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Regression Problem

f(x) :Underlying function
f(a:) ‘Learned function

{(x;,y;) };_:Training examples

yi = () +

From {(z;,y:)};~, , obtain a good
approximation f(x) to f(x)




Typical Method of Learning

Kernel regression model

Eozz (x, x;)

«; :Parameters to be learned
K(x,x") :Kernel function (e.g., Gaussian)

Ridge estlmatlon

min

{o}

Z(f T; —yz) —I—)\Zoz

=1

A :Ridge parameter (model parameter)



Model Selection 4

Underlying function f(x)
Learned function f(x)

A is too small A is appropriate A is too large

Choice of the model is crucial
for obtaining good learned function f(z) !




Generalization Error

For model selection, we need a criterion that
measures ‘closeness’ between f(z) and f(x):

mmm)> Genera

|1zation error

Determine the mod

N

el )\ so that an estimator./ of

the unknown generalization error ./ IS minimized.
A = argmin J(\)

A

<>




Noise In Input Points

Previous research mainly deals with the
cases where noise is included only in output
values.

However, noise Is sometimes included also
In Input points, e.qg.,

® Input points are measured:

Signal/image recognition, robot motor control,
and bioinformatic data analysis.

® Input points are estimated:
Time series prediction of multiple-step ahead.



Noise In Input Points (cont.)

We want to
measure output
values f(z;) at «;

But measurement
IS actually done at

Input noise

unknown v,

Output noise ¢; IS
then added

T, =v; + &,
v, = f(vi) + &




Aim of Our Research

So far, it seems that model selection in the
presence of input noise has not been well
studied yet.

We Investigate the effect of input noise on
a generalization error estimator called the
subspace information criterion (SIC).

Sugiyama & Ogawa (Neural Computation, 2001)
Sugiyama & Miuller (JMLR, 2002)



Generalization Error in RKHS

H : A reproducing kernel Hilbert space
We assume f,f € H

We shall measure the generalization
error by

J=Ef - fII* = IflI?

E. :Expectation over output noise

| - || :Norm



Setting 10

Kernel regression model

EO" (x, x;)

«; :Parameters to be learned
K(x,x") :Kernel function (e.g., Gaussian)

L Inear estimation

a=Xuy X :Learning matrix

a = (ozl,ozg,...,ozn)T

Y= (Y1,Y2, -, Yn)



Subspace Information Criterion ™

Sugiyama & Ogawa (Neural Computation, 2001)
Sugiyama & Mduller (JMLR, 2002)

SIC = (KXy, Xy) — 2(K Xy, Ky)
+20%tr(KTKX)

K, =K(z;x,) K :Pseudo inverse of K
(-, ) :Inner product

In the absence of input noise, SIC is an

unbiased estimator of J :

E.SIC = J J=Elf — fI* = I fI?

We Iinvestigate how the unbiasedness
of SIC Is affected by input noise.



Unbiasedness of SIC 12

In the Presence of Input Noise

In the presence of input noise,

ESIC =J+ AJ
AT =(K'KXz, 2z, — 2)

z = (f(v1), f(va),..., f(vy))'  v; :Noiseless input points
2z = (f(x1), f(x2),..., f(xz,))"  «; :Noisy input points

Unbiasedness of SIC does not generally
hold in the presence of input noise.




Effect of Small Input Noise *°

When f(x) is continuous, small input
noise varies the output value only slightly,
l.e., |f(z;)— f(vi) 1ssmall. ,

[1C )] — f(x)
v; :Noiseless input points f(fui)
a; :Noisy input points f L,

Therefore, we expect that the
unbiasedness of SIC Is not severely
affected (AJ is small) by small input noise.

ESIC =J+AJ



Effect of Small Input Noise (cont.}*

However, we can show that, for some
learning matrix X, it holds that
IAJ| A0 as ||| —0 foralli .
&, :Input noise
This implies that, for some X , the

unbiasedness of SIC Is heavily affected
even when input noise Is very small.



Theorem

Let || X || be the matrix norm defined by

X
1X | = sup 12X
220 ||Z]]

If the learning matrix X satisfies
| X = o(1/0) 0 = ||za — 2|
then |AJ| — 0 as |&] —0 foralli.

z = (f(v1), f(va),..., f(vy))' v, :Noiseless input points
2z = (f(x1), f(x2),..., f(xn))"  @; :Noisy input points
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Ridge Estimation 16

Ridge estimation )\ :Ridge parameter
o : I
min | 3 (f(@) ~yi) +2Yof
Y Li=1 i=1

K;j = K(zi, ;)

X = (K T )\I) K I :ldentity matrix

We can prove that ridge estimation satisfies
| X[ = O(1) = o(1/0)

herefore, SIC with ridge estimation Is

robust against small input noise.




Simulation
H :Gaussian RKHS
K(z,z') = exp (—(z —2')?/2)
Learning target function f(x): sinc function
Training examples {(x;, vi)}iq

v, vL U(—m,m)
1. z d.

zi=vi +&, & ~ N(0,0,)
yi = f(z) + €, € =" N(0,02)

n =209, c=0.05, o, =0,0.1,0.2
Ridge estimation is used for learning.
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Result (No Input Noise)

T x — O
17 o — 1(x) || of
1
ol
3l
4l
51

-2 0 2

0_
SIC is surely | e
unbiased without N
input noise S TTTTY

5 sIc

-3 -4 -3 -2 -1 0 1

J = EEHf — f”2 o HfH2 '087;\ :Ridge parameter



Result (Small Input Noise)  *°

o, = 0.1

ol

_2_

_4_

_6_

T S

2 0 2

Or ol
SIC is still almost P N
unbiased with MSERES>
small input noise 6!

SIC

J = EEHf — f”2 o HfH2 '087;\ :Ridge parameter



Result (Large Input Noise) 0220

1T | I — f(x) | 10t

-2 0 2

10+
SIC Is no longer 51
reliable with large IS R
Input noise N

-10+ SIC

J = EEHf — f”2 o HfH2 '0873\ :Ridge parameter
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Conclusions

Effect of input noise on SIC.

In some cases, the unbiasedness of SIC iIs
heavily affected even by small input noise.

A sufficient condition for unbiasedness.
Ridge estimation satisfies this condition.

Experiments: SIC is still almost unbiased for
small input noise.

Future work: Accurately estimate the
generalization error when input noise is large.



