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Learning with KernelsLearning with Kernels

Kernel methods:
Approximate unknown function         by

Kernel methods are known to generalize 
very well, given appropriate kernel function.
Therefore, how to choose (or design) 
kernel function is critical in kernel methods.

∑
=

=
n

i
ii xxKxf

1

),()(ˆ α

)(xf

iα
),( xxK ′

: Parameters
: Kernel function

ix : Training points



3Recent Development
in Kernel Design

Recent Development
in Kernel Design

Recently, a lot of attention have been 
paid to designing kernel functions for 
non-vectorial structured data.
e.g., strings, sequence, trees, graphs.
In this talk, however, we discuss the 
problem of designing kernel functions 
for standard vectorial data.
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Choice of Kernel FunctionChoice of Kernel Function

A kernel function is specified by
A family of functions (Gaussian, polynomial, etc.)
Kernel parameters (width, order, etc.)

We usually focus on a particular family (say 
Gaussian), and optimize kernel parameters 
by, e.g., cross-validation.
In principle, it is possible to optimize the 
family of kernels by CV.
However, this does not seem so common 
because of too many degrees of freedom.
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Goal of Our ResearchGoal of Our Research

We propose a method for finding optimal 
family of kernel functions using some prior 
knowledge on problem domain.
We focus on

Regression (squared-loss)
Translation-invariant kernel

We do not assume kernel is positive semi-
definite, since “kernel trick” is not needed 
in some regression methods (e.g. ridge).
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Outline of The TalkOutline of The Talk

A general method for designing 
translation-invariant kernels.
Example of kernel design for binary 
regression.
Implication of the results.



7Specialty of Learning with
Translation-Invariant Kernels

Specialty of Learning with
Translation-Invariant Kernels
Ordinary linear models:

Kernel models:

is center of kernels.
All basis functions have same shape!

∑
=

−=
n

i
ii xxKxf

1
)()(ˆ α

iα

)( xxK ′−

: Parameters

: Translation-
invariant kernel

∑
=

=
p

i
ii xxf

1

)()(ˆ ϕα
)(xiϕ : Basis function

ix



8
Local Approximation by KernelsLocal Approximation by Kernels

Intuitively, each kernel function is 
responsible for local approximation in 
the vicinity of each training input point.

Therefore, we consider the problem of 
approximating a function locally by a 
single kernel function.
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9Set of Local Functions
and Function Space

Set of Local Functions
and Function Space

: A local function centered at     
: Set of all local functions
: A functional Hilbert space

which contains
(i.e., space of local functions)

Suppose          is a probabilistic function.
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: Projection of       onto

Optimal Approximation to
Set of Local Functions

Optimal Approximation to
Set of Local Functions

We are looking for the optimal approximation 
to the set     of local functions         .
Since we are interested in optimizing the 
family of functions, scaling is not important.
We search the optimal direction       in     .
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: Correlation operator of local functions

Optimal direction      is given by the 
eigenfunction associated with the 
largest eigenvalue of     .

Similar to PCA, but               .

Karhunen-Loève ExpansionKarhunen-Loève Expansion
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Principal Component KernelPrincipal Component Kernel

Using      , we define the kernel function by

Since the above kernel consists of the 
principal component of the correlation 
operator, we call it the principal 
component (PC) kernel.
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13Example of Kernel Design:
Binary Regression Problem
Example of Kernel Design:
Binary Regression Problem
Learning target function is binary.

The set of local functions is a set of 
rectangular functions with different width.

ix

)(xf

)(xψ

0

1

0

1

Learning target function is binary.

The set of local functions is a set of 
rectangular functions with different width.
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Widths of Rectangular FunctionsWidths of Rectangular Functions

We assume that the width of rectangular 
functions is bounded (and normalized).
Since we do not have prior knowledge on 
the width, we should define its distribution 
in an “unbiased” manner.
We use uniform distribution for the width 
since it is non-informative.
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Eigenvalue ProblemEigenvalue Problem

We use      -space as a function space     .
Considering the symmetry, the eigenvalue
problem               is expressed as

The principal component is given by 
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PC Kernel for Binary RegressionPC Kernel for Binary Regression
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Implication of The ResultImplication of The Result

Binary classification is often solved as 
binary regression with squared-loss                   
(e.g., regularization networks,         

least-squares SVMs).
Although binary 
function is not smooth 
at all, smooth Gaussian 
kernel often works very 
well in practice.
Why?
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Implication of The Result (cont.)Implication of The Result (cont.)
By proper scaling, it can be confirmed that 
the shape of the obtained PC kernel is 
similar to Gaussian kernel.
Both kernels work similarly in experiments.

33.5±1.633.6±1.6F.Solar

22.7±1.022.7±1.4Titanic
6.1±2.96.4±3.0Thyroid
6.7±0.92.9±0.3Ringnorm

16.2±3.416.1±3.3Heart

23.3±1.723.2±1.8Diabetes
27.1±4.927.1±4.6B.Cancer
11.4±0.910.8±0.6Banana

10.1±0.7
2.6±0.2

PC kernel

10.0±0.5
3.0±0.2

Gauss kernel

Waveform 
Twonorm

Datasets
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Implication of The Result (cont.)Implication of The Result (cont.)

This implies that Gaussian-like bell-
shaped function approximates binary 
functions very well.
This partially explains why smooth 
Gaussian kernel is suitable for non-
smooth classification tasks.
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ConclusionsConclusions

Optimizing the family of kernel functions 
is a difficult task because it has infinitely 
many degrees of freedom.
We proposed a method for designing 
kernel functions in regression scenarios.
The optimal kernel shape is given by the 
principal component of correlation 
operator of local functions.
We can beneficially use prior knowledge 
on problem domain (e.g., binary)


