f̂ , g + r⟩H + ∥f∥2H
= ⟨Uα̂, α̂⟩ − 2⟨Uα̂,α∗⟩+ C, (18)

where ⟨·, ·⟩ denotes the inner product in Rp and

C = ∥f∥2H =

∫
D
f(x)2pt(x)dx. (19)

In Eq.(18), the first term ⟨Uα̂, α̂⟩ is accessible and the third term C is a constant (i.e.,
it does not depend on the model). Therefore, we focus on estimating the second term
‘−2⟨Uα̂,α∗⟩’.

Hypothetically, let us suppose that a learning matrix Lu which gives a linear unbiased
estimator of the unknown true parameter α∗ is available:

EϵLuy = α∗, (20)

where Eϵ denotes the expectation over the noise {ϵi}ni=1. Note that Lu does not depend
on L. Then it holds that

Eϵ⟨Uα̂,α∗⟩ = ⟨EϵULy,EϵLuy⟩
= Eϵ⟨ULy,Luy⟩ − σ2tr(ULL⊤

u ). (21)

If an unbiased estimator σ2
u of the noise variance σ2 is available, an unbiased estimator of

Eϵ⟨Uα̂,α∗⟩ can be obtained by ⟨ULy,Luy⟩ − σ2
utr(ULL⊤

u ):

Eϵ[⟨ULy,Luy⟩ − σ2
utr(ULL⊤

u )] = Eϵ⟨Uα̂,α∗⟩. (22)
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However, either Lu or σ2
u could be unavailable5. So we use the following approxima-

tions instead:

L̂u = (X⊤DX)−1X⊤D, (23)

σ̂2
u =

∥Gy∥2

tr(G)
, (24)

where D is the diagonal matrix with the i-th diagonal element

Di,i =
pt(xi)

px(xi)
, (25)

and
G = I −X(X⊤X)−1X⊤. (26)

Note that I denotes the identity matrix.
Eq.(23) is the learning matrix which corresponds to the following weighted least-

squares learning.

min
{αi}pi=1

[
1

n

n∑
i=1

pt(xi)

px(xi)

( p∑
j=1

αjφj(xi)− yi

)2]
. (27)

It can be proved that the above L̂u exactly fulfills Eq.(20) in realizable cases and it
asymptotically satisfies Eq.(20) in general (see [35] and Lemma 1 shown later).

On the other hand, it is well known that σ̂2
u is an exact unbiased estimator of σ2

in realizable cases [9]. In general cases, however, it is not unbiased even asymptoti-
cally. Although it is possible to obtain asymptotic unbiased estimators of σ2 under some
smoothness assumption on f(x) [37], we do not use such asymptotic unbiased estimators

because it turns out shortly that the asymptotic unbiasedness of σ̂2
u is not important in

the following.
Based on the above discussion, we define the following estimator Ĵ of the generalization

error J .
Ĵ = ⟨ULy,Ly⟩ − 2⟨ULy, L̂uy⟩+ 2σ̂2

utr(ULL̂
⊤
u ), (28)

where the first term is ⟨Uα̂, α̂⟩ and the second and third terms correspond to −2⟨Uα̂,α∗⟩
(cf. Eq.(18)).

3.2 Unbiasedness

Here we investigate the unbiasedness of Ĵ .
Let Bϵ be the bias of Ĵ with respect to the noise {ϵi}ni=1:

Bϵ = Eϵ[Ĵ − J ] + C, (29)

5Note that Lu is always available if the functional Hilbert space H has the reproducing kernel and the
span of the basis functions {φi(x)}pi=1 is included in the span of {K(x,xi)}ni=1 [40], where K(x,x′) is
the reproducing kernel. In this paper, however, we consider general functional Hilbert spaces and general
basis functions which may not satisfy such conditions.
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where the constant C (see Eq.(19)) is added for making the following discussion simple.
Then we have the following lemma (proofs of all lemmas are provided in Appendix).

Lemma 1 If r(xi) = 0 for i = 1, 2, . . . , n,

Bϵ = 0. (30)

If δ = max{|r(xi)|}ni=1 is sufficiently small,

Bϵ = O(δ). (31)

If n is sufficiently large,
Bϵ = Op(n

− 1
2 ). (32)

Note that in Eq.(32), the asymptotic order is in probability because the expectation

over {xi}ni=1 is not taken. The above lemma implies that, except for the constant C, Ĵ is
exactly unbiased if f(x) is strictly realizable (see Eq.(30)), it is almost unbiased if f(x) is
almost realizable (see Eq.(31)), and it is asymptotically unbiased in general (see Eq.(32)).

Note that Ĵ is still asymptotically unbiased (i.e., Bϵ = op(1)) even in non-parametric

cases if p is increased as p = o(n
1
2 ) (see Remark in Appendix A for detail).

3.3 Effectiveness in Model Comparison

A purpose of estimating the generalization error is model selection, i.e., to distinguish
good models from poor ones. To this end, the difference of the generalization error
among different models should be accurately estimated. Here, we show that the proposed
generalization error estimator Ĵ is useful for this purpose. Recall that our model has
basis functions Φ and some factors which control the learning matrix L (e.g., the weight
function or the regularization matrix, see Section 2).

Let ∆J , ∆Ĵ , and ∆Bϵ be the differences of J , Ĵ , and Bϵ for two models, respectively:

∆Bϵ = Eϵ[∆Ĵ −∆J ]. (33)

If the “size” of ∆Bϵ is smaller than that of Eϵ[∆J ], then Ĵ is expected to be useful for
comparing the generalization error among different models. Let M be a set of models.
We say that a generalization error estimator Ĵ is effective in model comparison for M if

|∆Bϵ| < |Eϵ[∆J ]| (34)

for any two different models in M. Also, we say that Ĵ is asymptotically effective in model
comparison for M if any two different models in M satisfy6

∆Bϵ = Op(n
−s) and Eϵ[∆J ] = Op(n

−t) with s > t. (35)

In the following, we investigate the (asymptotic) effectiveness of Ĵ in model comparison.
First, we have the following corollary immediately from Eq.(32).

6This definition of asymptotic effectiveness claims that the asymptotic upper bound on ∆Bϵ is smaller
than that of Eϵ[∆J ]. Another possible definition would be ∆Bϵ = op(Eϵ[∆J ]), which remains to be
investigated.
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Corollary 2 If two learned functions obtained from two different models converge to dif-
ferent functions,

∆Bϵ = Op(n
− 1

2 ) and Eϵ[∆J ] = Op(1). (36)

For models with totally different Φ (i.e., the intersection of the spans of the basis
functions is zero), learned functions obtained from such models generally converge to

different functions. Therefore, in comparison of such models, Ĵ is asymptotically effective.
In the following, we investigate the models such that Φ is common but other factors

which control the learning matrix L are different. Let us denote the set of such models
by MΦ, indicating that Φ is common. Then, from Eq.(30), we immediately have the
following corollary.

Corollary 3 If r(xi) = 0 for i = 1, 2, . . . , n, then for any two models in MΦ,

∆Bϵ = 0. (37)

This implies that if f(x) is realizable and |Eϵ[∆J ]| > 0, Ĵ is effective in model com-
parison for MΦ. Similarly, Eq.(31) yields that

∆Bϵ = O(δ) (38)

for any two models in MΦ. Therefore, if f(x) is almost realizable, Ĵ would be useful for
model comparison.

Finally, we consider the case where Φ is common but the learning target function is
unrealizable. Let L1 and L2 be the learning matrices obtained from two different models,
and let

∆L = L2 −L1. (39)

Then we have the following lemma.

Lemma 4 Suppose (L1 +L2)zf − 2α∗ = Op(n
−u) with u < 1

2
. Then, for

∆L = Op(n
−t), (40)

we have
∆Bϵ = Op(n

−(t− 1
2
)) and Eϵ[∆J ] = Op(n

−(t−1+u)) (41)

This lemma implies that under some condition, Ĵ is asymptotically effective in model
comparison for MΦ. Note that even in non-parametric cases where p increases as n
increases, Ĵ is still asymptotically effective in model comparison for MΦ (see Remark in
Appendix B for detail).
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3.4 Relation to Other Methods

Estimating the generalization error when training and test input points are drawn from
different distributions has already been studied by modifying AIC [35] which is explicitly
derived for this situation, and by defining the subspace information criterion (SIC) [43]
which is not explicitly proposed for this situation but is applicable. Here we relate our
method with these methods (see also Table 1).

The modified AIC (MAIC) is an asymptotic unbiased estimator of the generalization
error for statistically regular models with the maximum weighted log-likelihood estima-
tion. For linear regression models with independent and identically distributed Gaussian
noise, the maximum weighted log-likelihood estimation is reduced to the weighted least-
squares learning (see e.g., Eqs.(56) and (57)), and MAIC is expressed after some shift and
rescale as follows.

ĴMAIC = ⟨ÛLy,Ly⟩ − 2⟨ÛLy, L̂uy⟩+ 2tr(ÛLĈL̂
⊤
u ), (42)

where
Û = 1

n
X⊤DX, (43)

and Ĉ is the diagonal matrix with the i-th diagonal element

Ĉi,i = (yi − f̂(xi))
2. (44)

Note MAIC also assumes that both px(x) and pt(x) are known (see Table 1).

The appearances of ĴMAIC and Ĵ are similar but different in two aspects (cf. Eq.(28)).

(i) The matrix U in Ĵ is replaced by its empirical estimate Û in ĴMAIC .

(ii) Instead of Ĉ in ĴMAIC , σ̂2
uI is used in Ĵ .

The former difference is especially interesting because ĴMAIC does not use the true matrix
U , although it is accessible by the assumption. In Section 4, we experimentally show that
using Û can cause an unstable behavior when the dimension d of the input vector x is
high.

The above ĴMAIC satisfies

ExEϵ[ĴMAIC − J ] = o(n−1)− C, (45)

where Ex denotes the expectation over training input points {xi}ni=1. This shows that

ĴMAIC has a fast asymptotic convergence with respect to training input points and noise.
On the other hand, if Ex is not taken, ĴMAIC satisfies

Eϵ[ĴMAIC − J ] = Op(n
− 1

2 )− C, (46)

which means that ĴMAIC has the same asymptotic order as Ĵ (see Eq.(32)). However, a

crucial difference is that ĴMAIC does not satisfy Eqs.(30) and (31) even when (almost)
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realizability is satisfied. It seems that the effectiveness of ĴMAIC in model comparison has
not been explicitly investigated so far [47, 26], although the difference of AIC has been
investigated thoroughly [23, 33, 34].

Another related method, SIC, is an estimator of the squared distance between the
learned and learning target functions in a function space. It was shown that in realizable
cases, SIC is exactly unbiased for any fixed locations of training input points. Under
the setting in the current paper, the above squared distance corresponds to J and SIC is
expressed as

ĴSIC = ⟨ULy,Ly⟩ − 2⟨ULy, L̃uy⟩+ 2σ̂2
utr(ULL̃

⊤
u ), (47)

where
L̃u = (X⊤X)−1X⊤. (48)

Note that in ĴSIC , pt(x) is assumed to be known but px(x) is not needed. The appearances

of ĴSIC and Ĵ are rather similar, but L̂u in Ĵ is replaced by L̃u in ĴSIC (cf. Eq.(28)).
The fixed training input points can be regarded as realizations of any distribution.

Therefore, SIC is still applicable to the cases where the distributions of training and test
input points are different. Indeed, we can prove that ĴSIC satisfies Eqs.(30) and (31)
even when the training and test distributions are different, although this fact was not
explicitly pointed out in the original paper. However, we can also prove that ĴSIC is
not asymptotically unbiased in unrealizable cases. This difference is very significant as
experimentally shown in Section 4. Note that ĴSIC satisfies Eq.(32) if the training and
test distributions are the same [44].

3.5 When px(x) and pt(x) Are Unknown

So far, we assumed that both px(x) and pt(x) are known. Here we consider the cases
where they are unknown.

pt(x) is contained in U and L̂u, while px(x) appears only in L̂u. So we investigate

the effect of replacing px(x) and pt(x) included in U and L̂u with their estimates7.
First, we consider the case where pt(x) is unknown but its approximation p̂t(x) is

available. Let Ĵt be Ĵ calculated with p̂t(x) instead of pt(x). Then we have the following
lemma.

Lemma 5 Let

ηt = max{|p̂t(xi)− pt(xi)|}ni=1, (49)

ξt = max

{∣∣∣∣∫
D
φi(x)φj(x) (p̂t(x)− pt(x)) dx

∣∣∣∣}n

i,j=1

. (50)

7Note that px(x) and pt(x) can also appear in the learning matrix L (e.g., Eq.(57)). In such a
case, a learning matrix obtained using some estimates of px(x) and pt(x) is generally different from the
learning matrix obtained using the true densities px(x) and pt(x). However, we here aim to investigate

the accuracy of Ĵ as a function of L, so whether L includes px(x) and pt(x) does not matter.
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If ηt and ξt are sufficiently small,

Ĵt = Ĵ +O(ηt + ξt). (51)

This lemma states that if a reasonably good estimator p̂t(x) of the true density function

pt(x) is available, a good approximation of Ĵ can be obtained. Suppose we are given a large
number of unlabeled samples, which are input points without output values independently
drawn from the distribution with the probability density function pt(x). Actually, in
some application domains—e.g., document classification [27] or bioinformatics [18]—a
large number of unlabeled samples are easily gathered. In such cases, a reasonably good
estimator p̂t(x) may be obtained by some standard density estimation methods.

Next, we consider the case where px(x) is unknown but its approximation p̂x(x) is

available. Let Ĵx be Ĵ calculated with p̂x(x) instead of px(x). Since px(x) is included in

the denominator (see Eq.(25)), Ĵx can be very different from Ĵ even if p̂x(x) is a good
estimator of px(x). However, if mild assumptions on px(xi) and p̂x(xi) are satisfied, we

can guarantee the accuracy of Ĵx as follows.

Lemma 6 Let

ηx = max{|p̂x(xi)− px(xi)|}ni=1, (52)

γ = min{px(xi)}ni=1, (53)

γ̂ = min{p̂x(xi)}ni=1. (54)

If γ > 0 and γ̂ > 0, and if ηx is sufficiently small,

Ĵx = Ĵ +O
(
ηx
γγ̂

)
. (55)

This lemma states that if px(xi) and p̂x(xi) are lower bounded by some (not very
small) positive constants and reasonably accurate estimates of the density values at the

training input points {xi}ni=1 are available, a good approximation of Ĵ can be obtained.
In practical situations with rather small training samples, accurately estimating the

training input density px(x) is difficult. However, the above lemma guarantees that as long
as {px(xi)}ni=1, the density values at the training input points {xi}ni=1, can be estimated

reasonably, a good approximation of Ĵ would be obtained.

4 Numerical Examples

In this section, we show some numerical examples.
In all the simulations, we use the following weighted least-squares learning suggested

in the reference [35].

min
{αi}pi=1

[
n∑

i=1

(
pt(xi)

px(xi)

)λ (
f̂(xi)− yi

)2]
, (56)
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where λ (0 ≤ λ ≤ 1) is a tuning parameter. The learning matrix of the above weighted
least-squares learning is given by

L = (X⊤DλX)−1X⊤Dλ. (57)

Roughly speaking, λ = 1 (consistent weighted least-squares learning) has small bias but
has large variance, while λ = 0 (ordinary least-squares learning) has comparatively small
variance but has large bias. Therefore, changing λ between 0 and 1 would correspond
to controlling the bias-variance trade-off. When the number n of training examples is
large, a large λ which provides a small bias would be appropriate because the variance is
relatively small. On the other hand, when the number n of training examples is small,
the variance generally dominates the bias so a small λ which provides a comparatively
small variance would be appropriate.

4.1 One-Dimensional Regression for Extrapolation

We first examine the behavior of the proposed generalization error estimator and other
methods using a simple one-dimensional regression dataset. Let the learning target func-
tion f(x) be the sinc function:

f(x) = sinc(x). (58)

Let N(µ, c2) denote the normal distribution with mean µ and variance c2, and let ϕµ,c2(x)
be the probability density function of N(µ, c2). Let the training and test input densities
be

px(x) = ϕ1,(1/2)2(x), (59)

pt(x) = ϕ2,(1/4)2(x). (60)

This setting implies that we are considering an extrapolation problem (see Figure 3).
For the moment, we suppose that both the training and test input densities are known.
Later, we investigate the cases where the densities are unknown. Random noise {ϵi}ni=1

are drawn independently from N(0, σ2) where σ2 = (1/4)2. σ2 is treated as an unknown
variable. We use a polynomial model of order p− 1 for learning:

φi(x) = xi−1 for i = 1, 2, . . . , p. (61)

Let us consider the following three cases:

(p, n) = (2, 150), (3, 100), (2, 15). (62)

When p = 2, f̂(x) is a linear function so f(x) is heavily unrealizable (see Figure 3). On
the other hand, when p = 3, f(x) is rather close to realizable. Therefore, the above
three cases roughly correspond to “unrealizable and large samples”, “realizable and small
samples”, and “unrealizable and small samples”. We randomly create {xi, ϵi}ni=1 and

calculate the values of J , Ĵ , ĴMAIC , ĴSIC , and the 10-fold cross-validation (10CV) score
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Figure 3: An illustrative example of extrapolation by fitting a linear function. The top
graph depicts the probability density functions of the training and test input points. In
the bottom three graphs, the learning target function f(x) is drawn by the solid line,

the noisy training examples are plotted with ◦’s, a learned function f̂(x) is drawn by the
dashed line, and the (noiseless) test examples are plotted with ×’s. Three different learned
functions are obtained by weighted least-squares learning with different tuning parameter
λ. λ = 0 corresponds to the ordinary least-squares learning, while λ = 1 corresponds to
the consistent weighted least-squares learning. With finite samples, an intermediate λ,
say λ = 0.5, often provides better results.
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Figure 4: Extrapolation for the toy dataset. The mean and (asymmetric) standard devi-
ation of each method are described as a function of the tuning parameter λ. The dashed
curves in the bottom 12 graphs denote the mean of J . Each column corresponds to each
(p, n).

for λ = 0, 0.1, 0.2, . . . , 1. This procedure is repeated 1000 times for each (p, n). In the
theoretical analysis, we fixed the training input points {xi}ni=1 and only changed the noise
{ϵi}ni=1. On the other hand, we change both of them here because we are interested in
investigating the accuracy of the methods for various different data.

Figure 4 depicts the mean and standard deviation of each method as a function of
λ. Each column corresponds to each (p, n). Since the distribution was rather skewed,
we calculated the lower and upper standard deviations separately. In order to make the
comparison with J clear, we added the constant C (see Eq.(19)) to Ĵ , ĴMAIC and ĴSIC
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Figure 5: Extrapolation for the toy dataset. The distribution of λ chosen by each method
is described.

because they are estimators of J − C. Similarly, we subtracted the constant σ2 from
10CV because 10CV is an estimator of J + σ2. The dashed curves in the bottom 12
graphs denote the mean of J .

When (p, n) = (2, 150), a large number of training examples are available so Ĵ and

ĴMAIC gave reasonably good unbiased estimates of the mean of J . ĴSIC was heavily biased
because the realizability assumption is heavily violated. 10CV did not work properly
because the assumption px(x) = pt(x) is not fulfilled. When (p, n) = (3, 100), Ĵ and ĴSIC
had reasonably good unbiasedness because the realizability assumption is roughly fulfilled.
Note, however, that ĴSIC is rather inaccurate for very small λ, which we conjecture
is caused by the slight violation of realizability. ĴMAIC was heavily biased since the
number of training examples is rather small. 10CV did not work properly again because
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Table 2: Extrapolation for the toy dataset. The mean and standard deviation of the test
error obtained by each method are described. The best method and comparable ones by
the t-test at the significance level 5% are described with boldface. For reference, the test
error obtained with the optimal λ (i.e., the minimum test error) is described as ‘OPT’.

(p, n) (2, 150) (3, 100) (2, 15)
OPT 0.06± 0.11 0.09± 0.14 0.91± 2.24

Ĵ 0.15±0.23 0.38±1.03 2.69±5.18
MAIC 0.13±0.19 0.51± 1.35 3.23±8.13
SIC 2.93± 0.86 0.55± 0.79 4.00± 3.41
10CV 2.93± 0.86 0.47± 0.74 3.85± 3.45

All values are multiplied by 10 for compact description.

of px(x) ̸= pt(x). Finally, in the challenging case of (p, n) = (2, 15) (i.e., “unrealizable and

small samples”), the unbiasedness of Ĵ was still reasonable, while the other methods were
biased.

From these results, we can draw the following conclusions. When (p, n) = (2, 150)

and (3, 100), the proposed Ĵ is clearly shown to integrate the good properties of MAIC
and SIC. This means that the primal goal of this paper has been surely accomplished.
Furthermore, for the above toy example, Ĵ seems to work better than other methods even
in the challenging case of (p, n) = (2, 15).

Another interesting finding from the above results is that irrespective of (p, n), ĴMAIC

has a tendency to reach the minimum at a large λ, while the minimizers of ĴSIC and
10CV tend to be small. On the other hand, the minimum of Ĵ is adapted depending on
(p, n) and seems to roughly agree with the minimum of J . These tendencies can also be
observed in Figure 5, which shows the distribution of λ chosen by each method. Note,
however, that the minimizer of Ĵ tends to be slightly smaller than that of J .

Now we investigate the model selection performance. We chose the tuning parameter λ
by each method, and estimated the output values for 100 test input points independently
drawn from pt(x). The mean and standard deviation of the squared test error of each
method over 1000 trials are described in Table 2. The best method and comparable ones
by the t-test [15] at the significance level 5% are described with boldface. For reference,
the test error obtained with the optimal λ (i.e., the minimum test error) is also described
in the table as ‘OPT’.

The table shows that when (p, n) = (2, 150), Ĵ and ĴMAIC worked better than ĴSIC
and 10CV. When (p, n) = (3, 100), Ĵ outperformed other methods. We expected that

ĴSIC also works well when (p, n) = (3, 100), but it did not. This implies that model

selection by ĴSIC under covariate shift is not robust against the slight violation of the
realizability assumption. Finally, when (p, n) = (2, 15), Ĵ and ĴMAIC worked better than

ĴSIC and 10CV. Although Ĵ and ĴMAIC did not have significant difference by the t-test,
the p-value was about 7%. Therefore, Ĵ would be slightly better than ĴMAIC . This result
encourages us to use Ĵ even in challenging scenarios of unrealizable and small sample
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cases.
We also performed similar simulations when px(x) and pt(x) are unknown, but un-

labeled samples {ui}100i=1 which independently follow pt(x) are given in addition to the
training examples {(xi, yi)}ni=1. We estimated px(x) and pt(x) using {xi}ni=1 and {ui}100i=1

respectively by a kernel density estimation method with the Gaussian kernel and Sil-
verman’s rule-of-thumb bandwidth selection rule [36, 12]. That is, p̂x(x) was obtained
as

p̂x(x) =
1

n

n∑
i=1

ϕxi,h2(x), (63)

where

h2 =

(
4

(d+ 2)n

) 2
d+4

κ̂2, (64)

κ̂2 =
1

n− 1

n∑
i=1

(xi − x)2, (65)

x =
n∑

j=1

xj. (66)

p̂t(x) was obtained similarly using the unlabeled samples {ui}100i=1 instead of training input
points {xi}ni=1. Note, however, that we replaced pt(x) included in U (see Eq.(17)) not
by p̂t(x) but by the empirical distribution of the unlabeled samples {ui}100i=1 because it
is computationally simple. It should also be noted that px(x) and pt(x) included in the
learning matrix L were also replaced by p̂x(x) and p̂t(x) (see Eq.(57)).

The simulation results obtained with p̂x(x) and p̂t(x) had similar tendency to the
results obtained with px(x) and pt(x) (for this reason, the graphs are omitted). From
these results, we conjecture that the proposed method still works if px(x) and pt(x) are
estimated reasonably (cf. Section 3.5).

4.2 Multi-Dimensional Regression for Extrapolation

We also applied the proposed method to the Abalone data set available from the UCI
repository [4]. It is a collection of 4177 samples, each of which consists of 8 input variables
(physical measurements of abalones) and 1 output variable (the age of abalones). The first
input variable is qualitative (male/female/infant) so it was ignored, and the other input
variables were normalized to [0, 1] for convenience. From the population, we randomly
sampled n abalones for training and 100 abalones for testing. Here, we considered a biased
sampling: the sampling has negative bias in the 4-th input variable (weight of abalones)
for training and positive bias for testing. That is, the weight of training abalones tends to
be small while that for the test abalones tends to be large8. Figure 6 depicts a realization

8More specifically, this was implemented as follows. A random number u is drawn from N(0, (4177)2)
and let v = min(⌈|u|⌉, 4177). The v-th smallest abalone in the 4-th input variable is chosen for training.
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Figure 6: From top, the entire population of abalones, a realization of training abalones,
and a realization of test abalones.

of the weight of training and test abalones when n = 200. We used multi-dimensional
linear basis functions (i.e., the number of basis functions is p = 8) for learning. The
density functions px(x) and pt(x) were estimated using the same kernel density estimation
method used in Section 4.1, where multi-dimensional Gaussian kernels without covariance
are used and the variance of the Gaussian kernel is determined by using Eqs.(64)–(66)
in a coordinate-wise manner. A notable difference from the experiments in Section 4.1 is
that we used the test input points themselves for estimating pt(x), not unlabeled samples.
Therefore, the setting corresponds to the transductive inference [49].

Figure 7 depicts the mean values of each method over 300 trials for n = 50, 200, and
800. The error bars are omitted because they were excessive and deteriorated the graphs.
Note that the true generalization error J was calculated using the test examples. The 3
graphs in the top row show that the best λ surely increases as n gets large, as stated in
the beginning of this section. The proposed Ĵ seems to give reasonably good curves and
its minimum roughly agrees with the minimum of the true test error (see the second row).

On the other hand, irrespective of n, the minimizer of ĴMAIC tends to be large and the
minimizers of ĴSIC and 10CV tend to be small (see the third to fifth rows). This result
is consistent with the previous one-dimensional simulations. Similar tendencies can be
observed in Figure 8, which depicts the distribution of λ chosen by each method.

Another important finding from the graphs in Figure 7 is that the magnitude of the

This is repeated until n abalones are selected without overlapping. Then, from the rest, 100 test abalones
are chosen similarly, using u drawn from N(0, (4177/10)2) and v = 4177−min(⌈|u|⌉, 4177) + 1.
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Figure 7: Extrapolation of the 4-th variable for the Abalone dataset. The mean of each
method is described. Each column corresponds to each n.

values of ĴMAIC is very large (see the third row), which may be explained as follows.
The value pt(xi)/px(xi) can be very large in multidimensional cases because the input
domain D is so vast that the values of px(x) tend to be very small. Then the magnitude

of the elements of matrix Û included in ĴMAIC can also become huge, which makes
the magnitude of ĴMAIC very large. Note that pt(xi)/px(xi) also appears in Ĵ via L̂u.

However, L̂u does not cause such problems because it also includes the inverse of the
above quantity so it is balanced. Thus, the proposed Ĵ appears also more reliable than
ĴMAIC .

We chose the tuning parameter λ by each method and estimated the age of the test
abalones by using the chosen λ. The mean squared test error for all test abalones were
calculated, and this procedure was repeated 300 times. The mean and standard deviation
of the test error of each method over 300 trials are described in Table 3, showing that
Ĵ gave small errors for all cases. On the other hand, the error obtained by ĴMAIC was
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Figure 8: Extrapolation of the 4-th variable for the Abalone dataset. The distribution of
λ chosen by each method is described.

large when n is small, and ĴSIC and 10CV gave large errors when n is large. Hence,
the proposed method overall compares favorably with the other methods. However, the
remaining gap between the proposed method and the optimal choice especially in small
sample cases implies that there is still room for improvement.

We also carried out similar simulations when the sampling is biased in the 6-th input
variable (weight of gut after bleeding). The results described in Table 4 show similar
trends to the previous ones.

4.3 Binary Classification with Imbalanced Data

Finally, let us consider binary classification problems from imbalanced training examples.
More specifically, we consider the cases where the number of training examples for the
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Table 3: Extrapolation of the 4-th variable in the Abalone dataset. The mean and
standard deviation of the test error obtained with each method are described. The best
method and comparable ones by the t-test at the significance level 5% are described with
boldface. For reference, the test error obtained with the optimal λ (i.e., the minimum
test error) is described as ‘OPT’.

n 50 200 800
OPT 9.86± 4.27 7.40± 1.77 6.54± 1.34

Ĵ 11.67±5.74 7.95±2.15 6.77±1.40
MAIC 12.78± 6.71 8.01±2.27 6.77±1.42
SIC 11.09±5.23 8.15±1.95 7.33± 1.37
10CV 10.88±5.05 8.06±1.91 7.23± 1.37

Table 4: Extrapolation of the 6-th variable in the Abalone dataset.
n 50 200 800

OPT 9.04± 4.04 6.76± 1.68 6.05± 1.25

Ĵ 10.67±6.19 7.31±2.24 6.20±1.33
MAIC 11.16± 7.02 7.23±2.07 6.20±1.32
SIC 10.30±4.74 7.46±1.81 6.76± 1.27
10CV 10.15±4.95 7.42±1.81 6.68± 1.25

positive class is significantly larger than that for the negative class while the ratio of
samples in both classes is even for test examples.

For such imbalanced data, it seems common particularly in the neural network com-
munity to increase the “influence” of the training examples for the minor class so that
the influence of the training examples are balanced [21, 5]. The weighted learning scheme
given by Eq.(56) actually implements such balancing automatically. Therefore, we will
use the same weighted least-squares learning here. Note that in classification scenarios,
it may be more natural to use loss functions such as the hinge loss [32] rather than to
use the squared loss. However, it is claimed from experiments that classification with the
squared loss works as well as that with the hinge loss [8, 45]. For this reason, we decided
to use the squared loss for learning here.

Let us denote the probability density functions of the positive and negative classes by
p+(x) and p−(x), respectively. In this experiment, we put the input dimension d = 2 and

p+(x) = ϕ(2,0)⊤,2I(x), (67)

p−(x) = ϕ(−2,0)⊤,2I(x). (68)

Let the training and test input densities be

px(x) = 0.9p+(x) + 0.1p−(x), (69)

pt(x) = 0.5p+(x) + 0.5p−(x). (70)
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Figure 9: Training input density function px(x) (left) and test input density function
pt(x) (right) for binary classification with imbalanced data.
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Figure 10: Examples of learned decision boundaries for different λ. ×’s and ◦’s denote
the training examples for the negative and positive classes, respectively. The solid line
denotes the optimal decision boundary while the dashed line denotes the learned decision
boundaries.

These density functions are depicted in Figure 9. We created n training examples and
5000 test examples following px(x) and pt(x), respectively. Multi-dimensional linear basis
functions (i.e., the number of basis functions is p = 3) are used for learning.

Examples of learned decision boundaries for n = 100 are depicted in Figure 10. When
λ = 0, the learned decision boundary was close to the negative examples (×’s) because
the influence of the negative examples is too weak. As λ increased, the decision boundary
was shifted toward positive examples (◦’s). This happened because px(xi) is small for
negative examples (see Eq.(56)) so the influence of the negative examples tends to be
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Table 5: Misclassification rate for test samples in two-dimensional classification problem
with imbalanced data.

n 50 100 200
OPT 15.10± 8.28 13.30± 4.78 12.31± 2.94

Ĵ 16.00±8.62 13.85±4.96 12.63±3.04
MAIC 16.87± 10.19 14.34± 5.93 12.86±3.42
10CV 19.63± 10.89 17.16± 7.38 15.64± 4.50

emphasized. In this example, λ = 1 gave the best result among three cases.
We calculated the values of Ĵ , ĴMAIC , and 10CV as a function of λ = 0, 0.1, 0.2, . . . , 1.

Note that in this experiment, the true generalization error was measured by the misclassi-
fication rate for the test samples, i.e., we used the 0/1-loss function for the generalization
error. To be consistent with this generalization error, CV was also calculated using the
0/1-loss. On the other hand, Ĵ was calculated using the squared loss because it can not
deal with the 0/1-loss (see Eq.(13)). Therefore, applying the proposed method to classifi-

cation tasks is a heuristic. Note that ĴMAIC was also calculated with the squared loss (or
equivalently, Gaussian noise model). We chose the tuning parameter λ by each method,
and calculated the misclassification rate for the test samples by using the chosen λ. For
each n = 50, 100, and 200, this procedure was repeated 1000 times. When one of the
classes had no training examples, we redrew the training examples until each class had at
least one training example. Note that in this simulation, the minimum of the CV score
was often not unique because the CV score is discrete due to the 0/1-loss function and
thus takes the same value for different λ’s. In such cases, we randomly chose one of the
best λ’s.

The mean and standard deviation of the obtained misclassification rate are described in
Table 5, showing that the proposed method significantly outperforms cross-validation and
is better than the modified AIC especially in small sample cases. This simulation result
implies that the proposed method is practically useful even for imbalanced classification
tasks.

5 Conclusions and Discussion

In this paper, we proposed a new generalization error estimation method when the train-
ing and test distributions are different. It can effectively integrate the advantages of
the modified AIC and SIC, i.e., it is (almost) unbiased with finite samples in (almost)
realizable cases and asymptotically unbiased in general (see Table 1). The numerical eval-
uations in extrapolation scenarios (Figure 4) showed that (a) the proposed method works
well both in the case of realizable and small samples and in the case of unrealizable and
large samples, and (b) it provided promising performance even in a challenging case of
unrealizable and small samples. While it was experimentally observed that the modified
AIC can be unstable for high-dimensional data, our method is more stable (Figure 7).
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Furthermore our method also worked excellently in a classification task with imbalanced
data.

The proposed generalization error estimator Ĵ can be actually regarded as an extension
of SIC by the following fact. We can prove that the exact unbiasedness of SIC in realizable
cases holds not only for L̃u given by Eq.(48), but also for any matrix of the form

(X⊤X)−1X⊤ +Z(I −X(X⊤X)−1X⊤), (71)

where Z is an arbitrary p × n matrix. If we put Z = (X⊤DX)−1X⊤D, the above

matrix is reduced to L̂u and Ĵ is obtained. From this fact, the contributions of this
paper can be interpreted as follows. We pointed out that SIC is applicable to cases
where the distributions of training and test input points are different. We showed that for
achieving the exact unbiasedness in realizable cases, there exists a degree of freedom in the
choice of Z in SIC and that by appropriately choosing Z, the asymptotic unbiasedness
in unrealizable cases can be gained in addition to the exact unbiasedness in realizable
cases. We further found that Ĵ is useful for estimating the difference of the generalization
error, which is an important theoretical property in the context of model selection (see
Section 3.3).

Although we focused on the cases where the training and test distributions are differ-
ent, the analyses given in this paper are valid even when they are equivalent. Therefore, as
long as we can reasonably estimate the input density function using, e.g., a large number
of unlabeled samples, the proposed Ĵ is still effective in model comparison even when the
training and test distributions are common.

So far we restricted ourselves to the cases where the parameters in the regression
model are learned in a linear manner (see Eq.(6)). However, there are useful learning
methods which are non-linear, e.g., learning with non-quadratic loss functions [16, 53, 49]
or non-quadratic regularizers [10, 52, 48, 6]. Extending the current approach to be able
to deal with such non-linear learning methods is an important future direction. It would
furthermore be interesting to investigate whether similar generalization error estimators
can be derived for non-squared test errors, e.g., for the misclassification rate.

In Section 3.3, we investigated the asymptotic effectiveness of the proposed generaliza-
tion error estimator in model comparison. There, the asymptotic effectiveness in model
comparison was evaluated in terms of the asymptotic upper bounds. Carrying out more
precise analysis, e.g., in terms of the exact asymptotic order is a remaining future work.

The numerical simulations showed that the proposed method is a reasonably accurate
unbiased estimator. However, it can have a large variance especially when the number
of training examples is very small or the noise level is very high. This implies that our
ultimate goal is not to estimate the generalization error in an unbiased manner, but to
accurately estimate it for a single realization. For realizable cases, a method to “regu-
larize” unbiased generalization error estimators has been recently proposed [39], which
yielded a more accurate estimator for a single realization. It is interesting to investigate
whether a similar or novel strategy can work also for unrealizable cases. Furthermore, in
the context of model selection, it is important to investigate the effectiveness in model
comparison (see Section 3.3) not only in terms of the expectation but also in terms of a
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single realization. Finally, it is important to theoretically investigate the model selection
performance using the proposed generalization error estimator, e.g., following the idea of
the reference [22].
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A Proof of Lemma 1

From Eqs.(28) and (18), Eq.(29) yields

Bϵ = −2Eϵ⟨ULy, L̂uy −α∗⟩+ 2Eϵσ̂2
utr(ULL̂

⊤
u ). (72)

Let zf , zg and zr be n-dimensional vectors with i-th elements f(xi), g(xi), and r(xi),

respectively. Then we have zg = Xα∗, α∗ = L̂uzg, and Eϵσ̂2
u = σ2 + ζ, where ζ =

∥Gzr∥2/tr(G). From them, we have

Bϵ = −2⟨ULzf , L̂uzr⟩+ 2ζtr(ULL̂
⊤
u ), (73)

from which Eqs.(30) and (31) are clear. In the following, we investigate the asymptotic
order of each term.

By noting that training input points {xi}ni=1 independently follows the probability
distribution with the probability density function px(x) and by using the law of large
numbers [29], we have

lim
n→∞

(
1

n

n∑
k=1

pt(xk)

px(xk)
φi(xk)φj(xk)

)
=

∫
D

pt(x)

px(x)
φi(x)φj(x)px(x)dx

= ⟨φi, φj⟩H, (74)

implying that 1
n
X⊤DX = Op(1). Since 1

n
X⊤DX is invertible by the assumption (5),

we have ( 1
n
X⊤DX)−1 = Op(1). Furthermore, by the central limit theorem [29], it holds

for sufficiently large n,

1

n

n∑
i=1

r(xi)φj(xi)
pt(xi)

px(xi)
=

∫
D
r(x)φj(x)

pt(x)

px(x)
px(x)dx+Op(n

− 1
2 )

= ⟨r, φj⟩H +Op(n
− 1

2 ) = Op(n
− 1

2 ), (75)
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implying that 1
n
X⊤Dzr = Op(n

− 1
2 ). Therefore, we have

L̂uzr = ( 1
n
X⊤DX)−1 1

n
X⊤Dzr = Op(n

− 1
2 ). (76)

On the other hand, it holds that ULzf = Op(1), ζ = Op(1), and tr(ULL̂
⊤
u ) = Op(n

−1),
from which we have Eq.(32). (Q.E.D.)

Remark: Let us consider non-parametric cases where p increases as n increases. We
assume that ( 1

n
X⊤DX)−1 = Op(p

−1), which may not be so restrictive since 1
n
X⊤DX =

Op(1). Then, even in non-parametric cases, we still have L̂uzr = Op(n
− 1

2 ). By the central

limit theorem, we have U = 1
n
X⊤DX +∆U where ∆U = Op(n

− 1
2 ). Then we have

UL̂uzr =
1
n
X⊤Dzr +∆UL̂uzr = Op(n

− 1
2 ) +Op(pn

−1). (77)

Since Lzf = Op(1), we have

⟨Lzf ,UL̂uzr⟩ = Op(pn
− 1

2 ) +Op(p
2n−1). (78)

Since G is a projection matrix onto a (n−p)-dimensional subspace, we have tr(G) = n−p

and ∥Gzr∥2 ≤ ∥zr∥2 = Op(n), which implies ζ = Op(1) because of Eq.(3). Since LL̂
⊤
u is

a p-dimensional matrix of Op(n
−1), we have tr(ULL̂

⊤
u ) = Op(p

2n−1). Therefore, we have

ζtr(ULL̂
⊤
u ) = Op(p

2n−1). (79)

From Eqs.(78) and (79), we have

Bϵ = Op(pn
− 1

2 ) +Op(p
2n−1), (80)

which is op(1) if p = o(n
1
2 ).

B Proof of Lemma 4

From Eq.(73), we have

∆Bϵ = −2⟨U∆Lzf , L̂uzr⟩+ 2ζtr(U∆LL̂
⊤
u ). (81)

From Eq.(40), we have ∆Lzf = Op(n
−t+1). Then U = O(1) and Eq.(76) yield

⟨U∆Lzf , L̂uzr⟩ = Op(n
−t+ 1

2 ), and ζ = Op(1) and L̂u = Op(n
−1) yield ζtr(U∆LL̂

⊤
u ) =

Op(n
−t). Therefore we have ∆Bϵ = Op(n

−(t− 1
2
)).

On the other hand, from Eq.(18), we have

Eϵ[J ] = ⟨ULzf ,Lzf⟩+ σ2tr(ULL⊤)− 2⟨ULzf ,α
∗⟩+ C, (82)
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from which we have

Eϵ[∆J ] = ⟨U∆Lzf , b⟩+ σ2tr(U(L1 +L2)∆L⊤). (83)

where b = (L1 + L2)zf − 2α∗. Since b = Op(n
−u), we have Eϵ[∆J ] = Op(n

−t+1−u) +
Op(n

−t) = Op(n
−(t−1+u)). (Q.E.D.)

Remark: Let us consider non-parametric cases where p increases as n increases.
Suppose again ( 1

n
X⊤DX)−1 = Op(p

−1). From Eq.(77), we have

∆Bϵ = −2⟨∆Lzf ,UL̂uzr⟩+ 2ζtr(U∆LL̂
⊤
u )

= Op(n
−t+ 1

2p) +Op(n
−tp2). (84)

On the other hand,

Eϵ[∆J ] = Op(n
−t+1−up2) +Op(n

−tp2) = Op(n
−t+1−up2), (85)

which implies the asymptotic effectiveness of Ĵ in model comparison.

C Proof of Lemma 5

pt(x) is included in U and L̂u. Let U
′ and L̂

′
u be U and L̂u calculated with p̂t(x) instead

of pt(x). It is clear that U ′ = U +O(ξt). For a nonsingular symmetric matrix T and a
matrix B, it holds that (T + ηB)−1 = T−1 +O(η) for sufficiently small η [2], from which

we have L̂
′
u = L̂u +O(ηt). This implies Eq.(51). (Q.E.D.)

D Proof of Lemma 6

px(x) is included only in L̂u. Let L̂
′′
u be L̂u calculated with p̂x(x) instead of px(x). It

holds that ∣∣∣∣ 1

p̂x(xi)
− 1

px(xi)

∣∣∣∣ = ∣∣∣∣ p̂x(xi)− px(xi)

px(xi)p̂x(xi)

∣∣∣∣ ≤ ηx
γγ̂

. (86)

Therefore, by a similar discussion to the proof of Lemma 5, we have L̂
′′
u = L̂u + O( ηx

γγ̂
).

This implies Eq.(55). (Q.E.D.)
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