IASTED-AIA2004

Feb. 16-18, 2004

On the Influence of Input Noise on a Generalization Error Estimator

Fraunhofer Institut Rechnerarchitektur und Softwaretechnik

Masashi Sugiyama ^(1,2) Yuta Okabe ⁽²⁾ Hidemitsu Ogawa ⁽²⁾

⁽¹⁾ Fraunhofer FIRST-IDA, Berlin, Germany ⁽²⁾ Tokyo Institute of Technology, Tokyo, Japan

Regression Problem

 $f(\boldsymbol{x})$:Underlying function $\hat{f}(\boldsymbol{x})$:Learned function $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$:Training examples $y_i = f(\boldsymbol{x}_i) + \epsilon_i$ (noise) $\epsilon_i \stackrel{i.i.d.}{\sim} \mod 0$, variance σ^2

From $\{(x_i, y_i)\}_{i=1}^n$, obtain a good approximation $\hat{f}(x)$ to f(x)

Typical Method of Learning

Kernel regression model

$$\hat{F}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$

 α_i :Parameters to be learned
 $K(\boldsymbol{x}, \boldsymbol{x}')$:Kernel function (e.g., Gaussian)

Ridge estimation

$$\min_{\{\alpha_i\}} \left[\sum_{i=1}^n \left(\hat{f}(\boldsymbol{x}_i) - y_i \right)^2 + \lambda \sum_{i=1}^n \alpha_i^2 \right]$$

 λ :Ridge parameter (model parameter)

Model Selection

—— Underlying function f(x)—— Learned function $\hat{f}(x)$

Choice of the model is crucial for obtaining good learned function $\hat{f}(\mathbf{x})$!

Generalization Error

For model selection, we need a criterion that measures 'closeness' between $\hat{f}(x)$ and f(x):

Generalization error

Determine the model λ so that an estimator \hat{J} of the unknown generalization error J is minimized. $\hat{\lambda} = \operatorname*{argmin}_{\lambda} \hat{J}(\lambda)$

Noise in Input Points

- Previous research mainly deals with the cases where noise is included only in output values.
- However, noise is sometimes included also in input points, e.g.,
 - Input points are measured:

Signal/image recognition, robot motor control, and bioinformatic data analysis.

Input points are estimated:

Time series prediction of multiple-step ahead.

Noise in Input Points (cont.)

We want to measure output values f(x_i) at x_i
But measurement is actually done at unknown v_i

Output noise ϵ_i is then added

7

So far, it seems that model selection in the presence of input noise has not been well studied yet.

We investigate the effect of input noise on a generalization error estimator called the subspace information criterion (SIC).

> Sugiyama & Ogawa (Neural Computation, 2001) Sugiyama & Müller (JMLR, 2002)

Generalization Error in RKHS

\$\mathcal{H}\$: A reproducing kernel Hilbert space
We assume \$f, \hfrac{f}{f} \in \mathcal{H}\$
We shall measure the generalization

error by

$$J = E_{\epsilon} \|\hat{f} - f\|^2 - \|f\|^2$$

 E_{ϵ} :Expectation over output noise $||\cdot||$:Norm

Setting

Kernel regression model

$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$
$$\alpha_i \text{ :Parameters to be learned}$$
$$K(\boldsymbol{x}, \boldsymbol{x}') \text{ :Kernel function (e.g., Gaussian)}$$

Linear estimation

$$lpha = Xy$$

 $oldsymbol{X}$:Learning matrix $oldsymbol{lpha} = (lpha_1, lpha_2, \dots, lpha_n)^{ op}$ $oldsymbol{y} = (y_1, y_2, \dots, y_n)^{ op}$

Subspace Information Criterion¹¹

Sugiyama & Ogawa (Neural Computation, 2001) Sugiyama & Müller (JMLR, 2002)

$$SIC = \langle \mathbf{K}\mathbf{X}\mathbf{y}, \mathbf{X}\mathbf{y} \rangle - 2\langle \mathbf{K}\mathbf{X}\mathbf{y}, \mathbf{K}^{\dagger}\mathbf{y} \rangle + 2\sigma^{2} \operatorname{tr}(\mathbf{K}^{\dagger}\mathbf{K}\mathbf{X})$$

 $m{K}_{i,j} = K(m{x}_i, m{x}_j)$ $m{K}^\dagger$:Pseudo inverse of $m{K}$ $\langle \cdot, \cdot
angle$:Inner product

In the absence of input noise, SIC is an unbiased estimator of J:

 $\mathbf{E}_{\boldsymbol{\epsilon}}SIC = J \qquad J = \mathbf{E}_{\boldsymbol{\epsilon}} \|\hat{f} - f\|^2 - \|f\|^2$

We investigate how the unbiasedness of SIC is affected by input noise.

12 Unbiasedness of SIC in the Presence of Input Noise In the presence of input noise, $E_{\epsilon}SIC = J + \Delta J$ $\Delta J = \langle \boldsymbol{K}^{\dagger} \boldsymbol{K} \boldsymbol{X} \boldsymbol{z}, \boldsymbol{z}_{\boldsymbol{x}} - \boldsymbol{z} \rangle$ $\boldsymbol{z} = (f(\boldsymbol{v}_1), f(\boldsymbol{v}_2), \dots, f(\boldsymbol{v}_n))^\top$ \boldsymbol{v}_i : Noiseless input points $\boldsymbol{z}_{\boldsymbol{x}} = (f(\boldsymbol{x}_1), f(\boldsymbol{x}_2), \dots, f(\boldsymbol{x}_n))^{\top}$ x_i : Noisy input points

Unbiasedness of SIC does not generally hold in the presence of input noise.

Effect of Small Input Noise

When f(x) is continuous, small input noise varies the output value only slightly, i.e., $|f(x_i) - f(v_i)|$ is small.

 $oldsymbol{v}_i$:Noiseless input points $oldsymbol{x}_i$:Noisy input points

Therefore, we expect that the unbiasedness of SIC is not severely affected (ΔJ is small) by small input noise. $E_{\epsilon}SIC = J + \Delta J$

Effect of Small Input Noise (cont.)⁴

However, we can show that, for some learning matrix X, it holds that

 $|\Delta J| \not\rightarrow 0$ as $\|\boldsymbol{\xi}_i\| \rightarrow 0$ for all i .

 $\boldsymbol{\xi}_i$:Input noise

This implies that, for some X, the unbiasedness of SIC is heavily affected even when input noise is very small.

Theorem

Let ||X|| be the matrix norm defined by

$$\|oldsymbol{X}\| = \sup_{oldsymbol{z}
eq 0} rac{\|oldsymbol{X}oldsymbol{z}\|}{\|oldsymbol{z}\|}$$

If the learning matrix X satisfies $\|X\| = o(1/\delta)$ $\delta = \|z_x - z\|$ then $|\Delta J| \to 0$ as $\|\xi_i\| \to 0$ for all i.

$$oldsymbol{z} = (f(oldsymbol{v}_1), f(oldsymbol{v}_2), \dots, f(oldsymbol{v}_n))^ op$$

 $oldsymbol{z}_{oldsymbol{x}} = (f(oldsymbol{x}_1), f(oldsymbol{x}_2), \dots, f(oldsymbol{x}_n))^ op$

 $oldsymbol{v}_i$:Noiseless input points $oldsymbol{x}_i$:Noisy input points

Ridge Estimation

Ridge estimation

 λ :Ridge parameter

16

$$oldsymbol{X} = (oldsymbol{K}^2 + \lambda oldsymbol{I})^{-1}oldsymbol{K} \qquad oldsymbol{K}_{i,j} = K(oldsymbol{x}_i, oldsymbol{x}_j) \ oldsymbol{I}$$
:Identity matrix

We can prove that ridge estimation satisfies $\|\mathbf{X}\| = O(1) = o(1/\delta)$

Therefore, SIC with ridge estimation is robust against small input noise.

Simulation

H :Gaussian RKHS

$$K(x, x') = \exp\left(-(x - x')^2/2\right)$$

Learning target function f(x): sinc function - Training examples $\{(x_i, y_i)\}_{i=1}^n$: $v_i \overset{i.i.d.}{\sim} U(-\pi,\pi)$ $x_i = v_i + \xi_i, \quad \xi_i \stackrel{i.i.d.}{\sim} N(0, \sigma_x^2)$ $y_i = f(x_i) + \epsilon_i, \quad \epsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$ $n = 25, \sigma = 0.05, \sigma_x = 0, 0.1, 0.2$ Ridge estimation is used for learning.

Effect of input noise on SIC.

- In some cases, the unbiasedness of SIC is heavily affected even by small input noise.
- A sufficient condition for unbiasedness.
- Ridge estimation satisfies this condition.
- Experiments: SIC is still almost unbiased for small input noise.
- Future work: Accurately estimate the generalization error when input noise is large.