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Abstract. A common assumption in supervised learning is that the
training and test input points follow the same probability distribution.
However, this assumption is not fulfilled, e.g., in interpolation, extrapo-
lation, or active learning scenarios. The violation of this assumption—
known as the covariate shift—causes a heavy bias in standard general-
ization error estimation schemes such as cross-validation and thus they
result in poor model selection. In this paper, we therefore propose an al-
ternative estimator of the generalization error. Under covariate shift, the
proposed generalization error estimator is unbiased if the learning target
function is included in the model at hand and it is asymptotically unbi-
ased in general. Experimental results show that model selection with the
proposed generalization error estimator is compared favorably to cross-
validation in extrapolation.

1 Introduction

Let us consider a regression problem of estimating an unknown function f(x)
from training examples {(xi, yi) | yi = f(xi)+εi}n

i=1, where {εi}n
i=1 are i.i.d. ran-

dom noise with mean zero and unknown variance σ2. Using a linear regression
model

f̂(x) =
p∑

i=1

αiϕi(x), (1)

where {ϕi(x)}p
i=1 are fixed linearly independent functions and α =

(α1, α2, . . . , αp)> are parameters, we would like to learn the parameter α such
that the squared test error expected over all test input points (or the generaliza-
tion error) is minimized. Suppose the test input points independently follow a
probability distribution with density pt(x) (> 0). Then the generalization error
is expressed as

J =
∫ (

f̂(x)− f(x)
)2

pt(x)dx. (2)

A common assumption in this supervised learning is that the training input
points {xi}n

i=1 independently follow the same probability distribution as the
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test input points [4]. However, this assumption is not fulfilled, for example, in
interpolation or extrapolation scenarios: only few (or no) training input points
exist in the regions of interest, implying that the test distribution is significantly
different from the training distribution. Active learning also corresponds to such
cases because the locations of training input points are designed by users while
test input points are provided from the environment [1]. The situation where the
training and test distributions are different is referred to as the situation under
the covariate shift [3] or the sample selection bias [2]. Let px(x) (> 0) be the
probability density function of training input points {xi}n

i=1. An example of an
extrapolation problem where px(x) 6= pt(x) is illustrated in Figure 1.

When px(x) 6= pt(x), two difficulties arise in a learning process. The first
difficulty is parameter learning. The ordinary least-squares learning, given by

min
α

[
n∑

i=1

(
f̂(xi)− yi

)2
]

, (3)

tries to fit the data well in the region with high training data density. This
implies that the prediction can be inaccurate if the region with high test data
density has low training data density. Theoretically, it is known that when the
training and test distributions are different and the true function is not realizable
(i.e., the learning target function is included in the model at hand), least-squares
learning is no longer consistent (i.e., the learned parameter does not converge
to the optimal one even when the number of training examples goes to infinity).
This problem can be overcome by using a least-squares learning weighted by the
ratio of test and training data densities3 [3].

min
α

[
n∑

i=1

pt(xi)
px(xi)

(
f̂(xi)− yi

)2
]

. (4)

A key idea of this weighted version is that the training data density is adjusted to
the test data density by the density ratio, which is similar in spirit to importance
sampling. Although the consistency becomes guaranteed by this modification,
the weighted least-squares learning tends to have large variance. Indeed, it is no
longer asymptotically efficient even when the noise is Gaussian. Therefore, in
practical situations with finite samples, a stabilized estimator, e.g.,

min
α

[
n∑

i=1

(
pt(xi)
px(xi)

)λ (
f̂(xi)− yi

)2
]

for 0 ≤ λ ≤ 1 (5)

would give more accurate estimates4. Note that λ = 0 corresponds to the ordi-
nary least-squares learning (3), while λ = 1 corresponds to consistent weighted
3 In theory, we assume that px(x) and pt(x) are known. Later in experiments, they

are estimated from the data and we evaluate the practical usefulness of the theory.
4 The learned parameter �̂λ obtained by the weighted least-squares learning (5)

is given by �̂λ = Lλy, where Lλ = (X>DλX)−1X>Dλ, Xi,j = ϕj(xi), D
is the diagonal matrix with the i-th diagonal element pt(xi)/px(xi), and y =
(y1, y2, . . . , yn)>.
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Fig. 1. An illustrative example of
extrapolation by fitting a linear
function f̂(x) = α1 + α2x. [Left
column]: The top graph depicts
the probability density functions of
the training and test input points,
px(x) and pt(x). In the bottom
three graphs, the learning target
function f(x) is drawn by the solid
line, the noisy training examples are
plotted with ◦’s, a learned function
f̂(x) is drawn by the dashed line,
and the (noiseless) test examples
are plotted with ×’s. Three differ-
ent learned functions are obtained
by weighted least-squares learning
with different tuning parameter λ.
λ = 0 corresponds to the ordinary
least-squares learning (small vari-
ance but large bias), while λ = 1
gives an consistent estimate (small
bias but large variance). With finite
samples, an intermediate λ, say λ =

0.5, often provides better results. [Right column]: The top graph depicts the mean
and standard deviation of the generalization error over 300 independent trials, as
a function of λ. The middle and bottom graphs depict the means and standard
deviations of the estimated generalization error obtained by the standard 10-fold
cross-validation (10CV) and the proposed method. The dotted lines are the mean of
the true generalization error. 10CV is heavily biased because of px(x) 6= pt(x), while
the proposed estimator is almost unbiased with reasonably small variance.

least-squares learning (4). Thus, the parameter learning problem is now relocated
to the model selection problem of choosing λ.

However, the second difficulty when px(x) 6= pt(x) is model selection it-
self. Standard unbiased generalization error estimation schemes such as cross-
validation are heavily biased, because the generalization error is over-estimated
in the high training data density region and it is under-estimated in the high
test data density region.

In this paper, we therefore propose a new generalization error estimator.
Under covariate shift, the proposed estimator is proved to be exactly unbiased
with finite samples in realizable cases and asymptotically unbiased in general.
Furthermore, the proposed generalization error estimator is shown to be able to
accurately estimate the difference of the generalization error, which is a useful
property in model selection.

For simplicity, we focus on the problem of choosing the tuning parameter λ
in the following. Note, however, that the proposed theory can be easily extended
to general model selection of choosing basis functions or regularization constant.



2 A New Generalization Error Estimator

Let us decompose the learning target function f(x) into f(x) = g(x) + r(x),
where g(x) is the orthogonal projection of f(x) onto the span of {ϕi(x)}p

i=1

and the residual r(x) is orthogonal to {ϕi(x)}p
i=1, i.e.,

∫
r(x)ϕi(x)pt(x)dx = 0.

Since g(x) is included in the span of {ϕi(x)}p
i=1, it is expressed by g(x) =∑p

i=1 α∗i ϕi(x), where α∗ = (α∗1, α
∗
2, . . . , α

∗
p)
> are unknown optimal parameters.

Let U be a p-dimensional matrix with the (i, j)-th element U i,j =∫
ϕi(x)ϕj(x)pt(x)dx, which is assumed to be accessible in the current setting.

Then the generalization error J is expressed as

J(λ) =
∫

f̂λ(x)2pt(x)dx− 2
∫

f̂λ(x)f(x)pt(x)dx +
∫

f(x)2pt(x)dx

= 〈Uα̂λ, α̂λ〉 − 2〈Uα̂λ, α∗〉+ C, (6)

where C =
∫

f(x)2pt(x)dx. In Eq.(6), the first term 〈Uα̂λ, α̂λ〉 is accessible and
the third term C does not depend on λ. Therefore, we focus on estimating the
second term “−2〈Uα̂λ, α∗〉”.

Hypothetically, let us suppose that the following two quantities are available.

(i) A matrix Lu which gives a linear unbiased estimator of the unknown true
parameter α∗: EεLuy = α∗, where Eε denotes the expectation over the noise
{εi}n

i=1.
(ii) An unbiased estimator σ2

u of the noise variance σ2: Eεσ
2
u = σ2.

Note that Lu does not depend on Lλ. Then it holds that

Eε〈Uα̂λ, α∗〉 = 〈EεULλy,EεLuy〉 = Eε[〈ULλy, Luy〉 − σ2
utr(ULλL>u )], (7)

which implies that we can construct an unbiased estimator of Eε〈Uα̂λ,α∗〉 if
Lu and σ2

u are available. However, in general, neither Lu nor σ2
u may not be

available. So we use the following approximations instead:

L̂u = (X>DX)−1X>D and σ̂2
u = ‖Gy‖2/tr(G), (8)

where G = I −X(X>X)−1X>. Actually, L̂u corresponds to Eq.(4), which im-
plies that L̂u exactly fulfills the requirement (i) in realizable cases and asymp-
totically satisfies it in general [3]. On the other hand, it is known that the above
σ̂2

u exactly fulfills the requirement (ii) in realizable cases [1]. Although, in general
cases, σ̂2

u does not satisfy the requirement (ii) even asymptotically, it turns out
that the asymptotic unbiasedness of σ̂2

u is not needed in the following.
Based on the above discussion, we define the following estimator Ĵ of the

generalization error J .

Ĵ(λ) = 〈ULλy,Lλy〉 − 2〈ULλy, L̂uy〉+ 2σ̂2
utr(ULλL̂

>
u ). (9)

Let Bε be the bias of Ĵ : Bε = Eε[Ĵ − J ] + C. Then we have the following
theorem (proof is omitted because of lack of space).



Theorem 1 If r(xi) = 0 for i = 1, 2, . . . , n, Bε = 0. If δ = max{|r(xi)|}n
i=1 is

sufficiently small, Bε = O(δ). If n is sufficiently large, Bε = Op(n−
1
2 ).

This theorem implies that, except for the constant C, Ĵ is exactly unbiased
if f(x) is strictly realizable, it is almost unbiased if f(x) is almost realizable,
and it is asymptotically unbiased in general. We can also prove that the above Ĵ
can estimate the difference of the generalization error among different models.
However, because of lack of space, we omit the detail.

3 Numerical Examples

Figure 1 shows the numerical results of an illustrative extrapolation problem.
The curves in the right column show that the proposed estimator gives almost
unbiased estimates of the generalization error with reasonably small variance
(note that the target function is not realizable in this case).

We also applied the proposed method to Abalone data set available from the
UCI repository. It is a collection of 4177 samples, each of which consists of 8 input
variables (physical measurements of abalones) and 1 output variable (the age of
abalones). The first input variable is qualitative (male/female/infant) so it was
ignored, and the other input variables were normalized to [0, 1] for convenience.
From the population, we randomly sampled n abalones for training and 100
abalones for testing. Here, we considered a biased sampling: the sampling of
the 4-th input variable (weight of abalones) has negative bias for training and
positive bias for testing. That is, the weight of training abalones tends to be small
while that for the test abalones tends to be large. We used multi-dimensional
linear basis functions for learning. Here we suppose that the test input points
are known (i.e., the setting corresponds to transductive inference [4]) and the
density functions px(x) and pt(x) were estimated from the training input points
and test input points, respectively, using a kernel density estimation method.

Figure 2 depicts the mean values of each method over 300 trials for n =
50, 200, and 800. The error bars are omitted because they were excessive and
deteriorated the graphs. Note that the true generalization error J is calculated
using the test examples. The proposed Ĵ seems to give reasonably good curves
and its minimum roughly agrees with the minimum of the true test error. On
the other hand, irrespective of n, the minimizer of 10CV tend to be small.

We chose the tuning parameter λ by each method and estimated the age of
the test abalones by using the chosen λ. The mean squared test error for all test
abalones were calculated, and this procedure was repeated 300 times. The mean
and standard deviation of the test error of each method are described in the left
half of Table 1. It shows that Ĵ and 10CV work comparably for n = 50, 200,
while Ĵ outperforms 10CV for n = 800. Hence, the proposed method overall
compares favorably to 10CV.

We also carried out similar simulations when the sampling of the 6-th input
variable (weight of gut after bleeding) is biased. The results described in the
right half of Table 1 showed similar trends to the previous ones.
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Fig. 2. Extrapolation of the 4-th variable in the Abalone dataset. The mean of each
method is described. Each column corresponds to each n.

Table 1. Extrapolation of the 4-th variable (left) or the 6-th variable (right) in the
Abalone dataset. The mean and standard deviation of the test error obtained with
each method are described. The better method and comparable one by the t-test at
the significance level 5% are described with boldface.

n Ĵ 10CV

50 11.67±5.74 10.88±5.05
200 7.95±2.15 8.06±1.91
800 6.77±1.40 7.23± 1.37

n Ĵ 10CV

50 10.67±6.19 10.15±4.95
200 7.31±2.24 7.42±1.81
800 6.20±1.33 6.68± 1.25

4 Conclusions

In this paper, we proposed a new generalization error estimator under covariate
shift. The proposed estimator is shown to be unbiased with finite samples in
realizable cases and asymptotically unbiased in general. Experimental results
showed that model selection with the proposed generalization error estimator is
compared favorably to the standard cross-validation in extrapolation scenarios.
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