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Abstract–Estimating the generalization capability is one of the most important problems in supervised
learning. Therefore, various generalization error estimators have been proposed so far, in the presence
of noise in output values. On the other hand, noise often exists in input values as well as output values.
In this paper, we therefore investigate the influence of input noise on a generalization error estimator.
We focus on a particular generalization error estimator called the subspace information criterion (SIC),
which is shown to be unbiased in the absence of input noise. Intuitively, small input noise does not
seem to affect the unbiasedness of SIC severely because small input noise varies the output values
only slightly if the learning target function is continuous. On the contrary to this intuition, we show
that even small input noise can totally corrupt the unbiasedness of SIC. This fact casts doubt on the
use of SIC in the presence of input noise. To cope with this problem, we provide a sufficient condition
to guarantee that SIC is unbiased in the limit of small input noise. We finally show that this condition
is always fulfilled when the standard ridge estimation is used for learning, which allows us to use SIC
without concern even in the presence of small input noise.

Keywords—Supervised learning, measurement error, generalization error estimation, model selection,
the subspace information criterion (SIC)

1. Introduction

Estimating an underlying function from traning examples is the goal of supervised learning. The training examples
consist of input points and corresponding output values and they are often degraded by noise. Therefore, effectively
suppressing the influence of noise in training examples is one of the keys to success in learning. To this end, several
sophisticated theories of learning in the presence of noise in the output values (or labels) have been developed so
far [1, 2, 3]. On the other hand, there are cases where the noise is also included in the input values. For example,
robot motor control, bioinformatics data analysis, and speech or image recognition, where input values as well as
output values are measured. Time series prediction of multiple-step ahead can also be regarded as a case with input
noise because estimated uncertain output values are recursively used as input values. In the statistics community,
noise in the input values is called the measurement error and various methods for handling the measurement
error have been explored [4, 5]. Also, in the field of neural information processing, a method for efficiently
propagating the influence of uncertainty in time series prediction of multiple-step ahead has been proposed within
the framework of Gaussian processes [6].

Estimating the generalization capability is one of the most important ingredients for successful learning because
an accurate estimator of the generalization error can be used for model selection. Therefore, various generalization
error estimators have been proposed so far, in the presence of output noise. However, it seems that generalization
error estimation in the presence of input noise has not been well studied previously. In this paper, we therefore
investigate how the accuracy of generalization error estimators can be influenced when input noise exists. More
specifically, we focus on a particular generalization error estimator called the subspace information criterion (SIC)
[7, 8], which is an unbiased estimator of a particular generalization error in the absence of input noise. In this
paper, we investigate how the input noise influences the unbiasedness of SIC.

When the learning target function is continuous, small input noise varies the output values only slightly. There-
fore, it intuitively seems that small input noise does not severely affect the unbiasedness of SIC. However, our
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Figure 1. A training example is expressed by(xi, yi), wherexi = vi + ξi andyi = f(vi) + εi. Sampling is
carried out atvi but we can not access to the true sample pointvi. Instead, we have a noisy sample pointxi which
is degraded by unknown additive noiseξi. The sample valueyi also includes unknown additive noiseεi. We will
later consider the limit of small input noiseξi.

interesting finding in this paper shows that this intuition is not always true. That is, the difference between the
mean SIC and true generalization error does not always converge to zero in the limit of small input noise. Even
worse, the difference between the mean SIC and true generalization error can go to infinity. This negative fact
implies that simply using SIC in the presence of input noise is rather questionable. To cope with this problem, we
investigate why such an extremely small input noise can totally corrupt the unbiasedness of SIC, and show how
this problem can be overcome. More specifically, we show that under a mild condition on the learning method, the
difference between the mean SIC and true generalization error always converges to zero as the size of input noise
goes to zero, which guarantees the robustness of SIC against small input noise. We finally show that a standard
learning method such as the ridge estimation [9] satisfies this mild condition, which allows us to use SIC without
concern even in the presence of small input noise.

2. Regression and Generalization Error Estimation

In this section, we formulate the regression problem of approximating a target function from training samples, and
introduce an estimator of the generalization error called the subspace information criterion.

Let us denote the learning target function byf(x), which is a real-valued function ofd variables defined on
the domainD (=Rd). We are given a set ofn samples called thetraining examples. A training example consists of
asample pointxi in D and asample valueyi in R. Sampling is actually carried out atvi but we can not access to
the true sample pointvi. Instead, we have a noisy sample pointxi which is degraded by unknown additive noise
ξi. The sample valueyi also includes unknown additive noiseεi. That is, the training examples are expressed as
follows (see also Figure 1):

{(xi, yi) | xi = vi + ξi, yi = f(vi) + εi}n
i=1. (1)

In this paper, we treat{εi}n
i=1 as random variables, while we regard{ξi}n

i=1 as deterministic variables because we
are interested in directly investigating the influence of the input noise{ξi}n

i=1. We assume that{εi}n
i=1 are drawn

independently from a distribution with mean zero and varianceσ2.
Let us consider the cases where the unknown learning target functionf(x) belongs to a specifiedreproducing

kernel Hilbert space(RKHS)H. Thereproducing kernelof a functional Hilbert spaceH, denoted byK(x,x′), is
a bivariate function defined onD ×D that satisfies the following conditions [10, 1]:

• For any fixedx′ in D, K(x, x′) is a function ofx in H.

• For any functionf in H and for anyx′ in D, it holds that

〈f(·),K(·, x′)〉H = f(x′), (2)

where〈·, ·〉H stands for the inner product inH.

We will employ the following kernel regression modelf̂(x) for learning:

f̂(x) =
n∑

i=1

αiK(x,xi), (3)
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where{αi}n
i=1 are parameters. We estimate the parameters by a linear estimation. More specifically, letting

y = (y1, y2, . . . , yn)>, (4)

α̂ = (α̂1, α̂2, . . . , α̂n)>, (5)

where> denotes the transpose of a vector (or a matrix) and{α̂i}n
i=1 are the estimated parameters, we estimate the

parameters by
α̂ = Xy, (6)

whereX is ann-dimensional matrix that does not depend on the output noise{εi}n
i=1. The matrixX, which we

call thelearning matrix, can be any matrix but it is usually determined based on{xi}n
i=1. A popular choice ofX

is the ridge estimation [9].
The purpose of regression is to obtain a good approximationf̂(x) to the unknown learning target functionf(x).

For this purpose, we need a criterion that measures theclosenessbetween two functions (i.e., the generalization
measure). In this paper, we measure the generalization error by the expected squared norm in the RKHSH.

Eε‖f̂ − f‖2H, (7)

whereEε denotes the expectation over the output noise{εi}n
i=1, and‖ · ‖H denotes the norm in the RKHSH.

For further discussions on this generalization measure, readers may refer to [8]. For simplicity, we shall subtract a
constant‖f‖2H from Eq.(7), and use the followingJ as the generalization measure.

J [X] = Eε‖f̂ − f‖2H − ‖f‖2H
= Eε‖f̂‖2H − 2Eε〈f̂ , f〉H, (8)

where〈·, ·〉H denotes the inner product inH.
As can be seen from Eq.(8),J includes the unknown learning target functionf(x) so it can not be directly

calculated. The subspace information criterion (SIC) [7, 8] is an estimator of the above generalization errorJ :

SIC[X] = 〈KXy,Xy〉 − 2〈KXy,K†y〉+ 2σ2tr(K†KX), (9)

where† denotes the Moore-Penrose generalized inverse,tr(·) denotes the trace of a matrix, andK is the so-called
kernel matrix, i.e., the(i, j)-th element ofK is given by

Ki,j = K(xi, xj). (10)

In the absence of input noise,SIC is shown to be an unbiased estimator ofJ for any learning matrixX:

EεSIC[X] = J [X], when‖ξi‖ = 0 for i = 1, 2, . . . , n. (11)

The purpose of this paper is to investigate how this unbiasedness is influenced when input noise exists.

3. Influence of Small Input Noise on Unbiasedness of SIC

If the learning target function is continuous, it intuitively seems that small input noise does not affect the unbiased-
ness of SIC severely because small input noise varies the output values only slightly. In this section, we show that
this intuition is not always true, and discuss how this problem can be overcome.

We first show the relation between the mean SIC and true generalization errorJ in the presence of input noise.
Let z be a vector of sample values at the true sample points{vi}n

i=1 andzx be a vector of sample values at the
noisy sample points{xi}n

i=1:

z = (f(v1), f(v2), . . . , f(vn))>, (12)

zx = (f(x1), f(x2), . . . , f(xn))>. (13)

Note that bothz andzx are inaccessible becausef(x) and{vi}n
i=1 are unknown. Then we have the following

lemma.
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Lemma 1 In the presence of input noise{ξi}n
i=1, it holds that

EεSIC = J + ∆J, (14)

where
∆J = 2〈K†KXz, zx − z〉. (15)

(Proof) Since{εi}n
i=1 are drawn independently from a distribution with mean zero and varianceσ2, we have

EεSIC = Eε〈KXy,Xy〉 − 2Eε〈KXy, K†y〉+ 2σ2tr
(
K†KX

)

= 〈KXz, Xz〉+ σ2tr
(
X>KX

)
− 2〈KXz, K†z〉 − 2σ2tr

(
K†KX

)
+ 2σ2tr

(
K†KX

)

= 〈KXz, Xz〉+ σ2tr
(
X>KX

)
− 2〈KXz, K†z〉. (16)

On the other hand, as shown in [8],J is expressed by

J = 〈KXz, Xz〉+ σ2tr(X>KX)− 2〈KXz, K†zx〉, (17)

where only the third term is different from Eq.(16). Subtracting Eq.(17) from Eq.(16), we immediately have
Eqs.(14) and (15).

Lemma 1 shows that, in the presence of input noise, SIC is generally no longer an unbiased estimator ofJ , but
it is biased by∆J .

We are interested in investigating whether|∆J | is small when the size of input noise is small. This may not be
true for discontinuous learning target functions becausef(vi + ξi) andf(vi) can be totally different values even
when‖ξi‖ is small. So we focus on the cases where, roughly, the difference in the output values monotonically
decreases as the input noise decreases. More specifically, for

δ = ‖zx − z‖, (18)

we consider the cases whereδ goes to zero as‖ξi‖ goes to0 for all i = 1, 2, . . . , n. Under the above condition,
we shall investigate the following question.

Does|∆J | converge to0 as‖ξi‖ goes to0 for all i = 1, 2, . . . , n?

If the answer is yes, then the unbiasedness ofSIC is almost maintained even when small input noise exists.
Therefore, we may use SIC without concern even in the presence of small input noise. Unfortunately, however, the
following counterexample shows that this is not always true.

Example 2 Let the input dimensiond be1, and letH be a Gaussian RKHS with reproducing kernel

K(x, x′) = exp
(−(x− x′)2

)
. (19)

Let the learning target function be

f(x) = sinc x =
{

sin πx/(πx) if x 6= 0,
1 if x = 0,

(20)

which is included in the above Gaussian RKHSH. Letv1 = v2 = 0, and let the learning matrix be

X =
(

(sinc x1 − 1)2 0
0 (sinc x2 − 1)2

)†
. (21)

Then we have
∆J = 2(sinc ξ1 − 1)−1 + 2(sinc ξ2 − 1)−1 for ξ1 6= 0 andξ2 6= 0. (22)

This implies that|∆J | → ∞ as|ξ1| → 0 and|ξ2| → 0.

Although the above example is quite artificial, at least it clearly shows that there exists a case where|∆J | does
not converge to zero as the size of input noise goes to zero. Even worse,|∆J | goes to infinity in the above example.
This fact casts doubt on the use of SIC in the presence of input noise.

On the contrary to this negative fact, the following theorem shows that this critical problem can be resolved by
imposing a mild condition on the learning matrixX.
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Theorem 3 Let‖X‖ be the matrix norm defined by

‖X‖ = sup
z 6=0

‖Xz‖
‖z‖ . (23)

If the learning matrixX satisfies
‖X‖ = o(1/δ), (24)

then|∆J | converges to zero as‖ξi‖ goes to0 for all i = 1, 2, . . . , n.

(Proof) From the Cauchy-Schwarz inequality, we have

|∆J | ≤ 2‖K†KXz‖·‖zx − z‖ = 2δ‖K†KXz‖. (25)

On the other hand, it follows from Eq.(23) that for a bounded matrixB

‖Bz‖ ≤ ‖B‖·‖z‖. (26)

Then we have
|∆J | ≤ 2δ‖K†K‖·‖X‖·‖z‖. (27)

SinceK†K is an orthogonal projection matrix,‖K†K‖ is either0 or 1. When‖K†K‖ = 0, we have|∆J | = 0.
When‖K†K‖ = 1, we have

|∆J | ≤ 2δ‖X‖·‖z‖. (28)

Since‖z‖ does not depend on{ξi}n
i=1, the upper bound2δ‖X‖ · ‖z‖ converges to zero asδ goes to zero if

‖X‖ = o(1/δ).
Now we are interested in finding a learning matrixX that satisfies the above sufficient condition. Let us

consider the ridge estimation [9], which determinesX so that the regularized training error is minimized.

min




n∑

i=1

(
f̂(xi)− yi

)2

+ λ
n∑

j=1

α2
j


 , (29)

whereλ is a positive scalar called theridge parameter. A minimizer of Eq.(29) is given by the following learning
matrix:

X = (K2 + λI)−1K, (30)

whereI denotes the identity matrix. For the above ridge estimation, we have the following theorem.

Theorem 4 The learnig matrix of the ridge estimation given by Eq.(30) satisfies Eq.(24).

(Proof) Let {di}n
i=1 be the eigenvalues ofK. Since the kernel matrixK is non-negative,di ≥ 0 for all i. Let us

diagonalizeK by
K = TDT>, (31)

whereT is the orthogonal matrix andD is the diagonal matrix with diagonal elements{di}n
i=1. Then Eq.(30)

yields
X = T (D2 + λI)−1DT>. (32)

This implies that the eigenvalues ofX are given by{ di

d2
i +λ

}n
i=1, which are all non-negative. Then we have

‖X‖ = max
i

di

d2
i + λ

. (33)

Since d
d2+λ ≤ 1

2
√

λ
for anyd ≥ 0, we have

‖X‖ ≤ 1
2
√

λ
= O(1) = o(1/δ) asδ → 0. (34)

Theorem 4 means that for the ridge estimation,|∆J | always converges to zero in the limit of small input noise.
Therefore, we may use SIC without concern even in the presence of small input noise.
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4. Conclusions

We investigated the influence of input noise on a generalization error estimator called the subspace information
criterion (SIC). Intuitively, small input noise does not seem to have serious effect on the accuracy of SIC if the
learning target function is continuous. However, we constructed a counterexample showing that this intuition is
not always true. This fact casts doubt on the use of SIC in the presence of input noise. For resolving this concern,
we showed that if the learning method satisfies a mild condition, SIC is roughly robust against small input noise.
We also showed that the standard ridge estimation satisfies this condition.

In our discussions, we treated the input noise as deterministic variables. However, similar results may be
obtained even for random input noise. That is, Eq.(22) in Example 2 roughly implies that SIC can be inaccurate
even if the scatter of the input noise is very small, and Eqs.(28) and (34) imply that this problem can be avoided
when the ridge regression is used. Further elucidating the properties of SIC in the presence of deterministic or
random input noise is an important future direction.
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