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Klaus-Robert Müller (klaus@first.fhg.de)
Fraunhofer FIRST, IDA, Kekuléstr. 7, 12489 Berlin, and
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Abstract
A well-known result by Stein (1956) shows that in particular situations, biased esti-
mators can yield better parameter estimates than their generally preferred unbiased
counterparts. This paper follows the same spirit as we will stabilize the unbi-
ased generalization error estimates by regularization and finally obtain more robust
model selection criteria for learning. We trade a small bias against a larger variance
reduction which has the beneficial effect of being more precise on a single training
set. We focus on the subspace information criterion (SIC), which is an unbiased
estimator of the expected generalization error measured by the reproducing kernel
Hilbert space norm. SIC can be applied to the kernel regression and it was shown
in earlier experiments that a small regularization of SIC has a stabilization effect.
However, it remained open how to appropriately determine the degree of regulariza-
tion in SIC. In this paper, we derive an unbiased estimator of the expected squared
error between SIC and the expected generalization error, and propose determining
the degree of regularization of SIC such that the estimator of the expected squared
error is minimized. Computer simulations with artificial and real data sets illustrate
that the proposed method works effectively for improving the precision of SIC, espe-
cially in the high noise level cases. We furthermore compare to the original SIC, the
cross-validation, and an empirical Bayesian method in ridge parameter selection,
with good results.
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1 Introduction

Estimating the generalization capability of learning machines has been extensively studied
so far because a good estimator of the generalization error can be used for model selection
(e.g., Vapnik, 1982, 1995, 1998; Bishop, 1995; Devroye et al., 1996; Müller et al., 2001).
Existing work for estimating the generalization error can be roughly classified into two ap-
proaches. One is to estimate the expected generalization error (e.g., Mallows, 1964, 1973;
Akaike, 1974; Takeuchi, 1976; Sugiura, 1978; Craven and Wahba, 1979; Wahba, 1990; Mu-
rata et al., 1994; Konishi and Kitagawa, 1996; Murata, 1998; Sugiyama and Ogawa, 2001;
Sugiyama and Müller, 2002), and the other is to estimate the worst case generalization
error (e.g., Vapnik, 1995; Cherkassky et al., 1999; Cucker and Smale, 2002; Bousquet and
Elisseeff, 2002). Both approaches have strong theoretical properties, e.g., the accuracy
of the estimators of the expected generalization error is theoretically guaranteed in the
sense of asymptotic or exact unbiasedness1, or the validity of the estimators of the worst
case generalization error (i.e., upper bounds on the generalization error) is theoretically
guaranteed with certain probability. So far, these methods have been successfully applied
to various practical learning tasks.

However, unbiased estimators of the expected generalization error can have large vari-
ance, or the probabilistic upper bounds on the generalization error can be loose. For this
reason, it is very important (i) to reduce the variance of the unbiased estimators of the
expected generalization error, or (ii) to tighten the probabilistic upper bounds on the
generalization error. In this article, we focus on (i), and propose a method for improving
the precision of unbiased estimators of the expected generalization error by regularization.
Since we are trying to shrink unbiased estimators of the expected generalization error,
this work can be regarded as an application of the idea of the Stein estimator (Stein,
1956) to model selection.

So far, the variance of the unbiased estimators of the expected generalization error
has been investigated (e.g., Felsenstein, 1985; Linhart, 1988; Shimodaira, 1997, 1998),
in a context where the small differences in the values of Akaike’s information criterion
(AIC)2 (Akaike, 1974) is not statistically significant. These papers proposed using a set
of ‘good’ models whose values of AIC are relatively small, rather than selecting the single
best model that minimizes AIC. Although these studies instigated us of the need for
investigating the variance of the unbiased estimators of the expected generalization error,
they are not primarily intended to improve the precision of the estimators.

On the other hand, Tsuda et al. (2002) gave a method for reducing the variance of the
subspace information criterion (SIC)3 (Sugiyama and Ogawa, 2001; Sugiyama and Müller,

1Here, the term ‘exact unbiasedness’ is used for expressing ordinary ‘unbiasedness’ (i.e., the expec-
tation agrees with the true value for finite samples) in order to emphasize the contrast with asymptotic
unbiasedness (the expectation converges to the true value as the number of samples goes to infinity).

2AIC is an asymptotic unbiased estimator of the expected generalization error measured by the
Kullback-Leibler divergence.

3SIC is an unbiased estimator of the expected generalization error measured by the reproducing kernel
Hilbert space norm. As described in Sugiyama and Ogawa (2001), SIC can be regarded as an extension
of Mallows’s CL (Mallows, 1973).
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2002) by introducing a regularization parameter to SIC. It was experimentally shown that
a small regularization of SIC highly contributes to stabilization. This work already alluded
the possibility of obtaining more precise estimators of the expected generalization error.
At the same time, it raised the – so far unresolved – question, how to appropriately
determine the degree of regularization in regularized SIC (RSIC)?

In this article, we therefore propose a method for appropriately determining the degree
of regularization in RSIC, such that the expected squared error between RSIC and the
expected generalization error is minimized. However, we can not directly do so, since the
expected squared error includes the unknown expected generalization error. To cope with
this problem, we derive an unbiased estimator of the expected squared error that can be
calculated from the given data, and propose determining the degree of regularization in
RSIC such that this estimator of the expected squared error is minimized.

Finally, we apply the proposed method to the ridge parameter selection in ridge re-
gression. There are several interesting works that theoretically investigate the asymptotic
optimality of the choice of the ridge parameter (Craven and Wahba, 1979; Wahba, 1985;
Li, 1986). Although we believe that showing the asymptotic optimality of the proposed
method may be possible, we are especially interested in the performance with finite sam-
ples. For this reason, we shall experimentally investigate the model selection performance
of the proposed method in finite sample situations. Simulations with artificial and bench-
mark data sets show that our regularization approach contributes to improving the pre-
cision of SIC, especially it has a stabilizing effect for high noise, and consequently the
model selection performance is improved.

The rest of this paper is organized as follows. The regression problem is formulated in
Section 2, and the derivation of SIC is briefly reviewed in Section 3. Section 4 introduces
RSIC, and gives a method for determining the degree of regularization in RSIC. Computer
simulations with artificial and real data sets are performed in Section 5, illustrating how
RSIC works. Finally, Section 6 gives the conclusions and future prospects.

2 Problem Formulation

In this section, we formulate the regression problem of approximating a target function
from training samples.

Let us denote the learning target function by f(x), which is a real-valued function
of d variables defined on a subset D of the d-dimensional Euclidean space Rd. We are
given a set of n samples called the training examples. A training example consists of a
sample point xi in D and a sample value yi in R. We consider the case that yi is degraded
by unknown additive noise εi, which is independently drawn from a normal distribution4

4The normality of the noise is not assumed in our previous works (Sugiyama and Ogawa, 2001;
Sugiyama and Müller, 2002). We do assume the normality here because we are dealing with higher order
statistics. The discussions in this paper may be generalized to any noise distributions where up to the
fourth order moments of the noise are known or can be estimated. However, for simplicity, we focus on
the normal noise.



Trading Variance Reduction with Unbiasedness 4

with mean zero and variance σ2. Then the training examples are expressed as

{(xi, yi) | yi = f(xi) + εi}n
i=1. (1)

We assume that the unknown learning target function f(x) belongs to a specified
reproducing kernel Hilbert space (RKHS)5 H. The reproducing kernel of a functional
Hilbert space H, denoted by K(x, x′), is a bivariate function defined on D × D that
satisfies the following conditions (see e.g., Aronszajn, 1950; Bergman, 1970; Saitoh, 1988,
1997; Wahba, 1990; Vapnik, 1998; Cristianini and Shawe-Taylor, 2000):

• For any fixed x′ in D, K(x, x′) is a function of x in H.

• For any function f in H and for any x′ in D, it holds that

〈f(·), K(·, x′)〉H = f(x′), (2)

where 〈·, ·〉H stands for the inner product in H.

We will employ the following kernel regression model f̂(x):

f̂(x) =

n∑
i=1

αiK(x, xi), (3)

where {αi}n
i=1 are parameters to be estimated from training examples. Let us denote the

estimated parameters by {α̂i}n
i=1. We consider the case that the estimated parameters

{α̂i}n
i=1 are given by linear combinations of sample values {yi}n

i=1. More specifically, letting

y = (y1, y2, . . . , yn)
�, (4)

α̂ = (α̂1, α̂2, . . . , α̂n)�, (5)

where � denotes the transpose of a vector (or a matrix), we consider the case that the
estimated parameter vector α̂ is given by

α̂ = Xy, (6)

where X is an n-dimensional matrix that does not depend on the noise {εi}n
i=1. The matrix

X, which we call the learning matrix, can be any matrix, but it is usually determined on
the basis of a prespecified learning criterion. For example, in the case of ridge regression
(Hoerl and Kennard, 1970), the learning matrix X is determined by minimizing the
regularized training error

min

(
n∑

i=1

(
f̂(xi) − yi

)2

+ λ
n∑

j=1

α2
j

)
, (7)

5In our early work (Sugiyama and Ogawa, 2001), only finite dimensional RKHSs could be dealt with.
However, this restriction has been completely removed by Sugiyama and Müller (2002). The current
paper is based on the latter work so we do not impose any restrictions on the choice of the RKHS, e.g.,
infinite dimensional RKHSs are also allowed.
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where λ is a positive scalar called the ridge parameter. A minimizer of Eq.(7) is given by
the following learning matrix:

X = (K2 + λI)−1K, (8)

where I denotes the identity matrix and K is the so-called kernel matrix, i.e., the (i, j)-th
element of K is given by

K i,j = K(xi, xj). (9)

Note that Bayesian learning with a particular Gaussian process prior yields the same
learning matrix (see e.g., Williams and Rasmussen, 1996; Williams, 1998; Cristianini and
Shawe-Taylor, 2000). In the following sections, we focus on the above ridge regression for
simplicity. However, all the discussions are valid for any learning matrix X.

The purpose of regression is to obtain the optimal approximation f̂(x) to the unknown
learning target function f(x). For this purpose, we need a criterion that measures the
closeness of two functions (i.e., the generalization measure). In this paper, we measure
the generalization error by the squared norm in the RKHS H.

‖f̂ − f‖2
H, (10)

where ‖·‖H denotes the norm in the RKHS H. Using the function space norm as the error
measure is rather common in the field of function approximation (e.g., Daubechies, 1992;
Donoho and Johnstone, 1994; Donoho, 1995). The use of the RKHS norm is advantageous
in the machine learning context since we can measure various different types of errors such
as the interpolation error, the extrapolation error, the test error at points of interest, the
error at training sample points (Mallows, 1973), the error measured by a weighted norm
in the frequency domain (Smola et al., 1998; Girosi, 1998), or the error measured by
the Sobolev norm (Wahba, 1990). When unlabeled samples ({xj} without {yj}) are
available in addition to the usual training examples {(xi, yi)}n

i=1, another advantage of
RKHS is that we can utilize those unlabeled samples beneficially and in straight forward
manner (Sugiyama and Ogawa, 2002; Tsuda et al., 2002). (For further discussions on this
generalization measure we refer to Sugiyama and Müller (2002)).

As stated in Section 1, we focus on estimating the expected generalization error.

J0[X ] = Eε‖f̂ − f‖2
H, (11)

where Eε denotes the expectation over the noise {εi}n
i=1. Note that we do not take the

expectation over the training sample points {xi}n
i=1, which is often done in statistical

learning frameworks (e.g., Akaike, 1974; Takeuchi, 1976; Murata et al., 1994; Konishi and
Kitagawa, 1996; Murata, 1998). Thus, our framework is more data-dependent. We denote
the expected generalization error J0 as a functional of the learning matrix X since under
the above setting, specifying f̂ is equivalent to specifying the learning matrix X . In the
following, we often omit X if it is not relevant.

As can be seen from Eq.(11), J0 includes the unknown learning target function f(x),
so it can not be directly calculated. The aim of this paper is to give an estimator of
Eq.(11) that can be calculated from the given data.
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3 Brief Review of the Subspace Information Crite-

rion

The subspace information criterion (SIC) (Sugiyama and Ogawa, 2001; Sugiyama and
Müller, 2002) is an unbiased estimator of an essential part of the expected generalization
error J0. In this section, we briefly review the derivation of SIC.

Let S be the subspace spanned by {K(x, xi)}n
i=1, and let fS(x) be the orthogonal

projection of f(x) onto S. Then the expected generalization error J0 is expressed by

J0 = Eε‖f̂ − fS‖2
H + ‖fS − f‖2

H, (12)

where the second term ‖fS − f‖2
H does not depend on f̂ . For this reason, we will ignore

it and let us denote the first term by J1:

J1[X] = Eε‖f̂ − fS‖2
H. (13)

Since the projection fS(x) belongs to S, it can be expressed by

fS(x) =
n∑

i=1

α∗
i K(x, xi), (14)

where the parameters α∗ = (α∗
1, α

∗
2, . . . , α

∗
n)� are unknown6. For convenience, let us define

the weighted norm in Rn:
‖α‖2

K = 〈Kα, α〉, (15)

where the inner product 〈·, ·〉 in the right-hand side is the ordinary Euclidean inner product
in Rn. Then J1 is expressed as

J1 = Eε‖α̂ − α∗‖2
K. (16)

It is known that the above J1 can be decomposed into the bias and variance terms (see
e.g., Geman et al., 1992; Heskes, 1998):

J1 = ‖Eεα̂ − α∗‖2
K + Eε‖α̂ − Eεα̂‖2

K. (17)

The variance term Eε‖α̂ − Eεα̂‖2
K can be expressed as

Eε‖α̂ − Eεα̂‖2
K = σ2tr

(
KXX�) , (18)

where tr (·) denotes the trace of a matrix, i.e., the sum of diagonal elements. Eq.(18)
implies that the variance term Eε‖α̂ − Eεα̂‖2

K in Eq.(17) can be calculated if the noise

6When {K(x, xi)}n
i=1 are linearly dependent, α∗ is not determined uniquely. In this case, we adopt

the minimum norm one.
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variance σ2 is available. When σ2 is unknown, one of the practical estimates is given as
follows (see e.g., Wahba, 1990; Gu et al., 1992):

σ̂2 =

∑n
i=1

(
f̂(xi) − yi

)2

n − tr (KX)
=

‖KXy − y‖2

n − tr (KX)
. (19)

Note that ‖ · ‖ in the numerator of the right-hand side of Eq.(19) denotes the ordinary
Euclidean norm in Rn.

On the other hand, the bias term ‖Eεα̂−α∗‖2
K in Eq.(17) is totally inaccessible since

both Eεα̂ and α∗ are unknown. The key idea of SIC is to assume that a linear unbiased
estimate α̂u of the unknown true parameter vector α∗ is available:

Eεα̂u = α∗, (20)

where α̂u is given by
α̂u = Xuy. (21)

Sugiyama and Müller (2002) proved that such Xu is given by

Xu = K†, (22)

where † denotes the Moore-Penrose generalized inverse. Using the unbiased estimate α̂u,
the bias term ‖Eεα̂ − α∗‖2

K in Eq.(17) is expressed by

‖Eεα̂ − α∗‖2
K = ‖α̂ − α̂u‖2

K + 2〈KEε(α̂ − α̂u), Eε(α̂ − α̂u) − (α̂ − α̂u)〉
−‖Eε(α̂ − α̂u) − (α̂ − α̂u)‖2

K. (23)

However, the second and third terms in the right-hand side of Eq.(23) are still inaccessible
since Eε(α̂ − α̂u) is unknown, so we replace them by their expectations over the noise.

Then we have the subspace information criterion (SIC)7 (Sugiyama and Ogawa, 2001;
Sugiyama and Müller, 2002):

SIC1[X] = ‖(X − Xu)y‖2
K − σ2tr

(
K(X − Xu)(X − Xu)

�)
+σ2tr

(
KXX�) . (24)

Note that the subscript 1 is added to ‘SIC’ in order to emphasize that it is an estimator
of J1 (cf. Section 4.1). It was shown that, for any learning matrix X, SIC1 is an unbiased
estimator of J1:

EεSIC1[X] = J1[X ]. (25)

7The name subspace information criterion (SIC) came from the fact that it was first introduced for
selecting subspace models (Sugiyama and Ogawa, 2001). However, nowadays SIC is not only used for
choosing the subspace (i.e., the range of X), but also used for choosing the learning matrix X itself
(Sugiyama and Müller, 2002). Therefore, in Eq.(24), we described SIC as a functional of the learning
matrix X. For example, in the case of ridge regression (see Eq.(7)), SIC is regarded as a function of the
ridge parameter λ and can be used for choosing the best ridge parameter.
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4 Regularization Approach to Stabilizing SIC

As shown in the previous section, SIC is an unbiased estimator of the essential gener-
alization error J1, and this good property still holds even in finite sample cases (i.e.,
non-asymptotic cases). Sugiyama and Müller (2002) demonstrated that SIC can be suc-
cessfully applied to the ridge parameter selection when the noise level is low or medium.
However, when the noise level is very high, the performance of SIC sometimes becomes
unstable because the variance of SIC can be large. In this section, we propose a method
for stabilizing SIC.

4.1 Extracting Essential Part of SIC

SIC1 defined by Eq.(24) includes terms that do not depend on X. Indeed, SIC1 can be
expressed as

SIC1[X] = 〈KXy, Xy〉 − 2〈KXy, Xuy〉 + 〈KXuy, Xuy〉
+2σ2tr

(
X�

u KX
)− σ2tr

(
X�

u KXu

)
. (26)

Since SIC1 is used for choosing the learning matrix X, the third and fifth terms in
Eq.(26) can be ignored for this purpose. From here on, we use the term ‘SIC’ for referring
to Eq.(26) without the third and fifth terms, i.e., we define

SIC[X] = 〈KXy, Xy〉 − 2〈KXy, Xuy〉 + 2σ2tr
(
X�

u KX
)
. (27)

Similarly, J1 defined by Eq.(13) can be expressed as

J1[X] = Eε‖f̂‖2
H − 2Eε〈f̂ , fS〉H + ‖fS‖2

H
= Eε〈KXy, Xy〉 − 2Eε〈KXy, Xuz〉 + 〈KXuz, Xuz〉, (28)

where z is the noiseless sample value vector defined by

z = (f(x1), f(x2), . . . , f(xn))�. (29)

Let us denote the first two terms in Eq.(28) by J :

J [X] = Eε‖f̂‖2
H − 2Eε〈f̂ , fS〉H

= Eε〈KXy, Xy〉 − 2Eε〈KXy, Xuz〉. (30)

Then it can be confirmed that, for any learning matrix X, SIC given by Eq.(27) is an
unbiased estimator of J :

EεSIC[X] = J [X ]. (31)
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Eεα̂

α̂

α∗

α̂r

Eεα̂r

Rn

Figure 1: Basic idea of the regularized SIC (RSIC). The bias term ‖Eεα̂−α∗‖2
K (depicted

by the solid line) is roughly estimated by ‖α̂ − α̂r‖2
K (depicted by the dotted line),

where α̂r is a regularized estimate. The regularized estimate α̂r is slightly biased, so its
expectation Eεα̂r no longer agrees with the true parameter α∗. On the other hand, the
‘scatter’ of α̂r (denoted by the thin-colored circle) may be far smaller than that of the
unbiased estimate α̂u (denoted by the dark-colored circle).

4.2 The Regularized SIC

According to Tsuda et al. (2002), the instability of SIC is mainly caused by the large
variance of the unbiased estimate α̂u, which plays an essential role in the derivation of
SIC (see Section 3). In order to reduce the variance of SIC, Tsuda et al. (2002) proposed
replacing the linear unbiased estimate α̂u by a linear regularized estimate α̂r:

α̂r = Xry. (32)

Namely, the bias term ‖Eεα̂ − α∗‖2
K in Eq.(17) is roughly estimated by ‖α̂ − α̂u‖2

K in
the original SIC, while Tsuda et al. (2002) proposed estimating it by ‖α̂ − α̂r‖2

K (see
Figure 1). The regularized estimate α̂r is slightly biased, so its expectation Eεα̂r no
longer agrees with the true parameter α∗. On the other hand, the ‘scatter’ of α̂r may be
far smaller than that of the unbiased estimate α̂u. The learning matrix Xr that provides
the linear regularized estimate α̂r is given, e.g., by

Xr = (K2 + γI)−1K, (33)

where γ is the regularization parameter that controls the degree of regularization in SIC.
Note that the following discussions are valid for any learning matrix Xr, but we mainly
focus on Eq.(33) for simplicity. We refer to SIC defined by Eq.(27) with Xu replaced by
Xr as the regularized SIC (RSIC):

RSIC[X; Xr] = 〈KXy, Xy〉 − 2〈KXy, Xry〉 + 2σ2tr
(
X�

r KX
)
, (34)
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where the notation RSIC[X ; Xr] means that RSIC is a functional of a learning matrix
X with a ‘parameter’ matrix Xr. It was experimentally shown that this regularization
approach works effectively for stabilizing SIC (Tsuda et al., 2002). However, the degree
of regularization (e.g., the regularization parameter γ in Eq.(33)) should be appropriately
determined, which is still a open problem. In the following, we propose a method to
determine the degree of regularization of RSIC.

4.3 Expected Squared Error of RSIC

Let us define the expected squared error (ESE) between RSIC and J by

ESERSIC[Xr; X] = Eε(RSIC[X; Xr] − J [X])2, (35)

where the notation ESERSIC[Xr; X] means that we treat ESERSIC as a functional of the
matrix Xr with a ‘parameter’ matrix X. In the following, we often omit [Xr; X]. Our
aim is to determine Xr in RSIC so that the above ESERSIC is minimized.

Similar to Eq.(17), ESERSIC can be decomposed into the bias and variance terms:

ESERSIC[Xr; X] = Bias2
RSIC[Xr; X] + VarRSIC[Xr; X], (36)

where

BiasRSIC[Xr; X] = EεRSIC[X; Xr] − J [X], (37)

VarRSIC[Xr; X] = Eε(RSIC[X; Xr] − EεRSIC[X; Xr])
2. (38)

Note that the bias of SIC is zero (see Eq.(31)), but there is no guarantee that ESE of SIC
is small since the variance of SIC can be large.

Let B and C be n-dimensional matrices defined by

B = 2X�
u KX − 2X�

r KX, (39)

C = X�KX − 2X�
r KX. (40)

Then we have the following lemmas.

Lemma 1 BiasRSIC is expressed by

BiasRSIC = 〈Bz, z〉, (41)

where z is defined by Eq.(29).

Lemma 2 Under the assumption that {εi}n
i=1 are independently drawn from the normal

distribution with mean zero and variance σ2, VarRSIC is expressed by

VarRSIC = σ2‖(C + C�)z‖2 + σ4tr
(
C2 + C�C

)
. (42)

Sketches of the proofs of all lemmas and theorems are given in Appendix. See the
separate technical report (Sugiyama et al., 2003) for the complete proofs. Note that the
normality of the noise is used only in Lemma 2, not in Lemma 1.
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4.4 Estimating the Expected Squared Error of RSIC

In Eqs.(41) and (42), the noiseless sample value vector z defined by Eq.(29) is unknown.
Therefore, BiasRSIC and VarRSIC can not be directly calculated in practice. Now let us
define

B̂ias2
RSIC[Xr; X] = 〈By, y〉2 − σ2‖(B + B�)y‖2 − 2σ2tr (B) 〈By, y〉

+σ4tr
(
B2 + B�B

)
+ σ4tr (B)2 , (43)

V̂arRSIC[Xr; X] = σ2‖(C + C�)y‖2 − σ4tr
(
C2 + C�C

)
. (44)

Then the following theorem holds.

Theorem 3 Under the assumption that {εi}n
i=1 are independently drawn from the normal

distribution with mean zero and variance σ2, the following relations hold for any Xr and
X.

EεB̂ias2
RSIC[Xr; X] = Bias2

RSIC[Xr; X], (45)

EεV̂arRSIC[Xr; X] = VarRSIC[Xr; X]. (46)

The above theorem shows that B̂ias2
RSIC and V̂arRSIC are unbiased estimators of

Bias2
RSIC and VarRSIC, respectively.

Let us define

ÊSERSIC[Xr; X] = B̂ias2
RSIC[Xr; X] + V̂arRSIC[Xr; X]. (47)

Then, from Theorem 3, we immediately have the following corollary.

Corollary 4 Under the assumption that {εi}n
i=1 are independently drawn from the normal

distribution with mean zero and variance σ2, the following relation holds for any Xr and
X.

EεÊSERSIC[Xr; X] = ESERSIC[Xr; X]. (48)

Corollary 4 shows that the ÊSERSIC defined by Eq.(47) is an unbiased estimator of

ESERSIC. Based on this corollary, we propose using ÊSERSIC[Xr; X] for determining

the degree of regularization of RSIC, i.e., Xr is determined such that ÊSERSIC[Xr; X]

is minimized. Note that ÊSERSIC[Xr; X] depends on the learning matrix X, so Xr is
individually optimized for each X.

For example, when X and Xr are both ridge regression8, RSIC is treated as a function
of λ with a tuning parameter γ and ÊSERSIC is treated as a function of γ that depends
on λ. The regularization parameter γ in RSIC is determined for each ridge parameter λ
such that ÊSERSIC is minimized, and then λ is determined such that RSIC is minimized:

λ̂RSIC = argmin
λ

RSIC(λ; γ̂λ), (49)

8Namely, X is given by Eq.(8) and Xr is given by Eq.(33).
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Figure 2: Learning target function and 50 training examples with noise variance σ2 = 0.09.

where
γ̂λ = argmin

γ
ÊSERSIC(γ; λ). (50)

When the noise variance σ2 is unknown, it can be estimated, e.g., by Eq.(19).

5 Computer Simulations

In this section, the effectiveness of the proposed generalization error estimation method
is investigated through computer simulations.

5.1 Illustrative Examples

First, a simple artificial simulation shows how the proposed method works9.

5.1.1 Setting

For illustration purpose, let the dimension d of the input vector be 1. We use the Gaussian
RKHS with width c = 1, which may be one of the standard RKHSs (see e.g., Vapnik,
1998; Schölkopf et al., 2000):

K(x, x′) = exp

(
−(x − x′)2

2c2

)
. (51)

We use f(x) = sinc(x) as the learning target function (see Figure 2), which is often used
as an illustrative regression example (e.g., Vapnik, 1998; Schölkopf et al., 2000). Note

9Because of the space limitation, we describe the results only briefly here. For extensive discussions,
see Sugiyama et al. (2003)
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that the above sinc function is included in the Gaussian RKHS10.
The sample points {xi}n

i=1 are independently drawn from the uniform distribution on
(−π, π). The sample values {yi}n

i=1 are created as yi = f(xi) + εi, where the noise {εi}n
i=1

are independently drawn from the normal distribution with mean zero and variance σ2.
We consider the following four cases as the number n of training examples and the noise
variance σ2:

(n, σ2) = (100, 0.01), (100, 0.09),

(50, 0.01), (50, 0.09), (52)

i.e., we investigate the cases with small/large noise levels and small/large samples. An
example of the training set is also illustrated in Figure 2. The simulations are repeated 100
times for each (n, σ2) in Eq.(52), randomly drawing the sample points {xi}n

i=1 and noise
{εi}n

i=1 from scratch in each trial. Note that in theory, we fix the training sample points
{xi}n

i=1 and only change the noise {εi}n
i=1 (see Section 2). However, in this experiment,

we change both the training sample points {xi}n
i=1 and noise {εi}n

i=1 because we would
like to investigate whether the proposed method works irrespective of the choice of the
training set.

We use the kernel regression model (3), and the parameters {αi}n
i=1 in the model are

learned by ridge regression, i.e., the learning matrix is given by Eq.(8).

5.1.2 Investigating Generalization Error Estimation Performance

First, we illustrate how SIC and RSIC work in generalization error estimation. The
precision of SIC and RSIC is investigated as a function of the ridge parameter λ, using
the following values:

λ ∈ {10−3, 10−2.5, 10−2, . . . , 103}. (53)

When the ridge regression (8) is used, it holds that K� = K, X� = X, and K†KX =
X. Therefore, SIC given by Eq.(27) can be expressed in the following simpler form.

SIC(λ) = 〈XλKXλy, y〉 − 2〈Xλy, y〉 + 2σ2tr (Xλ) , (54)

where Xλ denotes the learning matrix (8) with a ridge parameter λ.
We calculate SIC by the above simpler form, where the noise variance σ2 is estimated

by

σ̂2
λ =

‖KXλy − y‖2

n − tr (KXλ)
. (55)

10As described in Smola et al. (1998) and Girosi (1998), the Gaussian RKHS is spanned by the function
f(x) that belongs to L2(R) and satisfies ∫ ∞

−∞

|f̃(ω)|2
k̃(ω)

dω < ∞,

where f̃(ω) is the Fourier transform of the function f(x) and k̃(ω) is the Fourier transform of exp
(
− x2

2c2

)
.

The sinc function belongs to L2(R), and its Fourier transform is zero for |ω| > π. Therefore, the above
conditions are fulfilled so the sinc function is included in the Gaussian RKHS.
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Figure 3: Values of Error(λ), SIC(λ), and RSIC(λ). The horizontal axis denotes the value
of λ in log-scale. From top, the graphs denote the mean Error with error bar, the mean
SIC with error bar, and the mean RSIC with error bar. Dashed curves in the bottom two
graphs are the mean Error (same as the curve in the top graph).

RSIC is calculated by Eq.(34), where the ridge regression (33) is used for obtaining
the regularized estimator α̂r. The regularization parameter γ in RSIC is determined so
that ÊSERSIC(γ; λ) is minimized (see Eq.(47)). Note that the optimization of γ is individ-
ually carried out for each λ in Eq.(53). The regularization parameter γ is selected from

{10−3, 10−2.5, 10−2, . . . , 103}. The noise variance σ2 in RSIC and ÊSERSIC is estimated by
Eq.(55).

In this experiment, we measure the generalization error by the following criterion,
which is equivalent to J without the expectation Eε (see Eq.(30)):

Error(λ) = ‖f̂λ‖2
H − 2〈f̂λ, fS〉H

= 〈KXλy, Xλy〉 − 2〈Xλy, z〉, (56)

where f̂λ denotes the learned function with a ridge parameter λ.
Figure 3 displays the values of Error(λ), SIC(λ), and RSIC(λ) as a function of the

ridge parameter λ for each (n, σ2) in Eq.(52). The horizontal axis denotes the values of λ
in log-scale. From top, the graphs denote the mean Error with error bar, the mean SIC
with error bar, and the mean RSIC with error bar. The mean is taken over 100 trials, and
the error bar denotes the standard deviation over 100 trials. In order to clearly compare
the mean curves, the mean Error is also drawn by the dashed line in the bottom two
graphs.
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Figure 4: Values of ESE (35), Bias2 (37), and Var (38) for SIC and RSIC. The horizontal
axis denotes the value of λ in log-scale.

Figure 4 depicts the values of ESE (35), Bias2 (37), and Var (38) of SIC and RSIC as
a function of the ridge parameter λ. Note that, in this simulation, the expectation over
the noise included in the definitions of ESE, Bias, and Var is replaced by the mean over
100 trials, where both the training sample points {xi}n

i=1 and noise {εi}n
i=1 are changed.

When (n, σ2) = (100, 0.01), the left graphs in Figure 3 show that the mean SIC seems
to capture the mean Error very well and the size of the error bar looks reasonable. The
mean RSIC looks almost the same as the mean SIC for medium/large λ, but the mean
RSIC is slightly over-estimated for small λ. In exchange, the error bar of RSIC is slightly
smaller than that of SIC for small λ. Indeed, the left graphs in Figure 4 show that
for small λ, Bias2

RSIC is slightly larger than Bias2
SIC but VarRSIC is slightly smaller than

VarSIC. Consequently, ESERSIC and ESESIC are comparable. When (n, σ2) = (100, 0.09),
the right graphs in Figure 3 show that the mean SIC still captures the mean Error very
well. However, the size of the error bar is rather large for small λ. In contrast, the size of
the error bars of RSIC is compressed for small λ, in exchange for the slight over-estimation
of the mean RSIC for small λ. Indeed, the right graphs in Figure 4 show that while the
variance is largely suppressed for small λ, the increase in the squared bias is relatively
small. As a result, ESE is much improved for small λ and it stays almost the same for
medium/large λ. When the number n of training examples is 50, all the results are almost
identical to the case with n = 100. For this reason, we omit the graphs.

The above simulation results show that RSIC with ÊSERSIC maintains the good per-
formance of SIC when the noise level is low, and it highly improves the precision over SIC
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Figure 5: Box plot of Error obtained by the ridge parameter selected based on SIC or
RSIC. The box plot notation specifies marks at 5, 25, 50, 75, and 95 percentiles of values
from bottom. ‘OPT’ indicates the optimal choice of the ridge parameter. Note that the
values of Error can be negative since a positive constant is ignored.

when the noise level is high. Furthermore, it is notable that the simulation results are
almost unchanged even when the number of training examples is decreased. This may be
a useful property in practice.

5.1.3 Investigating Model Selection Performance

Now we illustrate how SIC and RSIC work in model selection. We choose the ridge
parameter λ from Eq.(53) so that SIC or RSIC is minimized. The goodness of the selected
ridge parameter is again evaluated by the Error from Eq.(56).

Figure 5 depicts the values of Error obtained by the ridge parameter selected based on
SIC or RSIC. The box plot notation specifies marks at 5, 25, 50, 75, and 95 percentiles
from bottom. ‘OPT’ indicates the optimal choice of the ridge parameter, i.e., we actually
calculate Error for each λ in Eq.(53) and selected the one that minimizes Error. Note that
the values of Error can be negative since a positive constant is ignored in the definition
of Error (56) (cf. Eq.(10)).

When (n, σ2) = (100, 0.01), the error obtained by RSIC is comparable to that of SIC
(see the left plot in Figure 5), this fact is also confirmed by the 95% t-test (see e.g.,
Henkel, 1979). When (n, σ2) = (100, 0.09), the distributions of the error obtained by SIC
and RSIC are comparable for 5, 25, and 50 percentiles, but RSIC improves 75 and 95
percentiles over SIC (see the right plot in Figure 5). The t-test says that RSIC surely
improves over SIC. When the number n of training examples is 50, all the results are
again similar to the case with n = 100 (although the the improvement of RSIC over SIC is
not statistically significant when (n, σ2) = (50, 0.09)). For this reason, we omit the plots.

The above model selection simulation results show that RSIC and SIC perform simi-
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larly when the noise level is low, and RSIC works better than SIC when the noise level is
high. Especially, RSIC mostly improves higher percentiles of the obtained error (see Fig-
ure 5), from which we conjecture that RSIC is a robust model selection criterion against
‘wicked’ training sets.

5.2 Real Data Sets

In Section 5.1, we found that RSIC works well for a very simple artificial data set. Here we
apply RSIC to real data sets, and evaluate whether this good property can be carried over
to practical problems. We will use 10 practical data sets provided by DELVE (Rasmussen
et al., 1996): Abalone, Boston, Bank-8fm, Bank-8nm, Bank-8fh, Bank-8nh, Kin-8fm,
Kin-8nm, Kin-8fh, and Kin-8nh.

The Abalone data set includes 4177 samples, each of which consists of 9 physical
measurements. The task is to estimate the last attribute (the age of abalones) from
the rest. The first attribute is qualitative (male/female/infant) so it is ignored, i.e., 7-
dimensional input and 1-dimensional output data is used. The Boston data set includes
506 samples with 13-dimensional input and 1-dimensional output data. The ’Bank’ data
family consists of four different data sets. They are labeled as ‘fm’, ‘nm’, ‘fh’, and ‘nh’,
where ‘f’ or ‘n’ signifies ‘fairly linear’ or ‘non-linear’, respectively, and ‘m’ or ‘h’ signifies
‘medium unpredictability/noise’ or ‘high unpredictability/noise’, respectively. Each of the
4 data sets includes 8192 samples, consisting of 8-dimensional input and 1-dimensional
output data. The ‘Kin’ data family also consists of four different data sets labeled as
‘fm’, ‘nm’, ‘fh’, and ‘nh’. Each of the 4 data sets includes 8192 samples, consisting of
8-dimensional input and 1-dimensional output data.

For convenience, every attribute is normalized to [0, 1]. 100 randomly selected samples
{(xi, yi)}100

i=1 are used for training. In the real data set, we can not measure the general-
ization error by Eq.(56) since neither the true function f nor its projection fS is known.
Instead, we evaluate the performance by the mean squared test error defined by

Test Error =
1

n′

n′∑
i=1

(
f̂(x′

i) − y′
i

)2

, (57)

where {(x′
i, y

′
i)}n′

i=1 denote the test samples which are not used for training. A Gaussian
kernel with width c = 1 is again employed (see Eq.(51)), and the kernel regression model
(3) with ridge regression (8) is used for learning. The ridge parameter λ is selected from

λ ∈ {10−3, 10−2, 10−1, . . . , 103}. (58)

As ridge parameter selection strategies, we compare SIC, RSIC, leave-one-out cross-
validation (CV)11 , and an empirical Bayesian method (EB) (Akaike, 1980). SIC is cal-
culated by Eq.(54), where the noise variance σ2 is estimated by Eq.(55). For each λ in

11For the kernel regression model (3), there are two possibilities of calculating the leave-one-out error.
One is to use the full kernel regression model with n kernels all through the leave-one-out procedure,
i.e., when one sample is left, the corresponding kernel function is kept. The other is to use the reduced
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Table 1: Normalized mean test errors and their standard deviations. The results of the
best method and all other methods with no significant difference (95% t-test) are described
in italic face.

Data SIC RSIC Cross Validation Empirical Bayes

Abalone 1 .005 ± 0 .050 1 .015 ± 0 .045 1 .015 ± 0 .043 1.044 ± 0.083

Boston 1 .000 ± 0 .218 1 .000 ± 0 .218 1.113 ± 0.199 1.138 ± 0.178

Bank-8fm 1 .001 ± 0 .066 1.034 ± 0.100 1.040 ± 0.095 1.029 ± 0.092

Bank-8nm 1 .002 ± 0 .063 1 .013 ± 0 .071 1.023 ± 0.077 1.054 ± 0.090

Bank-8fh 1.081 ± 0.088 1 .037 ± 0 .097 1.063 ± 0.082 1.066 ± 0.104

Bank-8nh 1.062 ± 0.079 1 .008 ± 0 .056 1 .004 ± 0 .050 1.344 ± 0.113

Kin-8fm 1 .000 ± 0 .077 1 .000 ± 0 .077 1 .005 ± 0 .093 1.526 ± 0.253

Kin-8nm 1 .009 ± 0 .060 1 .006 ± 0 .056 1.078 ± 0.063 1.135 ± 0.025

Kin-8fh 1.046 ± 0.080 1 .022 ± 0 .061 1 .029 ± 0 .067 1.086 ± 0.045

Kin-8nh 1.160 ± 0.094 1.077 ± 0.091 1 .020 ± 0 .031 1.031 ± 0.047

Eq.(58), the regularization parameter γ in RSIC is chosen from {10−3, 10−2, 10−1, . . . , 103}
so that ÊSERSIC is minimized. The noise variance σ2 in RSIC and ÊSERSIC is estimated
by Eq.(55).

The simulation is repeated 100 times, randomly selecting the training set {(xi, yi)}100
i=1

from scratch in each trial (i.e., sampling without replacement). Note that the test set
{(x′

i, y
′
i)}n′

i=1 also varies in each trial.
Simulation results are summarized in Table 1. The table describes the normalized

mean test errors and their standard deviations, where the values of the test error are
normalized so that the mean test error obtained by the optimal ridge parameter is 1.
The results of the best method and all other methods with no significant difference (95%
t-test) are described in italic face.

The result shows that RSIC gives the best or comparable results for 8 out of 10
data sets. It is interesting to note that RSIC outperforms SIC for data sets with high
noise (Bank-8fh, Bank-8nh, Kin-8fh, and Kin-8nh data sets), while RSIC gives fairly
comparable results to SIC for data sets with medium noise (Bank-8nm, Kin-8fm, and
Kin-8nm data sets). Therefore, RSIC can improve the degraded performance of SIC in
the high noise cases, and it tends to maintain the good performance of SIC in the medium
noise cases. In theory, we assumed that the noise {εi}n

i=1 are independently drawn from
the normal distribution with mean zero and common variance. On the other hand, this
assumption may not be fulfilled in the DELVE data sets. This implies that when using
RSIC in practice, the above assumption on the noise does not have to be rigorously

kernel regression model with n − 1 kernels in the leave-one-out procedure, i.e., when one sample is left,
the corresponding kernel function is also left. We took the former standpoint and used the closed-formula
for calculating the leave-one-out error (see e.g., Wahba, 1990; Orr, 1996).
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Table 2: Normalized mean test errors and their standard deviations for the ridge regression
with RSIC and the support vector regression with 10-fold cross-validation. The results of
the significantly better method (95% t-test) are described in bold face.

Data Ridge+RSIC SVR+10CV

Abalone 1.015 ± 0.045 1.096 ± 0.118

Boston 1.000 ± 0.218 0.955 ± 0.198

Bank-8fm 1.034 ± 0.100 1.157 ± 0.148

Bank-8nm 1.013 ± 0.071 1.217 ± 0.168

Bank-8fh 1.037 ± 0.097 1.095 ± 0.127

Bank-8nh 1.008 ± 0.056 0.988 ± 0.104

Kin-8fm 1.000 ± 0.077 1.059 ± 0.143

Kin-8nm 1.006 ± 0.056 1.056 ± 0.103

Kin-8fh 1.022 ± 0.061 1.020 ± 0.091

Kin-8nh 1.077 ± 0.091 1.078 ± 0.101

satisfied. Compared with CV and EB, RSIC is comparable or better for most of the data
sets.

From the above experimental results, we conjecture that RSIC should be regarded as
a practical model selection criterion for choosing the ridge parameter.

Finally, we compare our results also with ε-support vector regression (ε-SVR) (Vap-
nik, 1998; Schölkopf and Smola, 2002), which became recently one of the most popular
regression algorithms. In SVR, we used the same Gaussian kernel with width c = 1 (see
Eq.(51)). The regularization parameter C and the tube width ε in SVR are chosen from
a wide range of values using 10-fold cross-validation. We obtained the solutions of SVR
by the SVM light package (Joachims, 1999).

The simulation results are described in Table 2, where the results of the significantly
better method (95% t-test) are described in bold face. The table shows that SVR works
well for the Boston, Bank-8nh, Kin-8fh, and Kin-8nh data sets (although the 95% t-test
does not say that they are significantly different from the results of the ridge regression
with RSIC), and it tends to give larger errors for other data sets. Given the fact that
the Boston, Bank-8nh, and Kin-8fh data sets may include large noise, the ε-insensitive
loss seems to be more robust for such large noise cases (cf. Müller et al., 1998). However,
SVR tends to give large errors for the given data sets that include small noise (Bank-8fm,
Bank-8nm, Kin-8fm, and Kin-8nm data sets). Therefore, the ε-insensitive loss is not
as effective as the squared loss on the medium/small noise cases considered in the table
(see also Müller et al., 1998; Schölkopf and Smola, 2002). Note that the main difference
between the ridge regression and SVR is the loss function: The ridge regression uses
a squared loss (see Eq.(7)) while SVR uses the ε-insensitive loss. Which one will be
advantageous, certainly depends on what noise type is inherent to the data generating
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process.
Note that the computation time for the ridge regression with RSIC is faster than that

for SVR with cross-validation because latter requires retraining12. For this reason, we
consider using ridge regression with RSIC to be advantageous in practice.

6 Conclusions and Outlook

In this paper, we proposed using Stein’s idea in the context of model selection, i.e.,
we suggested that the use of a biased estimator, e.g., by means of regularization, can
yield more stable and robust and thus better estimators of the generalization error than
its unbiased counterpart. Thus we sacrificed the unbiasedness for the sake of variance
reduction in a model selection criterion by actively optimizing and balancing out this
bias/variance trade-off.

This general idea was applied for a particular criterion where we regularized the un-
biased estimator of the expected generalization error called the subspace information cri-
terion (SIC). Our approach was to directly estimate the expected squared error between
the generalization error estimator and the expected generalization error, and determine
the degree of regularization in the regularized SIC (RSIC) such that the estimator of the
expected squared error is minimized. Computer simulations with artificial and real data
sets showed that our approach surely contributes to obtaining a more precise estimator of
the expected generalization error, and it can be successfully applied to the ridge parameter
selection.

In this paper, we focused on the case that SIC is regularized by Xr given by Eq.(33).
However, the proposed method for determining the degree of RSIC is valid for any type of
regularization, i.e., the estimator of the expected squared error given by Eq.(47) does not
depend on the form of Xr. Finding improved ways of regularization in particular using
domain knowledge, is left to future exploration. Furthermore, it would be interesting to
extend the current framework such that efficient non-linear estimators such as the LASSO
(Tibshirani, 1996) can be dealt with.

In Eq.(47), we gave an unbiased estimator of the expected squared error between RSIC
and the expected generalization error. The simulation results reported in Section 5 showed
that the unbiased estimator of the expected squared error contributes beneficially to
stabilizing SIC. However, the unbiased estimator of the expected squared error can again
have large variance because of its unbiasedness (see the experimental results reported in
Sugiyama et al., 2003, for details). One of the promising future directions is to improve
the unbiased estimator of the expected squared error, to further enhance the precision of
RSIC.

The theoretical discussions given in this paper (Section 4) do not include the analysis
of estimating the noise variance σ2. From the simulation with artificial data sets (Sec-
tion 5.1), the influence of estimating the noise variance σ2 appears unproblematic because

12Note that retraining is not needed also for the ridge regression with leave-one-out cross-validation
because the leave-one-out error can be calculated analytically (see e.g., Wahba, 1990; Orr, 1996).
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the unbiasedness of SIC is almost satisfied, and therefore RSIC can improve the precision
over SIC. It still remains open to see whether this property can be shown to always hold
or not. Therefore, it is a further important step to investigate the influence of the noise
variance estimation more formally.

Our previous work (Sugiyama and Müller, 2002) showed that a linear unbiased esti-
mate of the projection fS exists if and only if the regression model is included in the span
of {K(x, xi)}n

i=1. For this reason, we chose to use the kernel regression model given by
Eq.(3). However, due to this fact, SIC given in Sugiyama and Müller (2002) can not be
used for selecting the kernel parameters (e.g., kernel width). In RSIC, on the other hand,
the linear unbiased estimate of the projection fS has not appeared explicitly anymore in
the definition (see Eq.(34)). Therefore, in principle, RSIC could be applied to regression
models which are not included in the span of {K(x, xi)}n

i=1, e.g., models with different
kernel width. However, currently we are still utilizing the linear unbiased estimate of the
projection fS for determining the degree of regularization in RSIC (see Section 4.3). It is
therefore interesting to devise other methods for determining the degree of regularization
in RSIC that do not use the linear unbiased estimate of the projection fS , to enable an
optimization of even the kernel parameters by RSIC.

In this paper, we pursued a better estimator of the generalization error. Another im-
portant issue in model selection research is to investigate the model selection performance.
For several model selection criteria such as Mallows’s CL (Mallows, 1964, 1973) and the
generalized cross-validation (Craven and Wahba, 1979; Wahba, 1990), asymptotic opti-
mality of the choice of the model has been investigated throughly (Craven and Wahba,
1979; Wahba, 1985; Li, 1986). It will be instructive to see whether similar discussions can
be made for SIC and RSIC.

Finally, another future direction is to apply our general idea of stabilizing model
selection criteria to other existing criteria. For example, the leave-one-out error is shown to
be an almost unbiased estimate of the expected generalization error (Luntz and Brailovsky,
1969, see also Schölkopf and Smola, 2002), but it can have a large variance. For this reason,
it is often recommended to use 5- or 10-fold cross-validation (i.e., divide the training set
into 5 or 10 disjoint sets). However, the number of folds in cross-validation actually
controls the trade-off between the bias and variance of the cross-validation estimates of
the expected generalization error. For this reason, it is highly important to determine the
number of folds in cross-validation so that the expected squared error between the cross-
validation estimate and the expected generalization error is minimized. We conjecture
that the approach taken in this paper can also play an important role in this challenging
problem.
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A Sketch of Proof of Lemma 1

It follows from Eq.(34) that EεRSIC is expressed as

EεRSIC = 〈X�KXz, z〉 + σ2tr
(
X�KX

)− 2〈X�
r KXz, z〉. (59)

Similarly, it follows from Eq.(30) that J is expressed as

J = 〈X�KXz, z〉 + σ2tr
(
X�KX

)− 2〈X�
u KXz, z〉, (60)

where only the third term is different from Eq.(59). Then BiasRSIC is expressed as

BiasRSIC = 〈(2X�
u KX − 2X�

r KX)z, z〉. (61)

Eqs.(61) and (39) yield Eq.(41).

B Sketch of Proof of Lemma 2

Let ε be the noise vector defined by

ε = (ε1, ε2, . . . , εn)�. (62)

Then VarRSIC is expressed as

VarRSIC = σ2‖(C + C�)z‖2 + Eε〈Cε, ε〉2 + σ4tr (C)2

+2Eε〈(C + C�)z, ε〉〈Cε, ε〉 − 2σ4tr (C)2 . (63)

On the other hand, it holds that

Eε〈Cε, ε〉2 = Eε

n∑
i,j,k,l=1

Ci,jCk,lεiεjεkεl, (64)

Eε〈(C + C�)z, ε〉〈Cε, ε〉 = Eε

n∑
i,j,k,l=1

(Ci,j + Cj,i)Ck,lziεjεkεl, (65)

where C i,j denotes the (i, j)-th element of C. It is known that when the random vari-
able εi is drawn from the normal distribution with mean zero and variance σ2, it holds
that Eεε

3
i = 0 and Eεε

4
i = 3σ4 (e.g., Lehmann, 1983). They imply that all terms in
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Eε

∑n
i,j,k,l=1 Ci,jCk,lεiεjεkεl vanish except four cases: i = j = k = l, i = j �= k = l,

i = k �= j = l, and i = l �= j = k. Therefore, we have

Eε〈Cε, ε〉2 = σ4tr (C)2 + σ4tr
(
C�C

)
+ σ4tr

(
C2
)
. (66)

Similarly, all terms in
∑n

i,j,k,l=1(C i,j + Cj,i)Ck,lziεjεkεl vanish, i.e.,

Eε〈(C + C�)z, ε〉〈Cε, ε〉 = 0. (67)

Substituting Eqs.(66) and (67) into Eq.(63), we obtain Eq.(42).

C Sketch of Proof of Theorem 3

It holds that

Eε〈By, y〉2 = Bias2
RSIC + σ2Eε‖(B + B�)y‖2 + 2σ2tr (B) Eε〈By, y〉

−σ4tr
(
B2 + B�B

)− σ4tr (B)2 (68)

from which we have Eq.(45). Similarly, it holds that

VarRSIC = Eε

(
σ2‖(C + C�)y‖2 − σ4tr

(
C2 + C�C

))
(69)

from which we have Eq.(46).
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