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ABSTRACT
In model selection procedures in supervised learning, a
model is usually chosen so that the expected test error over
all possible test input points is minimized. On the other
hand, when the test input points (without output values) are
available in advance, it is more effetive to choose a model
so that the test error only at the test input points at hand
is minimized. In this paper, we follow this idea and de-
rive an estimator of the test error at the given test input
points for linear regression. Our estimator is proved to be
an unbiased estimator of the test error at the given test in-
put points under certain conditions. Through the simula-
tions with artificial and standard benchmark data sets, we
show that the proposed method is successfully applied in
test error estimation and is compared favorably to the stan-
dard cross-validation and an empirical Bayesian method in
ridge parameter selection.
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1 Introduction

Model selection in supervised learning is usually per-
formed as follows [1, 18, 16, 20, 12, 10, 17]. First, an
estimator of the expected test error over all possible test
input points (which is often called the generalization error)
is derived. Then a model is chosen so that the estimator
of the expected test error is minimized. On the other hand,
when the test input points (without output values) are avail-
able in advance, it is natural and more effective to choose
the model so that the test error only at the test input points
at hand is minimized.

In this paper, we follow this idea and shall derive an
estimator of the test error at the given test input points for
linear regression. We prove that this estimator is an unbi-
ased estimator of the test error at the given test input points

under certain conditions.
In experiments, we apply the proposed test error es-

timator to simple artificial and standard benchmark data
sets. The simulation results show that the proposed method
can successfully estimate the test error and is compared fa-
vorably to the standard cross-validation and an empirical
Bayesian method when it is used for the ridge parameter
selection.

2 Problem Formulation

In this section, we formulate the problem of estimating the
values of a target function at given test input points.

Let us denote the learning target function by f(x),
which is a real-valued function of d variables defined on
the domain D (⊂ R

d). We are given a set of n samples
called the training examples. A training example consists
of a sample point xi in D and a sample value yi in R. The
sample value yi is degraded by unknown additive noise ε i

with mean zero and unknown common variance σ 2.

{(xi, yi) | yi = f(xi) + εi}n
i=1. (1)

In many learning theories, {(xi, yi)}n
i=1 are assumed

to be drawn independently from a joint probability den-
sity function p(x, y) [20, 12, 19, 15], i.e., both the sample
points {xi}n

i=1 and the noise {εi}n
i=1 are treated as ran-

dom variables. In contrast, in this paper, we do not treat
the sample points {xi}n

i=1 as random but we treat them as
fixed. We only regard the noise {εi}n

i=1 as random. This
may be a key of the following discussion.

We employ the following linear regression model for
learning.

f̂(x) =
p∑

i=1

αiϕi(x), (2)

where {αi}p
i=1 are parameters to be estimated from train-

ing examples and {ϕi(x)}p
i=1 are the fixed linearly inde-

pendent basis functions. Let {α̂i}p
i=1 be a linear estimator,



i.e., letting

y = (y1, y2, . . . , yn)�, (3)

α̂ = (α̂1, α̂2, . . . , α̂n)�, (4)

where � denotes the transpose of a vector (or a matrix), we
estimate the parameter vector α̂ by

α̂ = Xy, (5)

where X is an n-dimensional matrix that does not depend
on the noise {εi}n

i=1. The matrix X , which we call the
learning matrix, can be any matrix but it usually depends
on the training sample points {xi}n

i=1. A popular choice of
X is the ridge estimation [8] given by

X = (A�A + λI)−1A�, (6)

where λ is a positive scalar called the ridge parameter, I
denotes the identity matrix, and A is the so-called design
matrix whose (i, j)-th element is given by

Ai,j = ϕj(xi). (7)

We assume that the design matrix A has rank p and n > p.
We are given a set {ti}nt

i=1 of nt test input points,
where ti ∈ D. Note that we also treat the test input points
{ti}nt

i=1 as fixed variables. The goal of learning is to ac-
curately estimate {f(ti)}nt

i=1, which are unknown output
values of the target function f(x) at the test input points
{ti}nt

i=1. Let us define the expected sum of squared test
errors over the noise {εi}n

i=1 by

Eε

nt∑
i=1

(
f̂(ti) − f(ti)

)2

, (8)

where Eε denotes the expectation over the noise {ε i}n
i=1.

For making the following discussions simple, let us define
the following quantity.

Jt[X] = Eε

nt∑
i=1

(
f̂(ti) − f(ti)

)2

−
nt∑
i=1

f(ti)2, (9)

where the second term
∑nt

i=1 f(ti)2 is a constant because
the learning target function f(x) and the test input points
{ti}nt

i=1 are fixed. Therefore, Eq.(9) is essentially the same
as the test error given in Eq.(8). From here on, we call
Eq.(9) the test error. We denote Jt as a functional of the
learning matrix X since under the above setting, specify-
ing the learned function f̂ is equivalent to specifying the
learning matrix X . In the following, we often omit X .

The aim of this paper is to derive an estimator of the
above test error (9). In the derivation of the estimator,
we assume that the target function f(x) is included in the
model (2), i.e., f(x) is expressed by

f(x) =
p∑

i=1

α∗
i ϕi(x), (10)

where {α∗
i }p

i=1 are the unknown true parameters. We
should admit that this assumption is rather restrictive.
However, we expect that this assumption does not have
to be rigorously fulfilled in practice because the proposed
method is experimentally shown to work well without the
above assumption (see Section 4).

3 Unbiased Estimator of Test Error

In this section, we derive an estimator of the test error (9).
In many model selection methods proposed so far

[20, 12, 19, 15], the expected test error over all possible
test samples (which is often referred to as the generaliza-
tion error) is estimated based on the empirical error (or the
training error) because the empirical error converges to the
expected test error in the large sample limit [12]. How-
ever, the empirical error may not converge to the error at
the given test input points. Therefore, in this paper, we do
not resort to the empirical error, but we shall directly esti-
mate the test error (9).

Let At be the design matrix for the test input points
{ti}nt

i=1, i.e., the (i, j)-th element of At is given by

[At]i,j = ϕj(ti). (11)

Let 〈·, ·〉 and ‖ · ‖ be the inner product and the norm, re-
spectively. Let tr (·) be the trace of a matrix, and let † be
the Moore-Penrose generalized inverse of a matrix [3, 9].
Then we have the following theorem.

Theorem 1 For any learning target function f(x) of the
form (10), any training sample points {xi}n

i=1, any test in-
put points {ti}nt

i=1, and any learning matrix X , it holds
that

Jt[X ] = Eε

[
‖AtXy‖2 − 2〈AtXy, AtA

†y〉

+ 2σ̂2tr
(
AtX(AtA

†)�
) ]

, (12)

where

σ̂2 =
‖AA†y − y‖2

n − p
. (13)

A proof of the above theorem is given in Appendix A.
Let us call the quantity inside the bracket of Eq.(12) an
Unbiased Points-of-interest-error Estimator (UPE):

UPE[X] = ‖AtXy‖2 − 2〈AtXy, AtA
†y〉

+2σ̂2tr
(
AtX(AtA

†)�
)

. (14)

Then Theorem 1 shows that the above UPE is an unbiased
estimator of the test error over the noise {εi}n

i=1:

EεUPE = Jt. (15)

Note that the above σ̂2 is an unbiased estimator of the
noise variance σ2. In practice, another efficient noise vari-
ance estimator (see e.g., [4, 20, 21]) may also be employed
in Eq.(14). However, in the following, we only use the un-
biased estimator (13) for simplicity.
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Figure 1. Target function f(x).

4 Simulations

In this section, we empirically evaluate the performance of
the proposed test error estimator UPE.

4.1 Artificial Illustrative Data Sets

First, we perform a simple artificial simulation for just il-
lustrating how the proposed test error estimator works.

Let the dimension d of the input vector be 1. We use
the linear regression model (2) for learning. Let the num-
ber p of basis functions be 10, and let the basis functions
{ϕi(x)}10

i=1 be

ϕi(x) = exp
(
− (x − si)2

2

)
, (16)

where {si}10
i=1 are the template points located at regular

intervals in [−π, π]. We use the sinc-like function depicted
in Figure 1 as the target function f(x), which is created by
the least-squares estimation using the above basis functions
{ϕi(x)}10

i=1 and the samples taken from the sinc function:
{(si, sinc si)}10

i=1. Note that the above f(x) is included in
our regression model.

The sample points {xi}n
i=1 are independently drawn

from the uniform distribution on (−π, π). The sample val-
ues {yi}n

i=1 are created as yi = f(xi)+ εi, where the noise
{εi}n

i=1 are independently drawn from the normal distri-
bution with mean zero and variance σ 2. We consider the
following four cases as the number n of training examples
and the noise variance σ2:

(n, σ2) = (100, 0.01), (50, 0.01),
(100, 0.09), (50, 0.09). (17)

Let the number nt of test input points be 50, and the test
input points {ti}50

i=1 are also independently drawn from the
uniform distribution on (−π, π).

The simulations are repeated 100 times for each
(n, σ2) in Eq.(17), randomly drawing the sample points

{xi}n
i=1, noise {εi}n

i=1, and test input points {ti}50
i=1 from

scratch in each trial. Note that in theory, we fixed the train-
ing sample points {xi}n

i=1 and the test input points {ti}50
i=1,

and we only changed the noise {εi}n
i=1 (see Section 2).

However, in this experiment, we also change the training
sample points {xi}n

i=1 and test input points {ti}50
i=1 be-

cause we want to investigate whether the proposed method
works irrespective of the choice of the training and test sets.
For this reason, we measure the performance by the follow-
ing single-trial test error in simulations.

J =
nt∑
i=1

(
f̂(ti) − f(ti)

)2

−
nt∑
i=1

f(ti)2. (18)

The parameters {αi}10
i=1 in the regression model are

determined by the ridge estimation, i.e., the learning matrix
X is given by Eq.(6). The performance of the proposed
test error estimator UPE is investigated as a function of the
ridge parameter λ using the following values:

λ ∈ {10−6, 10−5, 10−4, . . . , 102}. (19)

Figure 2 depicts the values of J (top) and UPE (bot-
tom) as a function of the ridge parameter λ in Eq.(19). The
horizontal axis denotes the values of λ in log-scale. In or-
der to clearly compare the mean curves, the mean of J is
also drawn in the bottom graph by the dashed line. Note
that the values are negative since a positive constant is sub-
tracted (see Eq.(18)). The graphs show that for all 4 cases
in Eq.(17), the proposed estimator gives reasonably accu-
rate estimates of the single-trial test error J .

We also attempted similar simulations with different
basis functions and different target functions. The results
are almost identical to the above case, so we omit the
graphs.

4.2 DELVE Data Sets

For the above simple artificial data sets, we found that the
proposed test error estimator is reasonably accurate. Here
we apply the proposed estimator to standard benchmark
data sets, and evaluate whether this good property can be
carried over to practical problems. We will use 5 prac-
tical data sets provided by DELVE [14]: Boston, Bank-
8fm, Bank-8nm Kin-8fm, and Kin-8nm. The Boston data
set includes 506 samples with 13-dimensional input and
1-dimensional output data. The other data sets include
8192 samples which consist of 8-dimensional input and 1-
dimensional output data.

For convenience, every attribute is normalized in
[0, 1]. 100 randomly selected samples {(xi, yi)}100

i=1 are
used for training, and 50 randomly selected samples
{(ti, ui)}50

i=1 from the rest are used for testing. Let the
number p of basis functions be 50, and let the basis func-
tions {ϕi(x)}50

i=1 be

ϕi(x) = exp
(
−‖x− xi‖2

2

)
, (20)
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Figure 2. Values of the single-trial test error J (top) and UPE (bottom) as a function of the ridge parameter λ. The horizontal
axis denotes the values of λ in log-scale. In order to clearly compare the mean curves, the mean of J is also drawn in the bottom
graph by the dashed line. Note that the values are negative since a positive constant is subtracted (see Eq.(18)).

i.e., the first 50 samples {xi}50
i=1 are used as the tem-

plate points. The ridge estimation, whose learning ma-
trix is given by Eq.(6), is again used for learning. We
determine the value of the ridge parameter λ by the pro-
posed UPE, the standard leave-one-out cross-validation
(LOOCV) [20, 13], or an empirical Bayesian method (EB)
[2]. Note that LOOCV gives an almost unbiased estimate
of the expected test error [11, 15]. The ridge parameter λ
is chosen from the following values:

λ ∈ {10−7, 10−6, 10−5, . . . , 107}. (21)

The simulation is repeated 1000 times for each data set,
randomly selecting the training samples {(xi, yi)}100

i=1 and
the test samples {(ti, ui)}50

i=1 from scratch in each trial
(i.e., sampling without replacement). In this simulation, we
evaluate the performance of each method by the following

single-trial test error.

J =
50∑

i=1

(
f̂(ti) − ui

)2

. (22)

Note that we do not subtract
∑50

i=1 u2
i from the above error

as did in Eq.(18) because we later normalize the values of
the test error.

The single-trial test errors obtained after model selec-
tion with UPE, LOOCV, or EB are summarized in Table 1.
The table describes the mean and standard deviation of the
normalized test error, where the values of the test error are
normalized so that the mean test error obtained by the opti-
mal ridge parameter is one. The results of the best method
and all other methods with significant difference (99% t-
test [7]) are described in bold face. The table shows that
the proposed method is compared favorably to other meth-
ods.



Table 1. Mean and standard deviation of the normalized test error for the proposed UPE, the leave-one-out cross-validation
(LOOCV), and the empirical Bayesian method (EB). The results of the best method and all other methods with no significant
difference (99% t-test) are described in bold face.

Data Set UPE LOOCV EB

Boston 1.17± 0.54 1.26 ± 0.58 1.39 ± 0.59
Bank-8fm 1.07± 0.29 1.11 ± 0.32 1.09± 0.31
Bank-8nm 1.09± 0.51 1.12± 0.56 1.18 ± 0.60
Kin-8fm 1.06± 0.32 1.17 ± 0.36 1.68 ± 0.48
Kin-8nm 1.11± 0.27 1.09± 0.24 1.15 ± 0.24

5 Conclusions and Future Prospects

In this paper, we derived an unbiased estimator of the test
error, and experimentally showed that this estimator can be
successfully applied to the ridge parameter selection. In
theory, we assumed that the learning target function is in-
cluded in the model. Although this assumption is rather
restrictive, experimental results show that this assumption
does not have to be satisfied rigorously in practice. How
the slight violation of the assumption affects the accuracy
of the test error estimator should be elucidated in the future.

An interesting related topic in this line of research
is to directly estimate the output values at the test input
points at hand, which is referred to as the transductive
inference [19]. Although an interesting transductive in-
ference method has been proposed recently [5], its per-
formance heavily depends on a certain tuning parameter,
which should be chosen by hand. On the other hand, the
proposed test error estimator is applicable to any linear es-
timations. Our prospecting and challenging future work is
to obtain a new linear estimation method that is suitable for
the challenging scenario of transductive inference.
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A Proof of Theorem 1

Let

α∗ = (α∗
1, α

∗
2, . . . , α

∗
p)

�, (23)

z = (f(x1), f(x2), . . . , f(xn))�, (24)

zt = (f(t1), f(t2), . . . , f(tnt))
�, (25)

ẑt = (f̂(t1), f̂(t2), . . . , f̂(tnt))
�, (26)

ε = (ε1, ε2, . . . , εn)�. (27)

Since zt and ẑt are given by

zt = Atα
∗, (28)

ẑt = Atα̂ = AtXy, (29)

we have

Jt = Eε‖ẑt − zt‖2 − ‖zt‖2

= Eε‖ẑt‖2 − 2Eε〈ẑt, zt〉
= Eε‖AtXy‖2 − 2Eε〈AtXy, Atα

∗〉. (30)

On the other hand, it holds that

z = Aα∗, (31)

so we have
A†z = A†Aα∗ = α∗. (32)

Therefore, we have

Jt = Eε‖AtXy‖2 − 2Eε〈AtXy, AtA
†z〉

= Eε‖AtXy‖2 − 2Eε〈AtXy, AtA
†y〉

+2Eε〈AtXy, AtA
†ε〉 (33)

Since it is known that σ̂2 given by Eq.(13) is an unbiased
estimator of σ2 [6], the last term in Eq.(33) yields

2Eε〈AtXy, AtA
†ε〉

= 2Eε〈AtXz, AtA
†ε〉 + 2Eε〈AtXε, AtA

†ε〉
= 2σ2tr

(
AtX(AtA

†)�
)

= 2Eεσ̂
2tr

(
AtX(AtA

†)�
)

, (34)

which concludes the proof.
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