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Abstract

Evaluating the generalization performance of learning machines without using ad-
ditional test samples is one of the most important issues in the machine learning
community. The subspace information criterion (SIC) is one of the methods for
this purpose, which is shown to be an unbiased estimator of the generalization error
with finite samples. Although the mean of SIC agrees with the true generalization
error even in small sample cases, the scatter of SIC can be large under some se-
vere conditions. In this paper, we therefore investigate the causes of degrading the
precision of SIC, and discuss how its precision could be improved.
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1 Introduction

Evaluating the generalization performance of learning machines without using additional
test samples is one of the central issues in the machine learning community. So far, a
number of methods for estimating the generalization error have been proposed.

Akaike’s information criterion (AIC) [1, 22, 14, 12] is an estimator of the generalization
error defined by the Kullback-Leibler divergence. A notable property of AIC is that it is
an asymptotic unbiased estimator of the generalization error, i.e., it becomes unbiased as
the number of training examples goes to infinity.

Cross-validation (CV) [18, 3] is a method that estimates the expected prediction error
by dividing the training set into k disjoint subsets. (k − 1) subsets are used for training
and the rest is used for validation. This procedure is repeated for all k combinations
and the mean validation error is outputted as an estimate of the prediction error. In the
extreme case that k = n, where n is the number of training examples, it is specially called
the leave-one-out CV. It is shown that for finite samples, the leave-one-out CV gives an
almost unbiased1 estimate of the expected prediction error [13, 16].

The subspace information criterion (SIC) [20, 23, 19] is an estimator of the general-
ization error defined by the function space norm. SIC is proved to be an exact unbiased
estimator of an essential part of the generalization error with finite samples2.

The methods described above have common excellent properties that their unbiased-
ness is theoretically guaranteed in the asymptotic, almost, or exact sense. However, they
still have weakness, for example, under some severe conditions, their scatter (or variance)
can be large [17, 16, 24]. For this reason, further investigation is needed to improve their
precision.

In this paper, we therefore investigate the causes of degrading the precision of SIC,
and discuss how its precision could be improved. More specifically, we investigate two
causes: the large scatter caused by numerical instability of generalized inverse and the
large variance caused by the unbiasedness. For the first cause, we show that, under a
certain condition, an essential part of SIC can be exactly calculated without actually
calculating generalized inverse. This will completely releases us from the first problem.
For the second cause, we propose an alternative criterion aimed at reducing the variance
of SIC by sacrificing its unbiasedness.

The rest of this article is organized as follows. In Section 2, the problem of supervised
learning is mathematically formulated. In Section 3, the derivation of the original SIC
is reviewed. In Section 4, we tackle the problem of reducing the scatter of SIC caused
by numerical instability of generalized inverse. In Section 5, we tackle the problem of
reducing the variance of SIC by sacrificing its unbiasedness. In Section 6, computer
simulations are performed to illustrate how the consequences in Sections 4 and 5 contribute
to improving the precision of SIC. Finally, Section 7 gives conclusions and future prospects.

1The term “almost unbiased” refers to the fact that the leave-one-out CV provides an unbiased estimate
for training with (n − 1) samples.

2Note that we can not simply compare AIC, CV, and SIC because the conditions assumed behind are
all different. See [21] for further discussions.
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Nomenclature used in this article is summarized in Table 1.

2 Formulation of Supervised Learning

Supervised learning can be viewed as a function approximation problem. For this reason,
we discuss the problem of approximating an unknown real-valued function f(x) of d real
variables from training examples.

Let D (⊂ Rd) be the domain of the learning target function f(x). Let {(xi, yi)}n
i=1

be the training examples, where n is the number of training examples, xi (∈ D) is the
sample point, and yi (∈ R) is the sample value degraded by unknown zero-mean additive
noise εi, i.e.,

yi = f(xi) + εi. (1)

Let us consider the case that the unknown learning target function f(x) belongs to a
specified reproducing kernel Hilbert space (RKHS) H (see e.g., [4, 26, 25, 5])3. We denote
the reproducing kernel of H by K(x, x′). We will obtain the learning result function f̂(x)
by the following kernel regression model:

f̂(x) =

n∑
i=1

αiK(x, xi), (2)

where {αi}n
i=1 are parameters to be estimated from training examples. In this article, we

focus on the case that the estimated parameters {α̂i}n
i=1 are given by linear combinations

of sample values {yi}n
i=1. More specifically, letting

y = (y1, y2, . . . , yn)
�, (3)

α̂ = (α̂1, α̂2, . . . , α̂n)�, (4)

where � denotes the transpose of a vector (or a matrix), we consider the case that the
parameter vector α̂ is estimated by

α̂ = Xy, (5)

where X is an n-dimensional matrix that is irrelevant to the noise {εi}n
i=1. X is called

the learning matrix. The form (5) includes, for example, least mean squares estimate,
kernel ridge regression [5], and a certain form of Gaussian process regression [27].

The purpose of regression is to obtain the optimal approximation f̂(x) to the un-
known learning target function f(x). We measure the generalization error of f̂(x) by the
following criterion.

J0 = Eε‖f̂ − f‖2
H, (6)

3In our early work [20], only finite dimensional RKHSs could be dealt with. However, this restriction
has been completely removed in the reference [19]. The current paper is based on the latter work so
we do not impose any restrictions on the choice of the RKHS, e.g., infinite dimensional RKHSs are also
allowed.
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Table 1: Nomenclature

f(x) Learning target function
D Domain of input x
d Dimension of input space D
H Reproducing kernel Hilbert space including f(x)

K(·, ·) Reproducing kernel of H
xi Training sample point
yi Training sample value: yi = f(xi) + εi

εi Zero-mean noise included in yi

Q Noise covariance matrix
(xi, yi) Training example

n Number of training examples
S Subspace of H spanned by {K(x, xi)}n

i=1

fS(x) Orthogonal projection of f(x) onto S
ε Noise vector: ε = (ε1, ε2, . . . , εn)�

z Noiseless sample value vector:
z = (f(x1), f(x2), . . . , f(xn))�

y Noisy sample value vector: y = (y1, y2, . . . , yn)
�

� Transpose of a matrix or vector
Eε Expectation over noise

f̂(x) Kernel regression model: f̂(x) =
∑n

i=1 αiK(x, xi)

αi Parameter in kernel regression model f̂(x)
α∗ True parameter vector corresponding to fS(x)
α̂ Estimated parameter vector
X Learning matrix: α̂ = Xy
α̂u Unbiased estimate of true α∗: Eεα̂

u = α∗

λ Regularization parameter
T Regularization matrix
K Kernel matrix: Ki,j = K(xi, xj)
I Identity matrix

〈·, ·〉H Inner product in H
‖ · ‖H Norm in H
〈·, ·〉 Euclidean inner product in Rn

‖ · ‖ Euclidean norm in Rn

‖ · ‖K Weighted norm by K: ‖ · ‖2
K = 〈K·, ·〉

tr (·) Trace of a matrix

J0 Generalization error: J0 = Eε‖f̂ − f‖2
H

J1 J1 = Eε‖f̂ − fS‖2
H = J0 + constant

J2 J2 = Eε‖f̂‖2
H − 2Eε〈f̂ , fS〉H = J1 + constant

† Moore-Penrose generalized inverse
R(·) Range of a matrix
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where Eε denotes the expectation over the noise and ‖ · ‖H is the norm in the RKHS H.
This error measure is often used in the field of function approximation (e.g., [6, 8, 7]).

In many statistical learning theories (e.g., [1, 22, 14, 12]), the training sample points
{xi}n

i=1 as well as the noise {εi}n
i=1 are treated as probabilistic and the expectation over

both of them is often taken. In contrast, we consider a fixed design {xi}n
i=1 and do not

take the expectation over the training sample points. Therefore, our approach is more
data-dependent.

The generalization error (6) can not be directly calculated since it includes the un-
known learning target function f(x). This paper is devoted to investigating how the
generalization error J0 is estimated.

3 The Subspace Information Criterion

The subspace information criterion (SIC) [20, 19] is an unbiased estimator of an essential
part of the generalization error J0. In this section, we review the derivation of SIC.

Let S be the subspace spanned by {K(x, xi)}n
i=1, and let fS(x) be the orthogonal

projection of f(x) onto S. Let fS
⊥ be

fS
⊥ = f − fS . (7)

Note that fS
⊥ is orthogonal to f̂ and fS . Let 〈·, ·〉H be the inner product in H. Then the

generalization error J0 can be expressed by

J0 = Eε‖f̂ − fS − fS
⊥‖2

H
= Eε‖f̂ − fS‖2

H − 2〈f̂ − fS , fS
⊥〉H + ‖fS⊥‖2

H
= Eε‖f̂ − fS‖2

H + ‖fS⊥‖2
H. (8)

Since the second term ‖fS⊥‖2
H does not depend on f̂ , we will ignore it and let us denote

the first term by J1 (see Figure 1):

J1 = Eε‖f̂ − fS‖2
H. (9)

Since fS(x) belongs to S, it can be expressed by

fS(x) =
n∑

i=1

α∗
i K(x, xi), (10)

where the parameters {α∗
i }n

i=1 are unknown4. Let

α∗ = (α∗
1, α

∗
2, . . . , α

∗
n)�, (11)

4When {K(x, xi)}n
i=1 are linearly dependent, {α∗

i }n
i=1 are not determined uniquely. In this case, we

adopt the minimum norm one.
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Figure 1: Decomposition of learning target function f .

and K be the so-called kernel matrix, i.e., the (i, j)-th element of K is given by

K i,j = K(xi, xj). (12)

Then J1 is expressed as

J1 = Eε‖f̂ − fS‖2
H

= Eε‖
n∑

i=1

(α̂i − α∗
i )K(·, xi)‖2

H

= Eε

n∑
i,j=1

(α̂i − α∗
i )(α̂j − α∗

j )〈K(·, xj), K(·, xi)〉H

= Eε

n∑
i,j=1

(α̂i − α∗
i )(α̂j − α∗

j )K(xi, xj)

= Eε〈K(α̂ − α∗), α̂ − α∗〉, (13)

where the inner product 〈·, ·〉 in the last equation is the ordinary Euclidean inner product
in Rn, i.e., 〈αa, αb〉 = α�

b αa. For convenience, let us define the weighted norm in Rn:

‖α‖2
K = 〈Kα, α〉. (14)

Then J1 is expressed as
J1 = Eε‖α̂ − α∗‖2

K. (15)

It is known that J1 can be decomposed into the bias and variance terms [9, 11]:

J1 = ‖Eεα̂ − α∗‖2
K + Eε‖α̂ − Eεα̂‖2

K. (16)

Let us define the noiseless sample value vector z and the noise vector ε by

z = (f(x1), f(x2), . . . , f(xn))�, (17)

ε = (ε1, ε2, . . . , εn)�. (18)
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Then the (noisy) sample value vector y defined by Eq.(3) is expressed as

y = z + ε. (19)

Recalling that the mean noise Eεε is zero, we can express the variance term Eε‖α̂ −
Eεα̂‖2

K in Eq.(16) as

Eε‖α̂ − Eεα̂‖2
K = Eε‖Xy − EεXy‖2

K

= Eε‖X(z + ε) − Xz‖2
K

= Eε‖Xε‖2
K

= tr
(
KXQX�) , (20)

where Q is the noise covariance matrix and tr (·) denotes the trace of a matrix, i.e., the
sum of diagonal elements.

Eq.(20) implies that the variance term Eε‖α̂ − Eεα̂‖2
K in Eq.(16) can be calculated

if the noise covariance matrix Q is available. When Q is unknown, one of the practical
methods for estimating Q is given as follows:

Q̂ = σ̂2I, (21)

where I is the identity matrix and σ̂2 is an estimate of the noise variance given, e.g., by

σ̂2 =

∑n
i=1

(
f̂(xi) − yi

)2

n − tr (KX)
=

‖KXy − y‖2

n − tr (KX)
. (22)

Note that ‖ · ‖ in the last equation of Eq.(22) denotes the ordinary Euclidean norm in Rn.
On the other hand, the bias term ‖Eεα̂−α∗‖2

K in Eq.(16) is totally inaccessible since
both Eεα̂ and α∗ are unknown. The key idea of SIC is to use an unbiased estimate α̂u

of the unknown true parameter vector α∗:

Eεα̂
u = α∗. (23)

Indeed, such an unbiased estimator can be obtained by (see [19])

α̂u = K†y, (24)

where † denotes the Moore-Penrose generalized inverse.
Using the unbiased estimate α̂u, we can roughly estimate the bias term ‖Eεα̂−α∗‖2

K

in Eq.(16) by ‖α̂ − α̂u‖2
K (see Figure 2). More specifically, we have

‖Eεα̂ − α∗‖2
K

= ‖α̂ − α̂u‖2
K − ‖α̂ − α̂u‖2

K + ‖Eεα̂ − α∗‖2
K

= ‖α̂ − α̂u‖2
K

−‖Eε(α̂ − α̂u) − Eε(α̂ − α̂u) + α̂ − α̂u‖2
K
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α∗

Eεα̂ α̂u

α̂

Rn

Figure 2: Basic idea of SIC. The bias term ‖Eεα̂−α∗‖2
K (depicted by the solid line) can

be roughly estimated by ‖α̂ − α̂u‖2
K (depicted by the dotted line).

+‖Eε(α̂ − α̂u)‖2
K

= ‖α̂ − α̂u‖2
K − ‖Eε(α̂ − α̂u)‖2

K

−2〈KEε(α̂ − α̂u),−Eε(α̂ − α̂u) + α̂ − α̂u〉
−‖ − Eε(α̂ − α̂u) + α̂ − α̂u‖2

K

+‖Eε(α̂ − α̂u)‖2
K

= ‖α̂ − α̂u‖2
K

+2〈KEε(α̂ − α̂u), Eε(α̂ − α̂u) − (α̂ − α̂u)〉
−‖Eε(α̂ − α̂u) − (α̂ − α̂u)‖2

K. (25)

However, the second and third terms in the last equation of Eq.(25) are still inaccessible
since Eε(α̂ − α̂u) is unknown, so we will average out these terms over the noise. Then
the second term vanishes:

Eε〈KEε(α̂ − α̂u), Eε(α̂ − α̂u) − (α̂ − α̂u)〉 = 0, (26)

and the third term is reduced to

Eε

(‖Eε(α̂ − α̂u) − (α̂ − α̂u)‖2
K

)
= Eε

(‖Eε(X − K†)y − (X − K†)y‖2
K

)
= Eε

(‖(X − K†)z − (X − K†)(z + ε)‖2
K

)
= Eε

(‖(X − K†)ε‖2
K

)
= tr

(
K(X − K†)Q(X − K†)�

)
. (27)

Consequently we have the subspace information criterion (SIC) [20, 19]:

SIC = ‖(X − K†)y‖2
K

−tr
(
K(X − K†)Q(X − K†)�

)
+tr

(
KXQX�) . (28)
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The name subspace information criterion (SIC) came from the fact that it was first in-
troduced for selecting subspace models. The first two terms in SIC are estimates of the
bias term in Eq.(16) and the last term corresponds to the variance term in Eq.(16). It
was shown that SIC is an unbiased estimator of J1:

EεSIC = J1. (29)

4 Reducing Scatter of SIC Caused by Numerical In-

stability

As shown in Eq.(29), SIC is an unbiased estimator of J1 with finite samples. Although this
is a useful property, the reference [20] pointed out that the scatter of SIC can be large
because the calculation of the generalized inverse matrix K† is sometimes numerically
unstable. In this section, we show how this problem can be avoided.

SIC (28) can be expressed by

SIC = ‖Xy‖2
K − 2〈KXy, K†y〉 + ‖K†y‖2

K

+2tr
(
K†KXQ

)− tr
(
K†Q

)
. (30)

Since the third and fifth terms are irrelevant to X, we will ignore them. Let us denote
SIC without the third and fifth terms by SICe (SIC essential):

SICe = y�X�KXy − 2y�K†KXy

+2tr
(
K†KXQ

)
. (31)

Letting R(·) be the range of a matrix, we have the following theorem.

Theorem 1 If the learning matrix X satisfies

R(X) ⊂ R(K), (32)

SICe can be exactly calculated by

SICe = y�X�KXy − 2y�Xy + 2tr (XQ) . (33)

A proof of Theorem 1 is given in A. Note that R(X) is the subspace to which the
learned parameter vector belongs (see Eq.(5)), while R(K) is the subspace to which the
noiseless sample value vector z (Eq.(17)) belongs [20].

As can be seen from the definition, SIC and SICe are essentially the same since their
difference is only irrelevant terms. However, the above theorem asserts that SICe has
an excellent property that it can be exactly calculated without K† when Eq.(32) holds.
Therefore, the numerical instability caused by the calculation of generalized inverse can
be completely avoided if Eq.(32) holds.
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The reference [19] showed that when K is invertible, SICe can be calculated by Eq.(33).
However, K† is still needed when K is not invertible. On the other hand, Eq.(32) always
holds when K is invertible. Therefore, Theorem 1 can be regarded as a more general
condition for exactly calculating SICe by Eq.(33).

Now we show an example of the learning method that satisfies Eq.(32). The regu-
larization learning (with quadratic regularizers) determines the parameter vector α such
that the regularized training error is minimized, i.e.,

α̂ = argmin
α

(
n∑

i=1

(
f̂(xi) − yi

)2

+ λα�Tα

)
, (34)

where λ is a positive scalar and T is an n-dimensional symmetric positive semi-definite
matrix5. λ is called the regularization parameter and T is called the regularization matrix.
The parameter vector α̂ that satisfies Eq.(34) is given by the following learning matrix
X:

X = (K2 + λT )†K. (35)

For the regularization learning, the following theorem holds.

Theorem 2 Eq.(32) holds if the regularization matrix T satisfies either one of the fol-
lowing conditions.

1. R(T ) + R(K) = Rn and TK = KT ,

2. R(T ) ⊥ R(K).

A proof of Theorem 2 is given in B.
A practically useful form of Gaussian process regression [27] corresponds to the regu-

larization learning with T = I. When T = I, the condition (1) in Theorem 2 is fulfilled
for any K. This means that SICe can always be exactly calculated by Eq.(33) irrespective
of the choice of the training sample points {xi}n

i=1 (see Eq.(12)).

5 Reducing Variance of SIC Caused by Unbiasedness

So far, we discussed how the large scatter of SIC caused by the numerical instability
of generalized inverse can be avoided. In this section, we investigate another cause of
degrading the precision of SIC based on the fact that SIC is an exact unbiased estimator.

5An n-dimensional matrix X is said to be positive semi-definite if 〈Xy, y〉 ≥ 0 for any element y in
Rn (see e.g., [2]).
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5.1 Expected Squared Error of SIC

Let us consider the expected squared error (ESE) between SIC and J1:

ESE = Eε(SIC − J1)
2. (36)

The above ESE can be decomposed into the bias and variance terms [9, 11]:

ESE = (EεSIC − J1)
2 + Eε(SIC − EεSIC)2. (37)

Since SIC is proved to be an unbiased estimator of J1 (see Eq.(29)), the above bias term
(EεSIC − J1)

2 is zero. However, the variance term Eε(SIC − EεSIC)2 is not taken into
account in the derivation of SIC so it can be large. As a result, ESE between SIC and
J1 is not necessarily small. This may be another, and essential reason for degrading the
precision of SIC.

The reference [24] suggested replacing the unbiased estimate α̂u introduced in the
derivation of SIC by a properly regularized estimate. The simulation results given in
that paper showed that the variance of SIC can be drastically reduced in exchange for
slight increase in the bias of SIC. Although this idea would be highly effective, we should
find a proper degree of regularization, which can be determined only heuristically for the
present.

On the other hand, the reference [20] paid attention to the fact that the bias term
in Eq.(16) is always non-negative. Based on the fact, that paper proposed modifying
SIC such that the terms in SIC which correspond to the bias term in Eq.(16) are kept
non-negative. The modified criterion is called the corrected SIC (cSIC):

cSIC = max
[

0, ‖(X − K†)y‖2
K

− tr
(
K(X − K†)Q(X − K†)�

) ]
+ tr

(
KXQX�) . (38)

For cSIC, we have the following theorem.

Theorem 3 It holds that
|cSIC − J1| ≤ |SIC − J1|. (39)

A proof of Theorem 3 is given in C.
Squaring both sides of Eq.(39) and taking the expectation over the noise, we have

Eε(cSIC − J1)
2 ≤ Eε(SIC − J1)

2. (40)

This implies that cSIC is better than SIC in the ESE sense.
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5.2 Toward Further Improving Precision

As can be seen above, several efforts have been made so far for reducing the variance of
SIC. Especially, the idea of regularizing α̂u was shown to be practically useful, and cSIC
was theoretically proved to be better than the original SIC in the ESE sense. Here we
show another feasible way to find better generalization error estimators.

J1 defined by Eq.(9) can be decomposed as

J1 = Eε‖f̂‖2
H − 2Eε〈f̂ , fS〉H + ‖fS‖2

H, (41)

where the third term is irrelevant to f̂ . As shown in Eq.(29), SIC is an unbiased estimator
of J1. This implies that SIC also estimates the above irrelevant term ‖fS‖2

H. Indeed, the
third and fifth terms in SIC (30), i.e., ‖K†y‖2

K − tr(K†Q), correspond to an estimate of
‖fS‖2

H. Now let us denote the first two terms in Eq.(41) by J2:

J2 = Eε‖f̂‖2
H − 2Eε〈f̂ , fS〉H. (42)

Then it can be confirmed that SICe is an unbiased estimator of J2 [19]:

EεSICe = J2. (43)

From the above fact, we conjecture that a feasible approach is reducing ESE against
J2, rather than reducing ESE against J1.

5.3 Reducing ESE against J2

Now we give an alternative criterion that is aimed at improving the precision of SICe.
Let us denote the negative half of the second term in J2 (42) by η:

η = Eε〈f̂ , fS〉H. (44)

As shown in the reference [19], η is expressed as

η = 〈K†KXz, z〉, (45)

where z is defined by Eq.(17). The right-hand side of Eq.(45) implies that if K†KX is
positive semi-definite, η is always non-negative. This fact motivates us to modify SICe

such that the terms in SICe that correspond to η are kept non-negative. We will call the
modified criterion the corrected SICe (cSICe) because the idea is similar to cSIC. The
negative half of the second and third terms in SICe (31) correspond to an estimate of η,
so let us denote them by η̂:

η̂ = y�K†KXy − tr(K†KXQ). (46)

Then cSICe is defined as follows.

cSICe = y�X�KXy − 2 max(0, η̂). (47)
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Now we show an example of the learning method such that K†KX is positive semi-
definite. Since K is symmetric and positive semi-definite, there exists a unique symmetric

square root6 K
1
2 . Then we have the following theorem.

Theorem 4 K†KX is positive semi-definite if the regularization matrix T in Eq.(34)
satisfies either one of the following conditions.

1. R(T ) + R(K) = Rn and TK
1
2 = K

1
2 T ,

2. R(T ) ⊥ R(K).

A proof of Theorem 4 is given in D.
Fortunately, Theorem 2 also holds when the regularization matrix T satisfies either

one of the conditions in Theorem 4 (see D for detail). Therefore, when either one of the
conditions in Theorem 4 holds, cSICe can be stably calculated by

cSICe = y�X�KXy

−2 max
(
0, y�Xy − tr (XQ)

)
. (48)

Note that a practically useful form of Gaussian process regression [27] corresponds to
the regularization learning with T = I. When T = I, the condition (1) in Theorem 4
is fulfilled. Therefore, for the regularization learning with T = I, cSICe can always be
stably calculated by Eq.(48).

6 Simulations

In this section, simple computer simulations are performed to illustrate how the precision
of SIC is improved.

6.1 Artificial Data Sets

Let the dimension d of the input vector be 1. We use the Gaussian RKHS with width
c = 1:

K(x, x′) = exp

(
−(x − x′)2

2c2

)
. (49)

Let the learning target function be

f(x) = sinc x. (50)

Note that the above sinc function is included in the Gaussian RKHS7.
The sample points {xi}n

i=1 are independently drawn from the uniform distribution on
(−π, π). The sample values {yi}n

i=1 are created as yi = f(xi) + εi, where the noise {εi}n
i=1

6When K is symmetric and positive semi-definite, it is expressed by K =
∑n

i=1 βiφiφ
�
i , where φi is

an eigenvector and βi is an associated eigenvalue that is non-negative. Then a symmetric square root
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Figure 3: Target function and 50 training examples with noise variance σ2 = 0.04.

is independently drawn from the normal distribution with mean zero and variance σ2. We
attempt the following 9 cases as the number n of training examples and the noise variance
σ2:

(n, σ2) = (100, 0.01), (50, 0.01), (25, 0.01),

(100, 0.04), (50, 0.04), (25, 0.04),

(100, 0.09), (50, 0.09), (25, 0.09), (51)

i.e., we investigate the cases with large/medium/small samples and low/medium/high
noise levels. The learning target function and an example of the training set are illustrated
in Figure 3.

We use the regularization learning (34) with T = I for learning, which can also be
regarded as a form of Gaussian process regression [27]. The generalization error prediction
performance is investigated as a function of the regularization parameter λ. The following
values of λ are attempted:

{10−4, 10−3.5, 10−3, . . . , 103}. (52)

The generalization error is measured by an unexpected J2 (42) over the noise, i.e.,

Error = ‖f̂‖2
H − 2〈f̂ , fS〉H. (53)

We compare the following 3 criteria:

• SICe (31), which includes K†,

matrix is given by K
1
2 =

∑n
i=1

√
βiφiφ

�
i .

7As described in the reference [10], the Gaussian RKHS is spanned by the function f(x) that belongs
to L2(R) and satisfies ∫ ∞

−∞

|f̃(ω)|2
k̃(ω)

dω < ∞,

where f̃(ω) is the Fourier transform of the function f(x) and k̃(ω) is the Fourier transform of exp
(
− x2

2c2

)
.

The sinc function belongs to L2(R), and its Fourier transform is zero for |ω| > π. Therefore, the above
conditions are fulfilled so the sinc function is included in the Gaussian RKHS.
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(n, σ2) = (50, 0.01) (n, σ2) = (50, 0.04) (n, σ2) = (50, 0.09)

Figure 4: Means and standard errors of the error (53), SICe with K†, SICe without K†,
and cSICe over 1000 trials. The mean values of the error (53) are also plotted in the
bottom 3 graphs by the dashed line.

• SICe (33), which does not include K†,

• cSICe (48).

The noise covariance matrix Q included in SICe and cSICe is estimated by Eqs.(21)
and (22). The simulations are repeated 1000 times for each (n, σ2) in Eq.(51), randomly
drawing the sample points {xi}n

i=1 and noise {εi}n
i=1 from scratch in each trial. This means

that we are practically taking the expectation over both the training sample points {xi}n
i=1

and the noise {εi}n
i=1. Note that SICe is still an unbiased estimator of J2 even without

taking expectation over the training sample points {xi}n
i=1.

The simulation results are depicted in Figure 4. Since the results are almost the same
for different n, we only show the results for n = 50. In each block of the figure, four graphs
are depicted. The horizontal axis of the graphs denotes the values of the regularization
parameter λ in log-scale. The vertical axes denote, from top, the error (53), SICe (31)
which includes K†, SICe (33) which does not include K†, and cSICe (48). The curves
denote the mean values over 1000 trials, while the error bars denote the standard error
over 1000 trials. For comparison, the mean values of the error (53) are also plotted in the
bottom three graphs by the dashed line.

Since the condition in Theorem 1 is always fulfilled for the regularization learning (34)
with T = I (see Theorem 2), SICe (31) can be exactly calculated by SICe (33). Therefore,
SICe (31) and SICe (33) should give the same value in principle. First we investigate the
effect of avoiding K†, that corresponds to the discussion in Section 4.
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Table 2: Root mean squared error (54) of SICe or cSICe.
(n, σ2) (100, 0.01) (50, 0.01) (25, 0.01)

SICe (33) 5.14 × 10−1 5.68 × 10−1 6.87 × 10−1

cSICe (48) 5.14 × 10−1 5.68 × 10−1 6.87 × 10−1

Improvement 0.00% 0.00% 0.00%

(n, σ2) (100, 0.04) (50, 0.04) (25, 0.04)

SICe (33) 1.58 × 100 1.87 × 100 1.95 × 100

cSICe (48) 1.57 × 100 1.83 × 100 1.85 × 100

Improvement 1.04% 2.30% 5.13%

(n, σ2) (100, 0.09) (50, 0.09) (25, 0.09)

SICe (33) 3.65 × 100 3.97 × 100 4.14 × 100

cSICe (48) 3.32 × 100 3.63 × 100 3.66 × 100

Improvement 9.07% 8.76% 11.6%

When σ2 = 0.01, the mean values of SICe (31) roughly catch the profile of the mean
error for all λ (see the left block in Figure 4). The mean values of SICe (33) also well agree
with the mean error. This implies that, in practice, the mean values are not sensitive to
the instability of generalized inverse, and estimating the noise covariance matrix Q by
Eqs.(21) and (22) may be bearable. However, when we turn our attention to the scatter of
SICe, the error bars of SICe (31) are excessively large. On the other hand, the error bars
of SICe (33) are much smaller than those of SICe (31), and are comparable to those of the
true error (53). This means that the scatter of SICe is heavily affected by the instability
of generalized inverse, and the large error bars can be effectively reduced by SICe (33) if
the condition (32) holds.

When σ2 = 0.04, the mean values of both SICe (31) and SICe (33) still well agree with
the mean error (see the center block in Figure 4). Similar to the case with σ2 = 0.01, SICe

(31) has very large error bars, and it can be effectively reduced by SICe (33). However,
the difference is that even with SICe (33), the error bars are rather large for small λ. The
results for σ2 = 0.09 are almost equivalent to the case with σ2 = 0.04.

The above simulation results show that the mean of SICe is robust against the insta-
bility of the generalized inverse for any cases. On the other hand, the scatter of SICe is
very sensitive to the instability of the generalized inverse and it can be effectively reduced
by SICe if the condition (32) holds. However, even with this improvement, the scatter of
SICe can still be large when the noise level is medium/high (i.e., σ2 = 0.04, 0.09) and the
regularization parameter λ is small.

Now we investigate the performance of cSICe, i.e., we would like to investigate whether
cSICe contributes to settling the above problem of SICe (33). The results are depicted
in the bottom graph of each block in Figure 4. When the noise level is low (σ2 = 0.01),
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cSICe seems to perform almost the same as SICe (33). In order to investigate the difference
between SICe and cSICe in detail, we examine the root mean squared error of SICe or
cSICe defined by √

Eλ

[
Et(Êrror − EtError)2,

]
(54)

where Eλ denotes the expectation over all regularization parameter λ in Eq.(52), Et de-

notes the expectation over 1000 trials, and Êrror denotes an estimator of the error, i.e.,
SICe (33) or cSICe (48). The values of the root mean squared error are described in
Table 2, showing that they are the fairly equivalent. Therefore, cSICe works as well as
SICe when σ2 = 0.01.

On the other hand, when it comes to the medium noise cases (σ2 = 0.04), the error
bars of cSICe seem to be slightly smaller than those of SICe for λ = 10−4 (see Figure 4).
Indeed, the values of the root mean squared error described in Table 2 show that they are
slightly reduced.

Finally, when the noise level is high (σ2 = 0.09), the error bars of cSICe are again
smaller than those of SICe for small λ (see Figure 4). Indeed, the values of the root mean
squared error described in Table 2 show that they are significantly reduced.

The above simulation results show that cSICe inherits the good performance of SICe

when the noise level is low, and cSICe tends to improve the precision of SICe when the
noise level is medium/high and the regularization parameter λ is small. Consequently,
the root mean squared error of cSICe is improved for medium/high noise level cases. This
means that the variance of SIC is effectively reduced in exchange for small increase in the
bias.

6.2 DELVE Data Sets

Now we apply the proposed methods to practical data sets provided by DELVE [15]:
Bank-8fm, Bank-8nm, Bank-8fh, Bank-8nh, Kin-8fm, Kin-8nm, Kin-8fh, and Kin-8nh.
‘f’ or ‘n’ signifies ‘fairly linear’ or ‘non-linear’, respectively, and ‘m’ or ‘h’ signifies ‘medium
unpredictability/noise’ or ‘high unpredictability/noise’, respectively. Each of the 8 data
sets includes 8192 samples, consisting of 8-dimensional input and 1-dimensional output
data. We used 100 randomly selected samples for training, and the simulation is repeated
100 times. The noise covariance matrix is estimated by Eqs.(21) and (22) with λ = 10−3.
Note that for the above data sets, we can not calculate the true error corresponding to
Eq.(53) since the learning target function is unknown.

The simulation results are depicted in Figure 5. The figure shows that SICe without
K† gives significantly smaller error bars than SICe with K† for the Kin-8fm and Kin-8fh
data sets, and they give almost the same results for other data sets. This implies that,
even for the real data sets, SICe without K† sometimes contributes to reducing the scatter
of SICe with K†.

cSICe gives significantly different results from SICe for the Bank-8nh, Kin-8nm, Kin-
8fh, and Kin-8nh data sets, and the difference appears for small λ. This tendency is similar
to the previous simulations with artificial data sets. We can not judge whether cSICe is
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Figure 5: Means and standard errors of SICe with K†, SICe without K†, and cSICe over
100 trials.

better than SICe or not because we can not calculate the true error in the current setting.
However, given the fact that similar tendencies to the previous simulations appear, we
expect that cSICe improves over SICe.

7 Conclusions

The subspace information criterion (SIC) is an unbiased estimator of the generalization
error J1. In this paper, we discussed how the precision of SIC can be improved.

The scatter of SIC sometimes becomes large because the calculation of generalized
inverse can be numerically unstable. To overcome this problem, we derived a condition
for exactly calculating SICe (an essential part of SIC) without calculating generalized
inverse. We showed that this condition is always fulfilled, for example, by a particular
form of Gaussian process regression. The simple computer simulations illustrated that
our effort surely contributed to reducing the scatter of SICe.
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However, the precision of SICe can still be degraded when the noise level is very high.
This may be caused by the fact that SICe is an exact unbiased estimator of J2 (an essential
part of J1). To cope with this problem, we gave a basic strategy that we should pursue an
estimator that minimizes the expected squared error against J2. Following this strategy,
we proposed cSICe, which is aimed at reducing the expected squared error against J2.
The simple computer simulations illustrated that cSICe works as well as SICe when the
noise level is low, and it tends to be more precise than SICe as the noise level increases.

Our contribution surely improved the precision of SIC. However, still its precision can
be degraded when the noise level is high and the regularization parameter λ is small. In
the future, we will theoretically investigate the expected squared error and we would like
to further improve the precision of the generalization error estimators.
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A Proof of Theorem 1

It is known that (see e.g., Exercises 3.13.1 in the book [2]) Eq.(32) is equivalent to

K†KX = X. (55)

Therefore, Eq.(31) is reduced to Eq.(33).

B Proof of Theorem 2

First, we prove the condition (1). When T satisfies R(T ) + R(K) = Rn, (K2 + λT ) is
invertible. Then it holds that

(K2 + λT )−1K = K(K2 + λT )−1, (56)

which can be confirmed by pre- and post-multiplying (K2 + λT ) and using TK = KT .
Then the learning matrix X given by Eq.(35) is expressed by

X = K(K2 + λT )−1, (57)

which yields Eq.(32).
Now we prove the condition (2). When T satisfies the condition (2), it holds that

(K2 + λT )†K = K†, (58)
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which can be confirmed by a standard matrix inversion technique (see e.g., Theorem 4.8
in the book [2]). Then the learning matrix X is expressed by

X = K†. (59)

Recalling that R(K†) = R(K), we have Eq.(32).

C Proof of Theorem 3

Let b be the bias term in Eq.(16), i.e.,

b = ‖Eεα̂ − α∗‖2
K, (60)

and let b̂ be the terms in SIC (28) that correspond to b, i.e.,

b̂ = ‖(X − K†)y‖2
K

−tr
(
K(X − K†)Q(X − K†)�

)
. (61)

Then it holds that

SIC − J1 = b̂ − b, (62)

cSIC − J1 = max(0, b̂) − b. (63)

If b̂ < 0, then max(0, b̂) = 0. Recalling b ≥ 0, we have

cSIC − J1 = max(0, b̂) − b = −b ≤ 0. (64)

On the other hand, b̂ < 0 = max(0, b̂) so we have

SIC − J1 = b̂ − b < max(0, b̂) − b. (65)

From Eqs.(64) and (65), we have

SIC − J1 < cSIC − J1 ≤ 0. (66)

Therefore, Eq.(39) holds with strict inequality.
If b̂ ≥ 0, then b̂ = max(0, b̂). Therefore, Eqs.(62) and (63) assert that Eq.(39) holds

with equality.

D Proof of Theorem 4

If T satisfies TK
1
2 = K

1
2 T , it holds that

TK = TK
1
2 K

1
2 = K

1
2 TK

1
2 = K

1
2 K

1
2 T

= KT , (67)
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where TK
1
2 = K

1
2 T is applied twice. This implies that if the condition (1) in Theorem 4

holds, the condition (1) in Theorem 2 also holds. Furthermore, the condition (2) in
Theorem 4 and the condition (2) in Theorem 2 are equivalent. Therefore, if either one of
the conditions in Theorem 4 holds, it follows from Theorem 2 that

K†KX = X. (68)

For this reason, we shall prove that X is positive semi-definite if either one of the condi-
tions in Theorem 4 holds.

First we prove the condition (1). If T satisfies R(T ) + R(K) = Rn, (K2 + λT ) is
invertible. Then it holds that

(K2 + λT )−1K
1
2 = K

1
2 (K2 + λT )−1, (69)

which can be confirmed by pre- and post-multiplying (K2+λT ) and using TK
1
2 = K

1
2 T .

Since (K2 + λT )−1 is symmetric and positive semi-definite, (K2 + λT )−
1
2 exists. Then

learning matrix X given by Eq.(35) is expressed as

X = (K2 + λT )−1K
1
2 K

1
2

= K
1
2 (K2 + λT )−1K

1
2

= K
1
2 (K2 + λT )−

1
2 (K2 + λT )−

1
2 K

1
2 . (70)

Therefore, it holds that for any element y in Rn,

〈Xy, y〉 = ‖(K2 + λT )−
1
2 K

1
2 y‖2 ≥ 0, (71)

which shows that X is positive semi-definite.
Now we prove the condition (2). If T satisfies the condition (2), Eq.(35) is expressed

by X = K† (see the proof of Theorem 2). Then X is positive semi-definite since K† is
positive semi-definite.

References

[1] H. Akaike. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, AC-19(6):716–723, 1974.

[2] A. Albert. Regression and the Moore-Penrose Pseudoinverse. Academic Press, New
York and London, 1972.

[3] S. Amari, N. Murata, K.-R. Müller, M. Finke, and H. H. Yang. Asymptotic statistical
theory of overtraining and cross-validation. IEEE Transactions on Neural Networks,
8(5):985–996, 1997.

[4] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathe-
matical Society, 68:337–404, 1950.



Improving Precision of the Subspace Information Criterion 22

[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge,
2000.

[6] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Math-
ematics, Philadelphia and Pennsylvania, 1992.

[7] D. L. Donoho. De-noising by soft thresholding. IEEE Transactions on Information
Theory, 41(3):613–627, 1995.

[8] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation via wavelet shrinkage.
Biometrika, 81:425–455, 1994.

[9] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance
dilemma. Neural Computation, 4(1):1–58, 1992.

[10] F. Girosi. An equivalence between sparse approximation and support vector ma-
chines. Neural Computation, 10(6):1455–1480, 1998.

[11] T. Heskes. Bias/variance decompositions for likelihood-based estimators. Neural
Computation, 10(6):1425–1433, 1998.

[12] S. Konishi and G. Kitagawa. Generalized information criteria in model selection.
Biometrika, 83:875–890, 1996.

[13] A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical
procedure of recognition. Technicheskaya Kibernetica, 3, 1969. in Russian.

[14] N. Murata, S. Yoshizawa, and S. Amari. Network information criterion — Deter-
mining the number of hidden units for an artificial neural network model. IEEE
Transactions on Neural Networks, 5(6):865–872, 1994.

[15] C. E. Rasmussen, R. M. Neal, G. E. Hinton, D. van Camp, M. Revow, Z. Ghahramani,
R. Kustra, and R. Tibshirani. The DELVE manual, 1996.

[16] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

[17] H. Shimodaira. An application of multiple comparison techniques to model selection.
Annals of Institute of Statistical Mathematics, 50(1):1–13, 1998.

[18] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal
of the Royal Statistical Society, Series B, 36:111–147, 1974.

[19] M. Sugiyama and K.-R. Müller. The subspace information criterion for infinite di-
mensional hypothesis spaces. Journal of Machine Learning Research, 3(Nov):323–
359, 2002.



Improving Precision of the Subspace Information Criterion 23

[20] M. Sugiyama and H. Ogawa. Subspace information criterion for model selection.
Neural Computation, 13(8):1863–1889, 2001.

[21] M. Sugiyama and H. Ogawa. Theoretical and experimental evaluation of the subspace
information criterion. Machine Learning, 48(1/2/3):25–50, 2002.

[22] K. Takeuchi. Distribution of information statistics and validity criteria of models.
Mathematical Science, 153:12–18, 1976. in Japanese.

[23] A. Tanaka, H. Imai, and M. Miyakoshi. Choosing the parameter of image restoration
filters by modified subspace information criterion. IEICE Transactions on Funda-
mentals, E85-A(5):1104–1110, 2002.

[24] K. Tsuda, M. Sugiyama, and K.-R. Müller. Subspace information criterion for non-
quadratic regularizers — Model selection for sparse regressors. IEEE Transactions
on Neural Networks, 13(1):70–80, 2002.

[25] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., New York, 1998.

[26] H. Wahba. Spline Model for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia and Pennsylvania, 1990.

[27] C. K. I. Williams. Prediction with Gaussian processes: From linear regression to
linear prediction and beyond. In M. I. Jordan, editor, Learning in Graphical Models,
pages 599–621. The MIT Press, Cambridge, 1998.


