July 7, 2004.

Designing Kernel Functions Using the Karhunen-Loève Expansion

Institut Rechnerarchitektur und Softwaretechnik

¹ Fraunhofer FIRST, Germany ² Tokyo Institute of Technology, Japan

Masashi Sugiyama^{1,2} and Hidemitsu Ogawa²

Learning with Kernels

Kernel methods: Approximate unknown function f(x) by

- $\hat{f}(x) = \sum_{i=1}^{n} \alpha_i K(x, x_i)$ K(x, x'): Kernel function x_i : Training points
- Kernel methods are known to generalize very well, given appropriate kernel function.
 Therefore, how to choose (or design) kernel function is critical in kernel methods.

Recent Development in Kernel Design

Recently, a lot of attention have been paid to designing kernel functions for non-vectorial structured data.

e.g., strings, sequence, trees, graphs.

In this talk, however, we discuss the problem of designing kernel functions for standard vectorial data.

Choice of Kernel Function

A kernel function is specified by

- A family of functions (Gaussian, polynomial, etc.)
- Kernel parameters (width, order, etc.)
- We usually focus on a particular family (say Gaussian), and optimize kernel parameters by, e.g., cross-validation.
- In principle, it is possible to optimize the family of kernels by CV.
- However, this does not seem so common because of too many degrees of freedom.

Goal of Our Research

- We propose a method for finding optimal family of kernel functions using some prior knowledge on problem domain.
- We focus on
 - Regression (squared-loss)
 - Translation-invariant kernel

K(x, x') = K(x - x')

We do not assume kernel is positive semidefinite, since "kernel trick" is not needed in some regression methods (e.g. ridge).

Outline of The Talk

- A general method for designing translation-invariant kernels.
- Example of kernel design for binary regression.
- Implication of the results.

Specialty of Learning with Translation-Invariant Kernels

Ordinary linear models:

$$\hat{f}(x) = \sum_{i=1}^{p} \alpha_i \varphi_i(x)$$

Kernel models:

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i K(x - x_i)$$

 α_i : Parameters $\varphi_i(x)$: Basis function

$$K(x-x')$$

: Translation-
invariant kernel

x_i is center of kernels.
 All basis functions have same shape!

Local Approximation by Kernels⁸

Intuitively, each kernel function is responsible for local approximation in the vicinity of each training input point.

Therefore, we consider the problem of approximating a function locally by a single kernel function.

Set of Local Functions and Function Space

- $\psi(x)$: A local function centered at x'
- Ψ : Set of all local functions
- *H* : A functional Hilbert space which contains Ψ (i.e., space of local functions)
 Suppose ψ(x) is a probabilistic function.

Optimal Approximation to Set of Local Functions

- We are looking for the optimal approximation to the set Ψ of local functions $\psi(x)$.
- Since we are interested in optimizing the family of functions, scaling is not important.

• We search the optimal direction ϕ_{opt} in H.

$$\phi_{opt} = \underset{\phi \in H}{\arg\min E} \left\| \psi - \psi_{\phi} \right\|^{2}$$

- E : Expectation over ψ
- ψ_{ϕ} : Projection of ψ onto ϕ

11 **Karhunen-Loève Expansion** $\phi_{opt} = \underset{\phi \in \mathcal{H}}{\arg\min E} \left\| \psi - \psi_{\phi} \right\|^{2}$ R : Correlation operator of local functions $R\varphi = E[\langle \varphi, \psi \rangle \psi]$ If Ψ is vector, $R = E \left| \psi \psi^T \right|$ $\langle \cdot, \cdot \rangle$: Inner product in *H* Optimal direction ϕ_{opt} is given by the eigenfunction ϕ_{max} associated with the largest eigenvalue λ_{max} of R. Н $R\phi_{\rm max} = \lambda_{\rm max}\phi_{\rm max}$ $\phi_{\rm max}$ Similar to PCA, but $E[\psi] \neq 0$.

Principal Component Kernel

12

Using ϕ_{opt} , we define the kernel function by

$$K(x, x') = \phi_{opt} \left(\frac{\|x - x'\|}{c} \right) \qquad x': \text{ Center}$$

c : Width

Since the above kernel consists of the principal component of the correlation operator, we call it the principal component (PC) kernel.

Widths of Rectangular Functions¹⁴

- We assume that the width of rectangular functions is bounded (and normalized).
- Since we do not have prior knowledge on the width, we should define its distribution in an "unbiased" manner.
- We use uniform distribution for the width since it is non-informative.

$$\theta_l, \theta_r \sim U(0,1)$$

Eigenvalue Problem

We use L₂ -space as a function space H.
 Considering the symmetry, the eigenvalue problem Rφ = λφ is expressed as

$$\int_0^1 r(x, y)\phi(y)dy = \lambda\phi(x)$$
$$r(x, y) = 1 - \max(x, y)$$

The principal component is given by

$$\phi_{\max}(x) = \sqrt{2}\cos\left(\frac{\pi}{2}x\right)$$

Implication of The Result

Binary classification is often solved as binary regression with squared-loss (e.g., regularization networks, least-squares SVMs).

Although binary function is not smooth at all, smooth Gaussian kernel often works very well in practice.

Why?

Implication of The Result (cont.)¹⁸

- By proper scaling, it can be confirmed that the shape of the obtained PC kernel is similar to Gaussian kernel.
- Both kernels work similarly in experiments.

Datasets	PC kernel	Gauss kernel
Banana	10.8 ± 0.6	11.4 ± 0.9
B.Cancer	27.1 ± 4.6	27.1 ± 4.9
Diabetes	23.2 ± 1.8	23.3 ± 1.7
F.Solar	33.6 ± 1.6	33.5 ± 1.6
Heart	16.1 ± 3.3	16.2 ± 3.4
Ringnorm	2.9 ± 0.3	6.7 ± 0.9
Thyroid	6.4 ± 3.0	6.1 ± 2.9
Titanic	22.7 ± 1.4	22.7 ± 1.0
Twonorm	2.6 ± 0.2	3.0 ± 0.2
Waveform	10.1 ± 0.7	10.0 ± 0.5

Implication of The Result (cont.)¹⁹

- This implies that Gaussian-like bellshaped function approximates binary functions very well.
- This partially explains why smooth Gaussian kernel is suitable for nonsmooth classification tasks.

Conclusions

- Optimizing the family of kernel functions is a difficult task because it has infinitely many degrees of freedom.
- We proposed a method for designing kernel functions in regression scenarios.
- The optimal kernel shape is given by the principal component of correlation operator of local functions.
- We can beneficially use prior knowledge on problem domain (e.g., binary)