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1 Introduction

In recent years, a number of kernel-based learning algorithms such as the regularization net-
works [1], the support vector machines [7, 4, 5], and the Gaussian process regression [8] have
been investigated. These kernel machines are shown to work very well on real-world problems,
given appropriate kernel functions. For general purposes, the Gaussian kernel is widely used and
seems to work well [5]. On the other hand, a lot of attention have been paid recently to designing
kernel functions using the problem-dependent prior knowledge. Various methods for constructing
suitable kernels have been proposed [7, 3, 9, 6, 4]. In this contribution, we propose a framework
for designing kernel functions for regression.

2 A Kernel Design Framework for Regression

Let us consider a one-dimensional regression problem. Kernel regression tries to approximate an
unknown function f(x) by the sum of kernel functions centered at training input points:

f̂(x) =
n∑

i=1

K(x, xi), (1)

where K(x, x′) is a kernel function and {xi}n
i=1 are training input points. Roughly speaking, the

target function f(x) is locally approximated by the kernel function. For this reason, we consider
the problem of approximating local functions by a single kernel function.

Let Ω be a set of all local functions {Π(x)}. Let HΠ be a functional Hilbert space that includes
Ω. Then the well-known Karhunen-Loève expansion [2] asserts that the best approximation to the
set Ω of all local functions {Π(x)} is given by the eigenfunction φ0(x) associated with the largest
eigenvalue λ0 of the correlation operator R of the local functions {Π(x)}. More specifically, it holds
that

φ0 = argmin
φ∈HΠ, ‖φ‖=1

E‖Π − 〈Π, φ〉φ‖2, (2)

where E denotes the expectation over Π, ‖ · ‖ denotes the norm in HΠ, and 〈·, ·〉 denotes the inner
product in HΠ. Note that 〈Π, φ〉φ is the orthogonal projection of Π onto the subspace spanned by
φ, provided ‖φ‖ = 1. The leading eigenfunction φ0(x) is referred to as the principal component of
R. Based on this fact, we propose using the principal component φ0(x) as the kernel function, i.e.,

K(x, x′) = φ0

( |x − x′|
c

)
, (3)

where c is a positive scalar that controls the kernel width. We call the above kernel the principal
component (PC) kernels. For multi-dimensional regression problems, PC kernels may be con-
structed by the componentwise product of the one-dimensional PC kernel or by replacing |x − x′|
with the Euclidean norm.



For actually obtaining the PC kernels, the probability distribution of the local functions and
the topology in the functional Hilbert space HΠ (i.e., the inner product and norm) should be
specified. If a prior knowledge of the probability distribution of the local functions is available,
it can be effectively incorporated into constructing the kernel function. In the absence of such a
prior knowledge, we may use a non-informative prior knowledge such as a uniform distribution.

3 Constructing Kernel Functions for Binary Regression

Using the above framework, we design a kernel function for binary regression problems, where the
learning target function f(x) is binary. In the binary regression case, Ω is a set of all rectangle
functions {Π(x)} with different widths.

In order to obtain the PC kernels, the probability distribution of the rectangle functions should
be specified. Here let us treat the width of the rectangle functions as probabilistic. Since we do not
have any prior knowledge of the width of the rectangle functions, we use the uniform distribution
on a closed interval. If the standard L2-norm is used in the functional Hilbert space HΠ, we have
the following PC kernel.

K(x, x′) =

⎧⎨
⎩

cos
( |x − x′|

c

)
if

|x − x′|
c

≤ π

2
,

0 otherwise.
(4)
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