On the Influence of Input Noise on a Generalization Error Estimator
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ABSTRACT

Estimating the generalization capability is one of the most
important problems in supervised learning. Therefore, var-
ious generalization error estimators have been proposed so
far, in the presence of noise in output values. On the other
hand, noise often exists in input values as well as output
values. In this paper, we therefore investigate the influ-
ence of input noise on a generalization error estimator. We
focus on a particular generalization error estimator called
the subspace information criterion (SIC), which is shown
to be unbiased in the absence of input noise. Intuitively,
small input noise does not seem to affect the unbiasedness
of SIC severely because small input noise varies the output
values only slightly if the learning target function is contin-
uous. On the contrary to this intuition, we show that even
small input noise can totally corrupt the unbiasedness of
SIC. This fact casts doubt on the use of SIC in the presence
of input noise. To cope with this problem, we provide a
sufficient condition to guarantee that SIC is unbiased in the
limit of small input noise. We finally show that this condi-
tion is always fulfilled when the standard ridge estimation
is used for learning, which allows us to use SIC without
concern even in the presence of small input noise.
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1 Introduction

Estimating an underlying function from training examples
is the goal of supervised learning. The training examples
consist of input points and corresponding output values,
and they are often degraded by noise. Therefore, effec-
tively suppressing the influence of noise in training exam-
ples is one of the keys to success in learning. To this end,
several sophisticated theories of learning in the presence of
noise in the output values (or labels) have been developed
so far [18, 13, 3, 7]. On the other hand, there are cases
where the noise is also included in the input values. For
example, robot motor control, bioinformatics data analy-
sis, and speech or image recognition, where input values
as well as output values are measured. Time series predic-

tion of multiple-step ahead can also be regarded as a case
with input noise because estimated uncertain output values
are recursively used as input values. In the statistics com-
munity, noise in the input values is called the measurement
error and various methods for handling the measurement
error have been explored [10, 4]. Also, in the field of neu-
ral information processing, a method for efficiently propa-
gating the influence of uncertainty in time series prediction
of multiple-step ahead has been proposed within the frame-
work of Gaussian processes [11].

Estimating the generalization capability is one of the
most important ingredients for successful learning because
an accurate estimator of the generalization error can be
used for model selection. Therefore, various generalization
error estimators have been proposed so far, in the presence
of output noise. However, it seems that generalization error
estimation in the presence of input noise has not been well
studied previously. In this paper, we therefore investigate
how the accuracy of generalization error estimators can be
influenced when input noise exists. More specifically, we
focus on a particular generalization error estimator called
the subspace information criterion (SIC) [17, 16], which is
an unbiased estimator of a particular generalization error
in the absence of input noise. In this paper, we investigate
how the input noise influences the unbiasedness of SIC.

When the learning target function is continuous, small
input noise varies the output values only slightly. There-
fore, it intuitively seems that small input noise does not
severely affect the unbiasedness of SIC. However, our in-
teresting finding in this paper shows that this intuition is
not always true. That is, the difference between the mean
SIC and true generalization error does not always converge
to zero in the limit of small input noise. Even worse, the
difference between the mean SIC and true generalization
error can go to infinity. This negative fact implies that
simply using SIC in the presence of input noise is rather
questionable. To cope with this problem, we investigate
why such an extremely small input noise can totally cor-
rupt the unbiasedness of SIC, and show how this problem
can be overcome. More specifically, we show that under a
mild condition on the learning method, the difference be-
tween the mean SIC and true generalization error always
converges to zero as the size of input noise goes to zero,



which guarantees the robustness of SIC against small in-
put noise. We finally show that a standard learning method
such as the ridge estimation [12] satisfies this mild condi-
tion, which allows us to use SIC without concern even in
the presence of small input noise.

2 Regression and Generalization Error Esti-
mation

In this section, we formulate the regression problem of ap-
proximating a target function from training samples, and
introduce an estimator of the generalization error called the
subspace information criterion.

Let us denote the learning target function by f(x),
which is a real-valued function of d variables defined on the
domain D (=R%). We are given a set of n samples called the
training examples. A training example consists of a sample
point ; in D and a sample value y; in R. Sampling is
actually carried out at v; but we can not access to the true
sample point v;. Instead, we have a noisy sample point
a; which is degraded by unknown additive noise &,. The
sample value y; also includes unknown additive noise ¢;.
That is, the training examples are expressed as follows (see
also Figure 1):

{(@isys) | i =vi + &, vi= flvi)) +eting;. (D)

In this paper, we treat {¢;}_, as random variables, while
we regard {&,}7 , as deterministic variables because we
are interested in directly investigating the influence of the
input noise {&,}7 ,. We assume that {¢;}_, are drawn
independently from a distribution with mean zero and vari-
ance o2.

Let us consider the cases where the unknown learn-
ing target function f (x) belongs to a specified reproducing
kernel Hilbert space (RKHS) H. The reproducing kernel
of a functional Hilbert space H, denoted by K (x,x’), is a
bivariate function defined on D x D that satisfies the fol-
lowing conditions [2, 19, 18, 5]:

e For any fixed «’ in D, K(x, ') is a function of z in
H.

e For any function f in H and for any =’ in D, it holds
that

<f()7 K('7w/)>7'l = f(w/)v (2)

where (-, -)4 stands for the inner product in H.

We will employ the following kernel regression
model f(x) for learning:

fl@) =" aiK(z, ), ©)
=1

where {a; }_, are parameters. We estimate the parameters
by a linear estimation. More specifically, letting

y:(ylvy27"'7yn)—rv (4)
& = (G1,42,...,G,)", (5)
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Figure 1. A training example is expressed by (x;,v:),
where x; = v; + &, and y; = f(v;) + €;. Sampling is
carried out at v; but we can not access to the true sample
point v;. Instead, we have a noisy sample point «; which is
degraded by unknown additive noise & ;. The sample value
y; also includes unknown additive noise ¢;. We will later
consider the limit of small input noise &.

where T denotes the transpose of a vector (or a matrix)
and {&;}_, are the estimated parameters, we estimate the
parameters by

a= Xy, (6)
where X is an n-dimensional matrix that does not depend
on the output noise {e;}? ;. The matrix X, which we call
the learning matrix, can be any matrix but it is usually de-
termined based on {x;}? ;. A popular choice of X is the
ridge estimation [12].

The purpose of regression is to obtain a good approxi-
mation f () to the unknown learning target function f ().
For this purpose, we need a criterion that measures the
closeness between two functions (i.e., the generalization
measure). In this paper, we measure the generalization er-
ror by the expected squared norm in the RKHS H.

Ec|lf - fl3, @

where E. denotes the expectation over the output noise
{e;}7_,,and ||-||+ denotes the norm in the RKHS H. Using
the function space norm as the error measure is rather com-
mon in the field of function approximation [6, 9, 8]. For
further discussions on this generalization measure, readers
may refer to [16]. For simplicity, we shall subtract a con-
stant || |3, from Eq.(7), and use the following J as the
generalization measure.

J[X) =Bl f = Fll3 = 1135

where (-, )7, denotes the inner product in H.

As can be seen from Eq.(8), J includes the unknown
learning target function f(x) so it can not be directly cal-
culated. The subspace information criterion (SIC) [17, 16]
is an estimator of the above generalization error J:

SIC[X] = (K Xy, Xy) - 2(K Xy, K'y)
+20%tr(KTK X), ©)



where T denotes the Moore-Penrose generalized inverse
[1], tr(-) denotes the trace of a matrix, and K is the so-
called kernel matrix, i.e., the (¢, j)-th element of K is given
by

K ;= K(zi, x;). (10)

In the absence of input noise, SIC is shown to be an
unbiased estimator of .J for any learning matrix X:

ESIC[X] = J[X],
when ||§,|| =0fori=1,2,...,n. (11)

The purpose of this paper is to investigate how this unbi-
asedness is influenced when input noise exists.

3 Influence of Small Input Noise on Unbi-
asedness of SIC

If the learning target function is continuous, it intuitively
seems that small input noise does not affect the unbiased-
ness of SIC severely because small input noise varies the
output values only slightly. In this section, we show that
this intuition is not always true, and discuss how this prob-
lem can be overcome.

We first show the relation between the mean SIC and
true generalization error .J in the presence of input noise.
Let z be a vector of sample values at the true sample points
{v;}"_, and =z, be a vector of sample values at the noisy
sample points {x; }1_;:

z = (f(’l)l),f(’l)g),...,f(’vn))T, (12)
Zx = (f(ml)’f(q:Q)??f(mn))T (13)

Note that both z and =z, are inaccessible because f(x) and
{v;}, are unknown. Then we have the following lemma.

Lemmal Inthe presence of input noise {&,}7 ,, it holds
that
ESIC = J + AJ, (14)

where
AT =2K'KXz 2z, — 2). (15)

(Proof) Since {e;}_, are drawn independently from a dis-
tribution with mean zero and variance o 2, we have

ESIC = E((K Xy, Xy) — 2E. (K Xy, K'y)
+202tr (KTKX)
= (KXz Xz) + 0%t (X KX)
oKXz K'z) - 20%r (KTKX)
+202tr (KTKX)
= (KXz Xz) + 0%t (X KX)
—2AKXz K'z). (16)

On the other hand, as shown in [16], J is expressed by

J=(KXz Xz)+c*tr(X KX)
—2(KXz K'z,), (17)

where only the third term is different from Eq.(16).
Subtracting Eq.(17) from Eq.(16), we immediately have
Egs.(14) and (15). |

Lemma 1 shows that, in the presence of input noise,
SIC is generally no longer an unbiased estimator of .J, but
it is biased by AJ.

We are interested in investigating whether |AJ]| is
small when the size of input noise is small. This may
not be true for discontinuous learning target functions be-
cause f(v; + &;) and f(v;) can be totally different values
even when ||&,|| is small. So we focus on the cases where,
roughly, the difference in the output values monotonically
decreases as the input noise decreases. More specifically,
for

8= ||z — 2|, (18)

we consider the cases where § goes to zero as ||€,]| goes to
0 forall i = 1,2,...,n. Under the above condition, we
shall investigate the following question.

Does |AJ| converge to 0 as ||€;]| goes to O for all
i=1,2,...,n?

If the answer is yes, then the unbiasedness of SIC is almost
maintained even when small input noise exists. Therefore,
we may use SIC without concern even in the presence of
small input noise. Unfortunately, however, the following
counterexample shows that this is not always true.

Example 2 Let theinput dimensiond be 1, and let H bea
Gaussian RKHSwith reproducing kernel

K(z,2") = exp (—(z — 2/)?/(2¢%)), (19)
wherewe let ¢ = 1/+/2. Let the learning target function be

f(z) =sincx = { sin le/(mc) :]]:i i 8: (20)

which is included in the above Gaussian RKHS H. Let
v1 = ve = 0, and let the learning matrix be

_( (sincxzy —1)? 0 f
X = < 6 (sinc oy — 1)2 > - @)

Then we have

AJ =2(sinc & — 1)+ 2(sinc & — 1)7*
for & A0 and & # 0. (22)

Thisimpliesthat |AJ| — oo as|&;| — 0 and |&2| — 0.

Although the above example is fairly artificial, at least
it clearly shows that there exists a case where |AJ| does
not converge to zero as the size of input noise goes to zero.



Even worse, |AJ| goes to infinity in the above example.
This fact casts doubt on the use of SIC in the presence of
input noise.

On the contrary to this negative fact, the following
theorem shows that this critical problem can be resolved
by imposing a mild condition on the learning matrix X.

Theorem 3 Let || X || be the matrix norm defined by

_ o X2

| X[ = sup . (23)
z#0 HZ”
If the learning matrix X satisfies
1 X[ = o(1/0), (24)

then |AJ| converges to zero as ||€;|| goesto 0 for all ¢ =
1,2,...,n.

(Proof) From the Cauchy-Schwarz inequality, we have
IAT| <2KTK X z|-||ze — 2| = 20| KT K X z|. (25)

On the other hand, it follows from Eq.(23) that for a
bounded matrix B

|Bz|| < | B[z (26)
Then we have
|AT| < 28| KTK ||| X |- ||| (27)

Since KK is an orthogonal projection matrix, || K K|
is either 0 or 1. When ||KTK|| = 0, we have |AJ| = 0.
When || KK || = 1, we have

|AJ] < 28] X |- [|=]]- (28)

Since ||z|| does not depend on {&;}™ ,, the upper bound

20|| X || -||z|| converges to zero as & goes to zero if | X || =
|

o(1/9).

Now we are interested in finding a learning matrix X
that satisfies the above sufficient condition. Let us consider
the ridge estimation [12], which determines X so that the
regularized training error is minimized.

n

min Z(f(wi)—yi)Qﬂzlai @)
<

i=1

where ) is a positive scalar called the ridge parameter. A
minimizer of Eq.(29) is given by the following learning ma-
trix:

X = (K?+))'K, (30)

where I denotes the identity matrix. For the above ridge
estimation, we have the following theorem.

Theorem 4 The learning matrix of the ridge estimation
given by Eq.(30) satisfies Eq.(24).

(Proof) Let {d;}? , be the eigenvalues of K. Since the
kernel matrix K is non-negative, d; > 0 for all . Let us
diagonalize K by

K=TDT', (31)

where T is the orthogonal matrix and D is the diagonal ma-
trix with diagonal elements {d;}? ,. Then Eq.(30) yields

X =T(D*+\I)"'DT". (32)

This implies that the eigenvalues of X are given by
{dfﬁ}?:l, which are all non-negative. Then we have

di
| X = max En (33)
Since d~ < ﬁ forany d > 0, we have
1
X||£—==0(1)=0(1/)) asd—0. 34
1X] < 57 = 0() = 0(1/9) (34)
u

Theorem 4 means that for the ridge estimation, |A.J|
always converges to zero in the limit of small input noise.
Therefore, we may use SIC without concern even in the
presence of small input noise.

4 Computer Simulations

In this section, we experimentally investigate the influence
of the input noise.

Let the dimension d of the input vector be 1. We use
the Gaussian RKHS with width ¢ = 1 (see Eq.(19)). We
use Eq.(20) as the learning target function. Let the number
n of training examples be 25. The noiseless sample points
{v;}_, are independently drawn from the uniform distri-
bution on (—m, 7). The input noise {&;}"_; are indepen-
dently drawn from the normal distribution with mean zero
and standard deviation o,,. The sample values {y;}?_; are
created as y; = f(vi) + €;, where the output noise {e;}7_,
are independently drawn from the normal distribution with
mean zero and standard deviation o = 0.05. We consider
the following three cases as the standard deviation o, of
the input noise.

o =0,0.1,0.2. (35)

Examples of the training set are depicted in Figure 2.

We use the kernel regression model (3), and the pa-
rameters {«; }™_, in the model are learned by ridge regres-
sion, i.e., the learning matrix is given by Eq.(30). The ac-
curacy of SIC is investigated as a function of the ridge pa-
rameter A, using the following values:

Ae{107°,107*% 107%,...,10"}. (36)
We estimate the noise variance o2 in SIC by

o KXy —yl?
== 7
? n—tr(KX) 37



Figure 2. Learning target function f(x) and 25 training examples. ‘(0" denotes a noiseless training example (v ;, f(v;)), while

‘e’ denotes a noisy training example (x;, y;).

The simulations are repeated 100 times for each o,
in Eq.(35), changing the noiseless sample points {v;}? ,,
input noise {&; }_,, and output noise {e; }*_, in each trial.
Note that in theory, we fixed the noiseless sample points
{v;}, and input noise {&;}?_,, and only changed the out-
put noise {e;}_,. However, in this experiment, we also
change the noiseless sample points {v;}_, and input noise
{& 1}, because we are interested in investigating the ac-
curacy of SIC for various training sets. For this reason, we
measure the generalization error by the following criterion
in this experiment (cf. Eq.(8)):

Error(A) = [|fx = fI5 = 115 (38)

where f denotes the learned function with a ridge param-
eter .

Figure 3 displays the values of Error and SIC. The
horizontal axis denotes the values of A in log-scale. The
mean is taken over 100 trials, and the error bar denotes the
standard deviation over 100 trials. In order to clearly com-
pare the mean curves, the mean Error is also drawn by the
dashed line in the bottom graphs.

When o, = 0, the mean SIC approximates the mean
Error very well. When o, = 0.1, the mean SIC slightly
overestimates the mean Error. However, the difference is
comparatively small, so SIC may be regarded as a reason-
ably accurate estimator even when the small input noise ex-
ists. Finally, when o, = 0.2, the mean SIC overestimates
the mean Error and the difference is rather large.

5 Conclusions

We investigated the influence of input noise on a general-
ization error estimator called the subspace information cri-
terion (SIC). Intuitively, small input noise does not seem
to have serious effect on the accuracy of SIC if the learn-
ing target function is continuous. However, we constructed
a counterexample showing that this intuition is not always
true. This fact casts doubt on the use of SIC in the pres-
ence of input noise. For resolving this concern, we showed

that if the learning method satisfies a mild condition, SIC is
roughly robust against small input noise. We also showed
that the standard ridge estimation satisfies this condition.

In experiments, we confirmed that SIC with ridge re-
gression is still reasonably accurate even when the small
input noise exists. However, as expected, SIC is no longer
accurate in the presence of large input noise. An important
future work is therefore to improve the accuracy of SIC in
the presence of large input noise. Furthermore, the sim-
ulation results also showed that the variance of SIC tends
to be large in the large input noise cases. Recently, meth-
ods to suppress the variance of SIC have been proposed
[14, 15]. It would be interesting to see whether these or
other schemes work for suppressing the variance of SIC
even in the presence of input noise.
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