Model Selection under Covariate Shift

FIRST
Institut Rechnerard

Masashi Sugiyama Tokyo Institute of Technology, Tokyo, Japan

Klaus-Robert Müller Fraunhofer FIRST, Berlin, Germany University of Potsdam, Potsdam, Germany

Standard Regression Problem Learning target function: f(x)Training examples: $\{(x_i, y_i) \mid y_i = f(x_i) + \epsilon_i\}_{i=1}^n$ **Test input:** $\{\boldsymbol{t}_i \mid \boldsymbol{t}_i \stackrel{i.i.d.}{\sim} p_t(\boldsymbol{x})\}_{i=1}^m$ Goal: Obtain approximation $\hat{f}(\boldsymbol{x})$ that minimizes expected error for test inputs (or generalization error)

$$J = \int \left(\hat{f}(\boldsymbol{t}) - f(\boldsymbol{t}) \right)^2 p_t(\boldsymbol{t}) d\boldsymbol{t}$$

Training Input Distribution

Common assumption:

Training input $\{x_i\}_{i=1}^n$ follows the same distribution as test input:

 $oldsymbol{x}_i \stackrel{i.i.d.}{\sim} p_t(oldsymbol{x})$

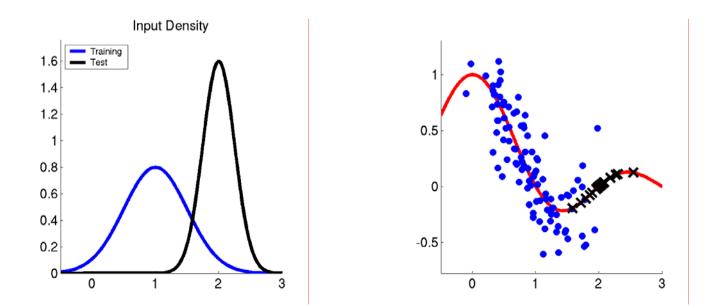
Here, we suppose distributions are different.

$$\begin{array}{c} \boldsymbol{x}_{i} \stackrel{i.i.d.}{\sim} p_{\boldsymbol{x}}(\boldsymbol{x}) \\ \boldsymbol{t}_{i} \stackrel{i.i.d.}{\sim} p_{\boldsymbol{t}}(\boldsymbol{x}) \end{array} p_{\boldsymbol{x}}(\boldsymbol{x}) \neq p_{\boldsymbol{t}}(\boldsymbol{x}) \\ \end{array} \\ \begin{array}{c} \boldsymbol{p}_{\boldsymbol{x}}(\boldsymbol{x}) \end{array} p_{\boldsymbol{x}}(\boldsymbol{x}) \neq p_{\boldsymbol{t}}(\boldsymbol{x}) \\ \end{array} \end{array}$$

Covariate Shift

Is covariate shift important to investigate?

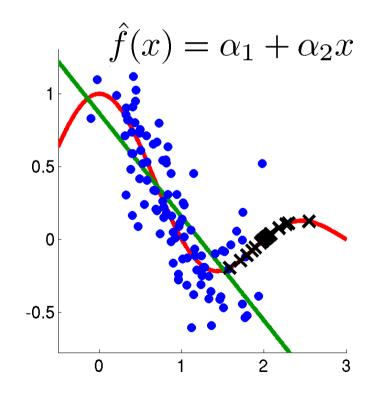
- Yes! It often happens in reality.
 - Interpolation / extrapolation
 - Active learning (experimental design)
 - Classification from imbalanced data



Ordinary Least Squares under Covariate Shift

$$\min_{\boldsymbol{\alpha}} \left[\sum_{i=1}^{n} \left(\hat{f}(\boldsymbol{x}_i) - y_i \right)^2 \right]$$

- Asymptotically unbiased if model is correct.
- Asymptotically biased for misspecified models.
- Need to reduce bias.



Weighted Least Squares for Covariate Shift (Shimodaira, 2000)

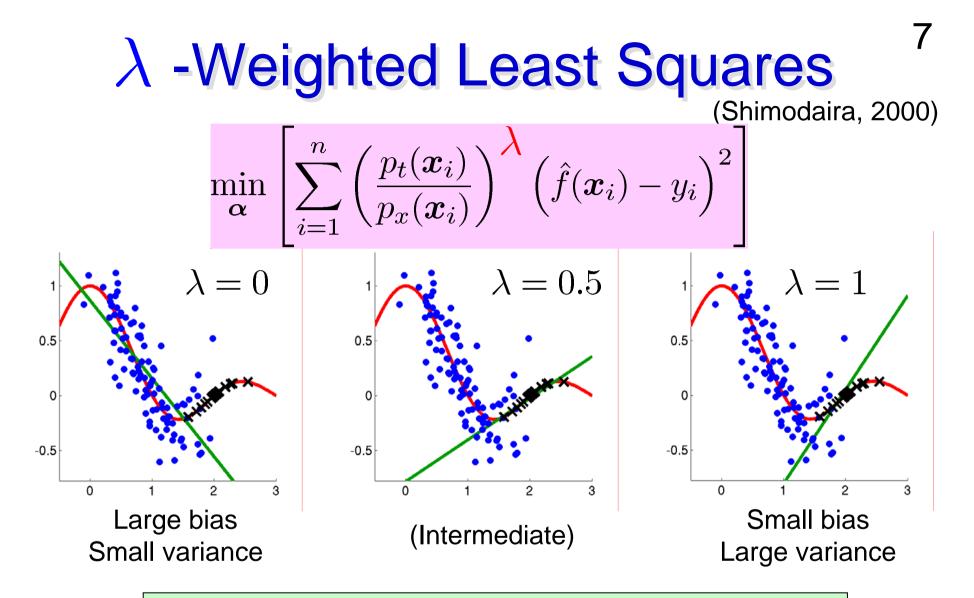
$$\inf_{\mathbf{x}} \left[\sum_{i=1}^{n} \frac{p_t(\boldsymbol{x}_i)}{p_x(\boldsymbol{x}_i)} \left(\hat{f}(\boldsymbol{x}_i) - y_i \right)^2 \right]$$

 $p_{x}(\boldsymbol{x}), p_{t}(\boldsymbol{x})$:Assumed known and strictly positive

Asymptotically unbiased for misspecified models. Can have large variance. Need to reduce variance.

m C

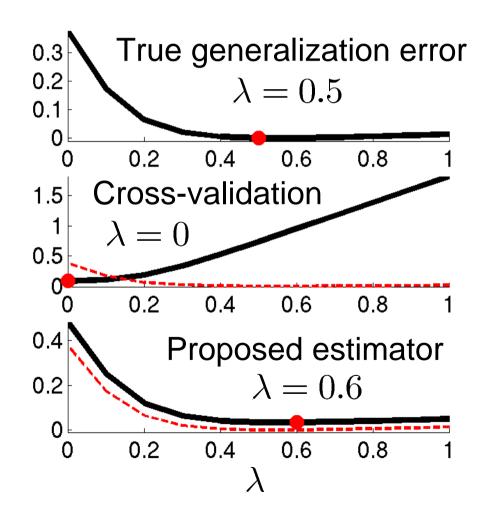
$$\hat{f}(x) = \alpha_1 + \alpha_2 x$$



 λ should be chosen appropriately! (Model Selection)

Generalization Error Estimation⁸ under Covariate Shift

- λ is determined so that (estimated) generalization error is minimized.
- However, standard methods such as cross-validation is heavily biased.
- Goal: Derive better estimator



Setting

I.i.d. noise with mean 0 and variance σ^2

Linear regression model:

$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{p} \alpha_i \varphi_i(\boldsymbol{x})$$

 λ -weighted least squares:

$$\begin{split} \min_{\boldsymbol{\alpha}} \left[\sum_{i=1}^{n} \left(\frac{p_t(x_i)}{p_x(x_i)} \right)^{\boldsymbol{\lambda}} \left(\hat{f}(x_i) - y_i \right)^2 \right] \\ \hat{\boldsymbol{\alpha}} = \boldsymbol{L} \boldsymbol{y} & \boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_p)^{\top} \\ \boldsymbol{y} = (y_1, y_2, \dots, y_n)^{\top} \\ \boldsymbol{y} = (y_1, y_2, \dots, y_n)^{\top} \\ \boldsymbol{X}_{i,j} = \varphi_j(\boldsymbol{x}_i) \\ \boldsymbol{D} = \operatorname{diag} \left(\frac{p_t(\boldsymbol{x}_i)}{p_x(\boldsymbol{x}_i)} \right) \end{split}$$

Decomposition of Generalization Error

$$J = \int \left(\hat{f}(\boldsymbol{x}) - f(\boldsymbol{x})\right)^2 p_t(\boldsymbol{x}) d\boldsymbol{x}$$

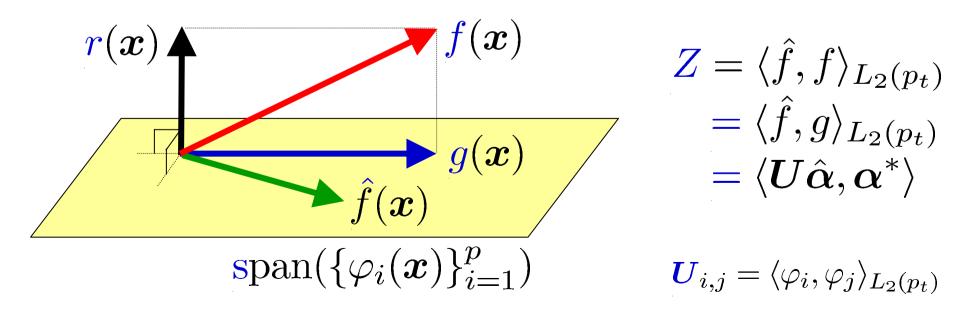
= $\|\hat{f} - f\|_{L_2(p_t)}^2$
= $\|\hat{f}\|_{L_2(p_t)}^2 - 2\langle \hat{f}, f \rangle_{L_2(p_t)} + \|f\|_{L_2(p_t)}^2$
Accessible Estimated Constant (ignored)

We estimate $Z \equiv \langle \hat{f}, f \rangle_{L_2(p_t)}$

Orthogonal Decomposition of ¹¹ Learning Target Function

$$f(\boldsymbol{x}) = g(\boldsymbol{x}) + r(\boldsymbol{x}) \qquad \langle \varphi_i, r \rangle_{L_2(p_t)} = 0$$
$$g(\boldsymbol{x}) = \sum_{i=1}^p \alpha_i^* \varphi_i(\boldsymbol{x})$$

 α^* :Optimal parameter



Unbiased Estimation of $\mathbb{E}_{\epsilon} Z^{-12}$

 $\mathbb{E}_{\boldsymbol{\epsilon}}$:Expectation over noise

Suppose we have

• L_u , which gives linear unbiased estimator of $lpha^*$

 $\mathbb{E}_{oldsymbol{\epsilon}} L_u y = lpha^*$

• σ_u^2 : Unbiased estimator of noise variance

$$\mathbb{E}_{\epsilon}\sigma_u^2 = \sigma^2$$

Then we have an unbiased estimator of $\mathbb{E}_{\epsilon}Z$:

$$\widehat{Z} \equiv \langle \boldsymbol{U} \boldsymbol{L} \boldsymbol{y}, \boldsymbol{L}_u \boldsymbol{y} \rangle - \sigma_u^2 \operatorname{tr}(\boldsymbol{U} \boldsymbol{L} \boldsymbol{L}_u^\top)$$

But L_u, σ_u^2 are not always available. Use approximations instead

Approximations of
$$L_u, \sigma_u^2$$

 $\widehat{L}_u = (X^\top D X)^{-1} X^\top D$
 $\widehat{\sigma}_u^2 = \frac{\|y - Hy\|^2}{n - p}$ $H = X(X^\top X)^{-1} X^\top$

13

$$\mathbb{E}_{\boldsymbol{\epsilon}} \boldsymbol{L}_{u} \boldsymbol{y} = \boldsymbol{\alpha}^{*} \qquad \mathbb{E}_{\boldsymbol{\epsilon}} \sigma_{u}^{2} = \sigma^{2}$$

$$\text{If model is correct,} \\ \mathbb{E}_{\boldsymbol{\epsilon}} \widehat{\boldsymbol{L}}_{u} \boldsymbol{y} = \boldsymbol{\alpha}^{*} \qquad \mathbb{E}_{\boldsymbol{\epsilon}} \widehat{\sigma_{u}^{2}} = \sigma^{2} \\ \text{If model is misspecified,} \\ \mathbb{E}_{\boldsymbol{\epsilon}} \widehat{\boldsymbol{L}}_{u} \boldsymbol{y} \to \boldsymbol{\alpha}^{*} \qquad \mathbb{E}_{\boldsymbol{\epsilon}} \widehat{\sigma_{u}^{2}} \not\to \sigma^{2} \qquad (n \to \infty) \\ \end{array}$$

~

New Generalization Error Estimator

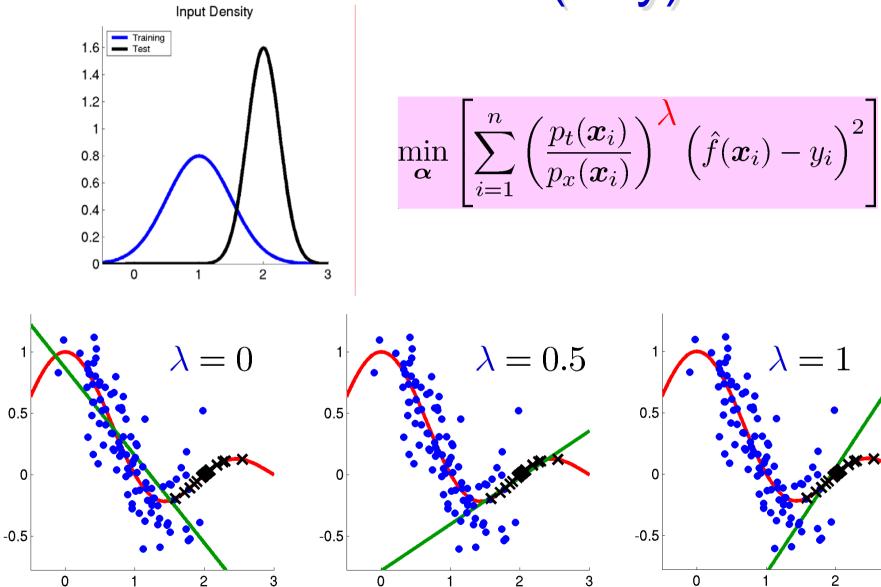
$$\hat{J} = \langle ULy, Ly \rangle - 2 \langle ULy, \hat{L}_u y \rangle + 2 \widehat{\sigma_u^2} \operatorname{tr}(UL \widehat{L}_u^\top)$$

Bias:
$$B_{\epsilon} = \mathbb{E}_{\epsilon}[\hat{J} - J] + C$$

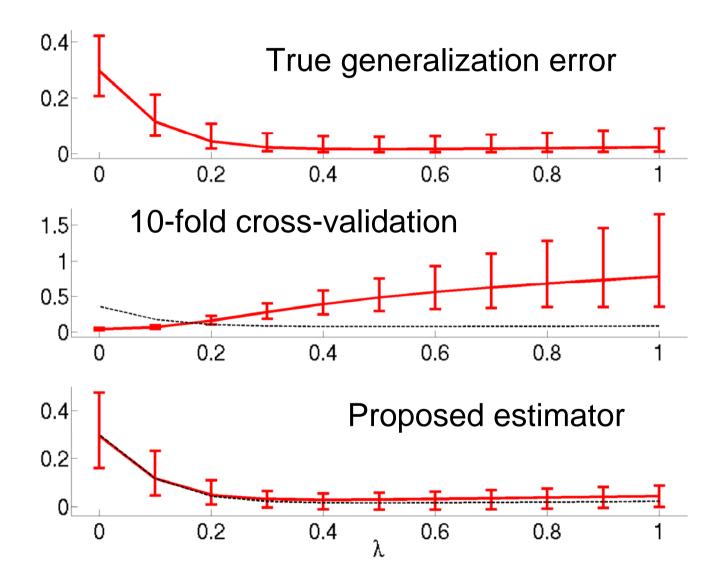
 $C = ||f||^2_{L_2(p_t)}$

If model is correct, $B_{\epsilon} = 0$ If model is almost correct, $B_{\epsilon} = O(\delta) \quad \delta = \max\{r(x_i)\}$ If model is misspecified, $B_{\epsilon} = O_p(n^{-\frac{1}{2}})$

Simulation (Toy)



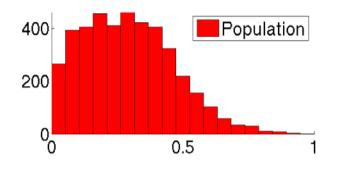
Results

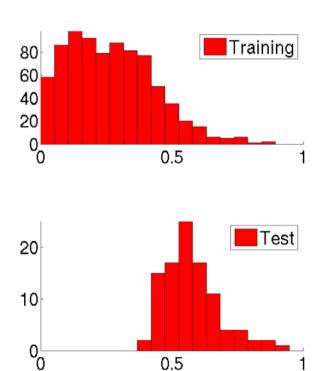


Simulation (Abalone from DELVE)

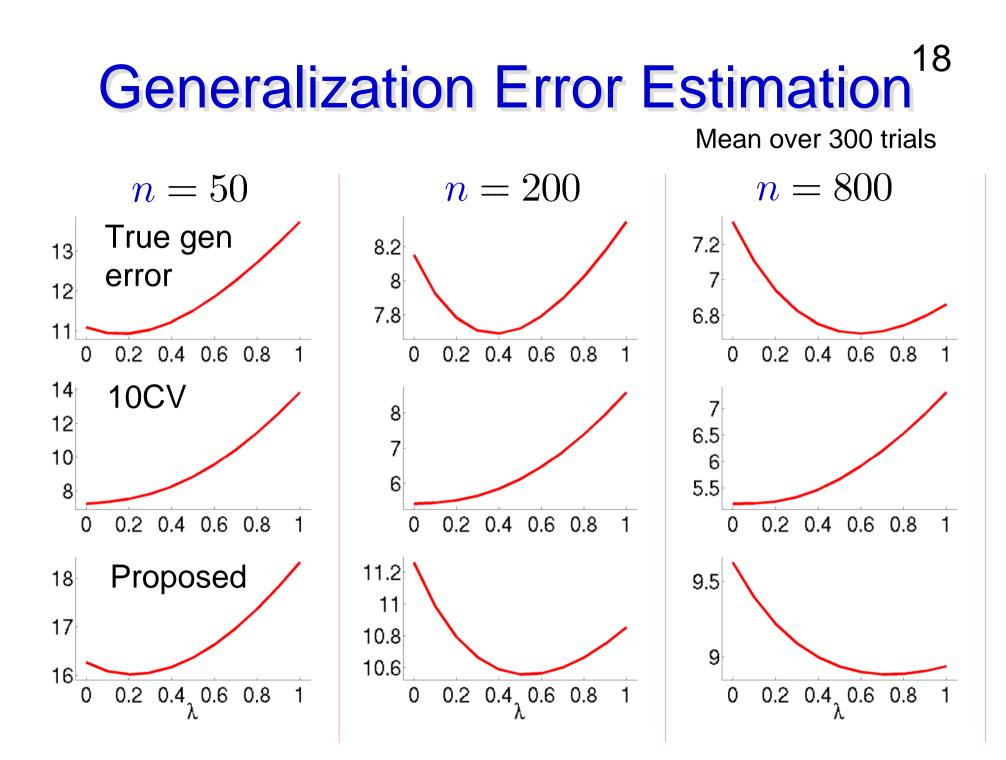
- Estimate the age of abalones from 7 physical measurements.
- We add bias to 4th attribute (weight of abalones)
- Training and test input densities are estimated by standard kernel density estimator.

$$\hat{f}(x) = \alpha_1 + \sum_{i=1}^{7} \alpha_{i+1} x^{(i)}$$





0.5



Test Error After Model Selection¹⁹

Extrapolation in 4th attribute

n	50	200	800
OPT	9.86 ± 4.27	7.40 ± 1.77	6.54 ± 1.34
Proposed	11.67 ± 5.74	7.95 ± 2.15	6.77 ± 1.40
10CV	10.88 ± 5.05	8.06 ± 1.91	7.24 ± 1.37

T-test (5%)

Extrapolation in 6th attribute

n	50	200	800
OPT	9.04 ± 4.04	6.76 ± 1.68	6.05 ± 1.25
Proposed	10.67 ± 6.19	7.31 ± 2.24	6.20 ± 1.33
10CV	10.15 ± 4.95	7.42 ± 1.81	6.68 ± 1.25

Conclusions

- Covariate shift: Training and test input distributions are different
- Ordinary LS: Biased
- Weighted LS: Unbiased but large variance.
- λ -WLS: Model selection needed.
- Cross-validation: Biased
- Proposed generalization error estimator:
 - Exactly unbiased (correct models)
 - Asymptotically unbiased (misspecified models)