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Regression Problem

f(x) :Underlying function
f(a:) ‘Learned function

{(x;,y;) };_:Training examples

yi = () +

From {(z;,y:)};~, , obtain a good
approximation f(x) to f(x)




Typical Method of Learning

Linear regression model

— Z@z‘%(ﬂ?‘)

«; Parameters
{p:(x)}_, :Fixed basis functions

Ridge estimation

min

{a}

n

Z(f () yz) —|—>\Za

1=1

A :Ridge parameter (model parameter)



Model Selection 4

Underlying function f(x)
Learned function f(x)

A is too small A is appropriate A is too large

Choice of the model is crucial
for obtaining good learned function f(z) !




Generalization Error

For model selection, we need a criterion that
measures ‘closeness’ between f(z) and f(x):

mmm Generalization error, e.g.,
TN = [ (F@) = f(@)) pla)de

p(x):Probability density

Determine the model A of test input points
so that an estimator J,,.,, of 7
gen

the unknown generalization
error .J,,,, is minimized. Jgen

A = argmin Je, ()
A 3 > A




Transductive Inference

Test input points are specified in advance.

We do not have to estimate the entire
function f(x), but just estimate the values of
the function at the test input points {t;}",.




Model Selection
for Transductive Inference

Test error at given test input points Is
different from the generalization error.

Model should be chosen so that the test
error only at {¢;};**, IS minimized.

s > >
3] t2 I ty t2

Small generalization error Large generalization error
Large test error Small test error



Goal of Our Research

We want to estimate the test error at the
given test input points!

Jtest = Ei (f(tz) _ f(tz))2

I :Expectation over noise




Setting

Linear regression model

p
f(iL‘) — Z ozz-gpz-(a:) «; :Parameters
1=1

{:(x)}r_, :Fixed basis functions
Linear estimation
& = (a1, 60,...,4,) "
a =Xy X A matrix
Y = (?/17927 e 7?/7%)—'_

Realizabllity

p
f(x) = Z ol pi(x) o :Unknown true parameters
i=1



Bias / Variance Decomposition *°

Jiest = E Z ( )2 | [Azi]i,j = SOAj(tz')

AtCA! = (f(tl)yf(t2)7 veey f(t‘nt))T

— :JHAta - W H2 o = (aj,a;,... ?oz;)T
= |EA,& — Ay’ |* +E[| A& — EA &
_ _J . -~/
~ Y
Bias Variance
. N
EA;a  pjas A’
[ e
A .
PS Variance

N /




) Tricks for Estimating Bias ™

Sugiyama & Ogawa (Neural Comp., 2001)
Sugiyama & Muller (JMLR, 2002)

Bias = |[EA.& — Ao
True parameter o™ is unknown.

We utilize an unbiased estimator of the
true parameter for estimating the bias.

Ea, = o
A :Design matrix T :Generalized inverse
A= pj(x;)

Ac = (f(wl)a f(wQ)a SR f(wn))—r



Unbiased Estimator of Bias **

- A
EA;a Bias A
ﬁ
A& Rough estimate  A;a,,
k - /
€ = (61 €25+ -+ En)T
Bias = ||[EA:& — A || L (jan). flan). . fle)]

= |Ai& — Arér,||* — 2(A, X 2, AtAT ) — |AL(X — ANe||?

‘E $F

EZ:ZS = HAt& — At&uHQ — O'Qtr (At(X AT At(X AT)] )

EB/Z'ZS = Bias




Unbiased Estimator of Variance **

Var = EHAt& — EAtCA!H2
= otr (A, X (A: X))
o :Noise variance

An unbiased estimator of noise variance:

o |ly—AATy|?

o~ =

n—p

‘76;“ — 5’2131' (AtX<AtX)T)

E@“:Va’r |




Unbiased Estimator of Test Error-*

Adding bias and variance estimators, we
have an unbiased estimator of test error.

A /.\ ———
Jiest = Bras + Var

For simplicity, we ignore constant terms

A

Jy = |AthH2 - 2(A: Xy, AtATy>
+26% tr (4, X (4,47)7)

Ejt — Jt




Unrealizable Cases 1o

So far, we assumed that the model
includes the underlying function.

p
f(x) = Z ol pi(x) o :Unknown true parameters
1=1

We can prove that even when the
above assumption is not rigorously
fulfilled, J, is still almost unbiased.

Ejt ~ Jt



Simulation: Toy Data Sets  *°

Basis functions: 10 Gaussian functions
centered at equally located points in |[—7, 7] .

Target function: sinc-like function (realizable).

‘raining examples {(x;, )}y :
T g U(—m,m)
yi = f(z:) + €, ¢ R N(0,0?)
Test input points {¢;}29, : '
t; g U(—m,m)
Ridge estimation is used
for learning.




Results (1)

(n,o?) = (100, 0.01)

4 3 2 -1 0 1
log.

A Ridge parameter
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(n,0?) =(50,0.01)

__Jt

log.
_\Jhatt
LI T L IT1I
ITTTTTITL
4 3 -2 -1 0 1 2
log.



Results (2) 1

(n,0?) = (100,0.09) (n,0°) = (50,0.09)
T—J [— 9,

-
-2.5
_3_,
-4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2
logh. log?,
_— \Jhatt _o5l — \Jhatt
_1_
-1.5¢
-9 i R
l -25/
-4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2

logh A :Ridge parameter logh



Simulation: DELVE Data Sets *°

raining set: 100 randomly selected samples.
est set: 50 randomly selected samples.

Basis functions: Gaussian function centered
at first 50 training input points.

Ridge estimation is used for learning.

Ridge parameter is selected by the proposed
method, leave-one-out cross-validation, or an
empirical Bayesian method.




Normalized Test Errors
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Mean (Standard deviation)

Data set Proposed LOQ Cross- Empirical
method validation Bayes

Boston 1.17(0.54) | 1.26 (0.58) | 1.39 (0.59)

Bank-8fm | 1.07 (0.29) | 1.11 (0.32) | 1.09 (0.31)

Bank-8nm | 1.09 (0.51) | 1.12 (0.56) | 1.18 (0.60)

Kin-8fm 1.06 (0.32) | 1.17 (0.36) | 1.68 (0.48)

Kin-8nm | 1.11 (0.27) | 1.09 (0.24) | 1.15 (0.24)

Red: Best and others with no significant difference by 99% t-test

Proposed method can be successfully
applied to transductive model selection!
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Conclusions

Model selection is usually carried out so that
estimated generalization error iIs minimized.

When test input points are specified In
advance (transductive inference), it is natural
to choose a model so that the test error only
at the test input points Is minimized.

We derived an unbiased estimator of the test
error at given test input points.

Simulation showed the proposed method
works well in practical situations.



