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Abstract

In supervised learning, the selection of sample points and models is crucial for ac-
quiring a higher level of the generalization capability. So far, the problems of active
learning and model selection have been independently studied. If sample points
and models are simultaneously optimized, then a higher level of the generalization
capability is expected. We call this problem active learning with model selection.
However, active learning with model selection can not be generally solved by simply
combining existing active learning and model selection techniques because of the
active learning / model selection dilemma: the model should be fixed for selecting
sample points and conversely the sample points should be fixed for selecting mod-
els. In this paper, we show that the dilemma can be dissolved if there is a set of
sample points that is optimal for all models in consideration. Based on this idea, we
give a practical procedure for active learning with model selection in trigonometric
polynomial models. The effectiveness of the proposed procedure is demonstrated
through computer simulations.
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1 Introduction: supervised learning and the active

learning / model selection dilemma

Supervised learning is obtaining an underlying rule from training examples made up of
sample points and corresponding sample values. If the rule is successfully acquired, then
appropriate output values corresponding to unknown input points can be estimated. This
ability is called the generalization capability.

In supervised learning, there are two factors we can control for optimal generalization:
sample points and models. A sample point corresponds to a query to the oracle, and a
model refers to, for example, the type and number of basis functions used for learning.
The problem of designing sample points is called active learning (or experimental design),
and the problem of determining the model is called model selection.

So far, extensive and profound studies have been conducted to solve the problems of
active learning [8, 11, 6, 7, 10, 9, 20, 21] and model selection [12, 1, 18, 19, 15, 5, 22].
However, it seems that these two methods have been studied independently. One would
naturally think that if sample points and models are simultaneously optimized, then a
higher level of the generalization capability is expected. This is the problem that we
would like to tackle in this paper. We refer to the problem as active learning with model
selection1.

In general, the model should be fixed for active learning2. On the other hand, the
training examples gathered at fixed sample points are generally required for model se-
lection. These facts imply that the problem of active learning with model selection can
not be generally solved by simply combining existing active learning and model selection
techniques. We call this the active learning / model selection dilemma.

One of the possible approaches to dissolving this dilemma is to perform active learning
and model selection alternately in an incremental manner. That is, first decide an initial
model and design a set of sample points for the initial model. Then, select a new model
using the samples, and design a set of additional sample points for the new model to
further improve the generalization capability, likewise. This incremental approach seems
reasonable in practice. However, only the greedy optimality can be achieved, i.e., the
additional set of sample points is optimal for the current model.

In this paper, we therefore propose a basic strategy for simultaneously optimizing
sample points and models for the optimal generalization capability in a batch manner.
Specifically, our proposal is to select sample points that are optimal for all models in
consideration. Although this strategy seems rather idealistic, we show that this strat-
egy can be practically realized for trigonometric polynomial models. The usefulness of
the proposed method will be experimentally shown for both realizable and unrealizable

1There is also an interesting way of relating active learning to model selection [4, 11], which is aimed
at selecting sample points so that they maximally discriminate between models. Although this method is
extremely useful when we would like to specify the true model, this is different from what we are heading
for in the current paper.

2Some active learning methods are incremental so it is possible to change the model through the
incremental learning process. Even so, those methods essentially work for a fixed model.
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learning target functions.
The rest of this paper is organized as follows. Section 2 mathematically formulates

the problem of active learning with model selection. Section 3 gives a basic strategy
for active learning with model selection. In Sections 4 and 5, a practical procedure for
active learning with model selection under a certain setting is given. The effectiveness of
the proposed procedure is experimentally investigated through computer simulations in
Section 6. Finally, Section 7 gives concluding remarks and future prospects.

2 Problem formulation

Let us consider the supervised learning problem of obtaining, from a set of M training
examples, an approximation to a target function f(x) of L variables defined on D, where
D is a subset of the L-dimensional Euclidean space RL. The training examples are made
up of sample points xm in D and corresponding sample values ym in C:

{(xm, ym) | ym = f(xm) + εm}M
m=1, (1)

where ym is degraded by additive noise εm. The purpose of supervised learning is to find
a learning result function f̂(x) that minimizes a certain generalization error JG.

Let X be a set of M sample points {xm}M
m=1 and let S be a model, which refers to,

for example, the type and number of basis functions used for learning. Let M be a set
of models from which the model is selected. In this paper, we discuss the problem of
simultaneously optimizing the sample points X and model S, called the active learning
with model selection.

Definition 1 (Active learning with model selection) Determine sample points X
and select a model from a set M so that the generalization error JG is minimized:

min
X , S∈M

JG[X , S]. (2)

3 Basic strategy

As we pointed out in Section 1, the problem of active learning with model selection can
not be generally solved, in a batch manner, by simply combining existing active learning
and model selection techniques because of the active learning / model selection dilemma:
the model should be fixed for active learning and conversely sample points should be fixed
for model selection.

Some readers may think the problem of active learning with model selection can be
naively solved by

min
XS∈argminX JG[X ,S], S∈M

JG[XS, S], (3)

i.e., first deciding the sample points XS for every S in M, and then selecting the model S
using XS. However, this naive approach does not work in practice because when selecting
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Figure 1: Basic strategy for active learning with model selection. Let the set M of models
be {S1, S2, S3}. The top-left circle denotes a set C1 of optimal X for the model S1, i.e., an
element in C1 is a set X of sample points {xm}M

m=1 that minimizes JG[X , S1]. Similarly,
the top-right and bottom circles denote sets of optimal X for S2 and S3, respectively. If
there exists X that is commonly optimal for all models in M, i.e., CM is not empty, then
the problem of active learning with model selection can be straightforwardly solved by
using the commonly optimal sample points.

a model with existing model selection methods, we need sample values {y(S)
m }M

m=1 at

the sample points {x(S)
m }M

m=1. Namely, sample values {y(S)
m }M

m=1 for all S in M (totally
M × |M| sample values) should be available, which is just waste of sample values and
sampling cost.

In order to solve the problem of active learning with model selection, we propose
selecting sample points for a set of models in consideration, not for a fixed model. Specif-
ically, if there is a set X of sample points that is optimal for all models in the set M, the
problem of active learning with model selection can be straightforwardly solved as follows.
First, X is determined so that it is optimal for all models in the set M, and sample values
{ym}M

m=1 are gathered at the optimal points {xm}M
m=1. Then model selection is carried out

with the optimal training examples {(xm, ym)}M
m=1. Consequently, we obtain the optimal

model with optimal sample points because the sample points are optimal for any selected
model. This basic strategy is summarized in Figure 1.
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Although the above strategy seems idealistic, we show in the following sections that
the strategy can be practically realized under certain conditions. Possible generalization
of this strategy will be finally discussed in Section 7.

4 Setting

In this section, the setting is described.

4.1 Trigonometric polynomial space

We assume that the learning target function f(x) belongs to SN , which is a trigonometric
polynomial space of order N = (N1, N2, . . . , NL). The trigonometric polynomial space is
defined as follows.

Definition 2 (Trigonometric polynomial space) Let us denote the L-dimensional
input vector x by

x = (ξ(1), ξ(2), . . . , ξ(L))�. (4)

For l = 1, 2, . . . , L, let nl be a non-negative integer and Dl = [−π, π]. Let

D = D1 ×D2 × · · · × DL. (5)

Then, a function space Sn is called a trigonometric polynomial space of order n =
(n1, n2, . . . , nL) if Sn is spanned by the functions

{ L∏
l=1

exp(iplξ
(l))

∣∣∣∣ pl = −nl,−nl + 1, . . . , nl

for l = 1, 2, . . . , L

}
(6)

defined on D, and the inner product, denoted by 〈·, ·〉, is defined by

〈f, g〉 =
1

(2π)L

∫ π

−π

∫ π

−π

· · ·
∫ π

−π

f(x)g(x)dξ(1)dξ(2) · · · dξ(L), (7)

where · denotes the complex conjugate of a complex number.

The dimension of Sn is

dim Sn =
L∏

l=1

(2nl + 1), (8)
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and the reproducing kernel3 of Sn, denoted by Kn(x, x′), is expressed as

Kn(x, x′) =
L∏

l=1

K(l)
n (ξ(l), ξ(l)′), (9)

where

K(l)
n (ξ(l), ξ(l)′) =




sin
(2nl + 1)(ξ(l) − ξ(l)′)

2

sin
ξ(l) − ξ(l)′

2
if ξ(l) �= ξ(l)′,

2nl + 1 if ξ(l) = ξ(l)′.

(10)

When the dimension L of the input x is 1, a trigonometric polynomial space of order
n is spanned by {

exp(ipx)
∣∣∣ p = −n,−n + 1, . . . , n

}
(11)

defined on [−π, π], and the inner product is defined by

〈f, g〉 =
1

2π

∫ π

−π

f(x)g(x)dx. (12)

The dimension of a trigonometric polynomial space of order n is

dim Sn = 2n + 1, (13)

and the reproducing kernel of this space is expressed as

Kn(x, x′) =




sin
(2n + 1)(x − x′)

2

sin
x − x′

2

if x �= x′,

2n + 1 if x = x′.

(14)

3The reproducing kernel K(x, x′) is a bivariate function defined on D×D that satisfies the following
conditions [3]:

• For any fixed x′ in D, K(x, x′) is a function of x in S.

• For any function f in S and for any x′ in D, it holds that

〈f(·), K(·, x′)〉 = f(x′).

Note that the reproducing kernel is unique if it exists.
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4.2 Least squares learning

We adopt the usual least squares (LS) learning as the learning criterion. LS learning is
aimed at finding a learning result function f̂(x) in a subspace S of SN that minimizes the
training error JTE:

JTE =
1

M

M∑
m=1

∣∣∣f̂(xm) − ym

∣∣∣2 . (15)

In the LS learning case, a subspace S is the model. Since SN has the reproducing kernel
(see Section 4.1), a subspace S also has the reproducing kernel. Let K(x, x′) be the
reproducing kernel of S and A be a linear operator defined by

A =
M∑

m=1

(
em ⊗ K(·, xm)

)
, (16)

where (· ⊗ ·) denotes the Neumann-Schatten product4, and em is the m-th vector of the
so-called standard basis in C

M . Note that the operator A is called the sampling operator
since it holds for any function f in S that Af = (f(x1), f(x2), . . . , f(xM))�, where �
denotes the transpose of a vector. Let A† be the Moore-Penrose generalized inverse [2] of
A and y be an M-dimensional vector whose m-th element is the sample value ym:

y = (y1, y2, . . . , yM)�. (17)

Then, the LS learning result function f̂(x) is given by

f̂ = A†y. (18)

4.3 Generalization measure

We measure the generalization error, denoted by JG, by the expected squared norm in
SN :

JG = Eε‖f̂ − f‖2

= Eε
1

(2π)L

∫
D
|f̂(x) − f(x)|2dx, (19)

where ‖ · ‖ denotes the norm and Eε denotes the expectation over the noise.
In many statistical active learning learning methods [6, 7, 20], the generalization mea-

sure is defined by

Eε

∫
D

∣∣∣f̂(x) − f(x)
∣∣∣2 p(x)dx, (20)

4For any fixed g in a Hilbert space S and any fixed f in a Hilbert space S′, the Neumann-Schatten
product (f ⊗ g) is an operator from S to S′ defined by using any h in S as (see [17])

(f ⊗ g) h = 〈h, g〉f.
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where p(x) is the probability density function of test input points x. In our setting, we
assume that p(x) in Eq.(20) is the uniform distribution on the domain D.

4.4 The number of training examples

We assume that the number M of training examples is

M =
L∏

l=1

Ml, (21)

where Ml is a positive integer such that

Ml ≥ 2Nl + 1 for l = 1, 2, . . . , L. (22)

We should admit that this assumption is rather restrictive when L is large. Assuming
Eq.(21) virtually means that we focus on a small L, say at the largest 3 or 4.

4.5 Noise characteristics

We assume that the noise is independently drawn from a distribution with mean zero and
variance σ2. σ2 does not have to be known.

4.6 Model candidates

In the LS learning case, a subset of basis functions is the model (see Section 4.2). Let
M, the set of models from which the model is selected, be a set of all trigonometric
polynomial spaces included in SN :

M = {Sn | n = (n1, n2, . . . , nL), nl = 0, 1, . . . , Nl

for l = 1, 2, . . . , L}. (23)

5 Active learning with model selection for trigono-

metric polynomial models

In this section, we give a practical procedure for active learning with model selection
under the setting described in Section 4.

Let f̂n(x) be a learning result function obtained with the model Sn. f̂n is given by

f̂n = A†
ny, (24)

where An is defined with the reproducing kernel Kn(x, x′) of Sn by

An =
M∑

m=1

(
em ⊗ Kn(·, xm)

)
. (25)
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It is known that the generalization error of f̂n defined by Eq.(19) is decomposed into the
bias and variance terms:

JG = Eε‖f̂n − f‖2

= ‖Eεf̂n − f‖2 + Eε‖f̂n − Eεf̂n‖2. (26)

Note that the bias term can not be zero unless the learning target function f belongs
to Sn. First, we review a necessary and sufficient condition for a set X of sample points
{xm}M

m=1 so that the generalization error JG is minimized for a fixed model Sn.

Proposition 1 [21] For a model Sn to which the learning target function f belongs,
the generalization error of f̂n is minimized with respect to sample points X under the
constraint of bias-free if and only if sample points X satisfy

1

M
A∗

nAn = ISn , (27)

where A∗
n is the adjoint operator of An and ISn denotes the identity operator on Sn.

There are infinitely many sets of sample points such that Condition (27) holds for a
fixed model Sn [21]. Here, we give a design method of sample points that satisfy Condition
(27) for all models in the set M.

Theorem 1 Let cl be an arbitrary constant such that

−π ≤ cl ≤ −π +
2π

Ml
for l = 1, 2, . . . , L. (28)

If a set

{
xm

∣∣∣∣ m =
L∑

l=2

(
(ml − 1)

l−1∏
l′=1

Ml′

)
+ m1,

ml = 1, 2, . . . , Ml for l = 1, 2, . . . , L

}
(29)

of M sample points is let
xm = (ξ(1)

m , ξ(2)
m , . . . , ξ(L)

m )�, (30)

where

ξ(l)
m = cl +

2π

Ml
(ml − 1) for l = 1, 2, . . . , L, (31)

then
1

M
A∗

nAn = ISn for all Sn ∈ M. (32)
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}

}

x1

(c1, c2)
�

2π
M2

x2 · · ·
2π
M1

x35· · ·

ξ(1)

ξ(2)

Figure 2: Example of sample points such that Condition (32) holds. The number M of
training examples is M = M1 × M2 = 7 × 5 = 35.

A proof of Theorem 1 is provided in Appendix5.
Eq.(31) means that M sample points are fixed to regular intervals in the domain D.

An example of sample points designed by Eq.(31) is illustrated in Figure 2.
Theorem 1 and Proposition 1 assert that the sample points designed by Eq.(31) are

optimal for all models to which the learning target function f belongs. For a model Sn

to which the learning target function f does not belong, the sample points designed by
Eq.(31) has the property that they minimize the variance under the constraint that the
range of A∗

n agrees with Sn [21]. Computer simulations in Section 6 experimentally show
that the sample points designed by Eq.(31) do not only give the optimal generalization
capability for models to which the learning target function f belongs, but also give a higher
level of the generalization capability for models to which the learning target function f
does not belong. Therefore, the sample points designed by Eq.(31) can be practically
regarded as a good design for all models in the set M.

With training examples {(xm, ym)}M
m=1 gathered at the optimal sample points

{xm}M
m=1 designed by Eq.(31), model selection is carried out. Then we may obtain a

learning result function that has a higher level of the generalization capability.
Another advantage of using Eq.(31) is that LS learning with sample points designed

by Eq.(31) is computationally very efficient since A†
n is given by 1

M
A∗

n [21].
When the dimension L of the input x is 1, Theorem 1 is reduced to a simpler form.

Corollary 1 Let M ≥ 2N + 1 and c be an arbitrary constant such that

−π ≤ c ≤ −π +
2π

M
. (33)

If a set {xm}M
m=1 of sample points is let

xm = c +
2π

M
(m − 1), (34)

then Eq.(32) holds.

5Note that we can also prove this theorem from the fact that the equidistance design is D-optimal for all
trigonometric polynomial models and D- and A-optimalities are equivalent for trigonometric polynomial
models [8].
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6 Computer simulations

In this section, the effectiveness of active learning with model selection is demonstrated
through computer simulations.

6.1 Realizable case: illustrative example

Let the dimension L of the input x is 1 and let the order N of the largest trigonometric
polynomial space be 100. Let the learning target function f(x) be

f(x) =
1

10

50∑
n=1

(sin nx + cos nx). (35)

Note that f belongs to Sn for n ≥ 50. The noise εm is drawn from the normal distribution
with mean 0 and variance σ2. Let the set M of model candidates be

M = {S0, S1, S2, . . . , S100}. (36)

We measure the error of a learning result function f̂(x) by

Error = ‖f̂ − f‖2 =
1

2π

∫ π

−π

|f̂(x) − f(x)|2dx. (37)

We compare the performance of the following two sampling schemes.

(i) Optimal sampling: Sample points {xm}M
m=1 are designed by Eq.(34).

(ii) Random sampling: Sample points are randomly created in the domain [−π, π].

Figure 3 shows the simulation results for

(M, σ2) = (250, 0.8), (500, 0.8),

(250, 0.2), (500, 0.2). (38)

The horizontal axis denotes the order n of the model while the vertical axis denotes the
error measured by Eq.(37). The solid and dashed lines show the mean errors over 100
trials by (i) Optimal sampling and (ii) Random sampling, respectively. These graphs
show that the proposed sampling method provides better generalization capability than
random sampling irrespective of the number M of training examples, noise variance σ2,
and order n of the model. Especially, when M is small and σ2 is large, its effectiveness is
remarkable.
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Figure 3: Results of illustrative simulation.

6.2 Unrealizable case

In the previous experiment, the learning target function f belongs to SN . Here, we
perform a simulation for a practical unrealizable case that f does not belong to SN .

Let us consider the chaotic series created by the Mackey-Glass delay-difference equation
(e.g.[16]):

g(t + 1) =




(1 − b)g(t) +
a g(t− τ)

1 + g(t − τ)10

for t ≥ τ + 1,

0.3 for 0 ≤ t ≤ τ,

(39)

where a = 0.2, b = 0.1, and τ = 17. Let {ht}600
t=1 be

ht = g(t + τ + 1). (40)
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Figure 4: Mackey-Glass chaotic series of 600 points and 100 sample values (p(m) = 6m
and σ2 = 0.07).

We are given M degraded sample values {ym}M
m=1:

ym = hr(m) + εm, (41)

where r(m) is an integer such that 1 ≤ r(m) ≤ 600 which indicates the sampling location,
and the noise εm is independently drawn from the normal distribution with mean 0 and
variance σ2.

The task is to obtain the best estimates {ĥt}600
t=1 of {ht}600

t=1 that minimize the error:

Error =
1

600

600∑
t=1

∣∣∣ĥt − ht

∣∣∣2 . (42)

In this simulation, we consider the following four cases:

(M, σ2) = (100, 0.07), (300, 0.07),

(100, 0.04), (300, 0.04). (43)

Figure 4 displays the original chaotic series {ht}600
t=1 (shown by ‘•’) and an example of 100

sample values {ym}100
m=1 (shown by ‘�’) with the noise variance σ2 = 0.07.

We shall obtain the estimates {ĥt}600
t=1 as follows. Let us consider sample points

{xm}M
m=1 corresponding to the sample values {ym}M

m=1:

xm = −π +
2π

600
(r(m) − 1) . (44)

By using the training examples {(xm, ym)}M
m=1, LS learning is carried out. Then the

estimates {ĥt}600
t=1 are given by

ĥt = f̂

(
−π +

2π

600
(t − 1)

)
. (45)
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We adopt S40 as the largest model, i.e., N = 40. Note that the 600 chaotic series can
not be expressed by the functions in S40. This means that we consider the learning target
function which is not included in S40. Let the set M of model candidates be

M = {S0, S1, S2, . . . , S40}. (46)

Similar to the previous experiment, we compare the performance of the following two
sampling schemes.

(i) Optimal sampling: Sample points are fixed to regular intervals, i.e.,

r(m) =
600m

M
. (47)

In this case, Eqs.(44) and (47) yield Eq.(34) with c = −π + 2π
M

− 2π
600

.

(ii) Random sampling: Sample points are randomly created in the domain, i.e., r(m)
randomly gives an integer such that 1 ≤ r(m) ≤ 600.

Figure 5 depicts the results of the active learning simulation. The horizontal axis
denotes the order n of the model while the vertical axis denotes the error measured by
Eq.(42). The solid and dashed lines show the mean errors over 100 trials by (i) Optimal
sampling and (ii) Random sampling, respectively. These graphs show that (i) Optimal
sampling outperforms (ii) Random sampling even in an unrealizable case. Especially,
when M is small and σ2 is large, its effectiveness is remarkable.

By using the optimal sample points {xm}M
m=1 designed by Eqs.(44) and (47), we will

perform a model selection simulation. Here we attempt the following model selection
criteria.

(a) Subspace information criterion (SIC) [22],

(b) Leave-one-out cross-validation (CV) [15],

(c) Akaike’s information criterion (AIC) [1],

(d) Corrected AIC (cAIC) [19],

(e) Bayesian information criterion (BIC) [18],

(f) Vapnik’s measure (VM) [5].

Note that for optimal sampling, SIC essentially agrees with Mallows’s CL [12].
Figures 6, 7, 8, and 9 depict the simulation results. The left seven graphs show the

values of the error and model selection criteria as a function of the order n of the model
Sn (see Eq.(46)). The box plot notation specifies marks at 95, 75, 50, 25, and 5 percentiles
of values. The solid line denotes the mean values. The middle seven graphs show the
distributions of the selected order n of models. ‘OPT’ indicates the optimal model that
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Figure 5: Results of active learning simulation with Mackey-Glass data.

minimizes the error defined by Eq.(42). The right seven graphs show the distributions of
the obtained error obtained by each model selection criterion.

Figure 6 corresponds to the case with (M, σ2) = (300, 0.04), i.e., the easiest case with
large samples and small noise variance. In this case, all model selection criteria give good
estimates of the error. As a consequence, all methods select reasonable models and result
in smaller errors.

Figure 7 corresponds to the case with (M, σ2) = (100, 0.04), i.e., the case with small
samples and small noise variance. In this case, SIC, CV, and cAIC give reasonable
estimates of the error and therefore work well. In contrast, the curves of AIC, BIC, and
VM seem to be rather corrupted. AIC tends to select larger models, and BIC and VM are
inclined to select smaller models. Because BIC and VM almost always select the smallest
model, they yield large errors.

Figure 8 corresponds to the case with (M, σ2) = (300, 0.07), i.e., the case with large
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Figure 6: Results of model selection simulation with Mackey-Glass data. (M, σ2) =
(300, 0.04).
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Figure 7: Results of model selection simulation with Mackey-Glass data. (M, σ2) =
(100, 0.04).
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Figure 8: Results of model selection simulation with Mackey-Glass data. (M, σ2) =
(300, 0.07).
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Figure 9: Results of model selection simulation with Mackey-Glass data. (M, σ2) =
(100, 0.07).
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samples and large noise variance. In this case, SIC, CV, AIC, and cAIC estimate the
error fairly well and therefore result in small errors. In contrast, BIC and VM sometimes
select the smallest model and give large errors.

Finally, Figure 9 corresponds to the case with (M, σ2) = (100, 0.07), i.e., the hardest
case with small samples and large noise variance. The estimates of the error by all model
selection criteria seem rather inaccurate. However, even so SIC and CV still show a
tendency to select reasonable models, and result in comparatively small errors. On the
other hand, AIC tends to select larger models, and cAIC, BIC, and VM show a tendency
to select smaller models. As a result, they yield large errors.

To sum up, the simulation results show that the proposed sampling method with SIC
or CV is an effective method for aquiring a higher level of the generalization capability.

7 Discussions and conclusions

We discussed the problem of optimizing sample points and models at the same time. We
first pointed out that the problem can not be generally solved, in a batch manner, by
simply combining existing active learning and model selection methods because of the
active learning / model selection dilemma: the model should be fixed for selecting sample
points and conversely the sample points should be fixed for selecting models. The main
contribution of this paper was the basic strategy for dissolving the dilemma (Section 3),
where the commonly optimal sample points play essential roles (see Figure 1).

Although it seemed that the strategy is rather idealistic, we showed that the strategy
can be practically realized for trigonometric polynomial models (Section 5). Computer
simulations shown in Section 6 demonstrated that the proposed procedure shows good
performance even when the learning target function is not included in the trigonometric
polynomial models. This fact implies that the proposed procedure may be useful for any
learning target functions.

In the derivation of our active learning procedure, we imposed a rather strong assump-
tion on the number of training examples (Section 4.4). This assumption may be practical
only when the input dimension is rather small. Our important future direction is to in-
vestigate whether similar discussions can be possible even when the input dimension is
large. We expect that the equidistance sampling still has intersting properties even in
this scenario.

Since the properties of trigonometric polynomials is considerably used for showing that
the equidistance sampling is commonly optimal, the equidistance sampling may not be
optimal for other classes of models. Our important future work is to find the commonly
optimal sample points for other classes of models. It was shown in [21] that Proposition 1
is valid for any finite dimensional reproducing kernel Hilbert spaces such that K(x, x) is a
constant. We expect that following the disucssion in [21] would be a promissing approach
to solving this problem.

Finally, we would like to devise a method for active learning with model selection even
for the classes of models such that the commonly optimal sample points do not exist. We
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expect that the basic strategy proposed in this paper still plays an important role in this
challenging scenario, e.g., finding approximately commonly optimal sample points would
be promissing.
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Appendix: Proof of Theorem 1

According to the reference [14], Eq.(32) is equivalent to

‖ 1√
M

Angn‖2 = ‖gn‖2 (48)

for all Sn ∈ M and for all gn ∈ Sn. Hence, we shall prove Eq.(48). A function gn(x) in
Sn is expressed as

gn(x) =

n1∑
p1=−n1

n2∑
p2=−n2

· · ·
nL∑

pL=−nL

ap1,p2,...,pL

L∏
l=1

exp
(
iplξ

(l)
)
, (49)

where ap1,p2,...,pL
is a scalar. From Eqs.(25), (49), and (31), it holds for all Sn and for all

gn in Sn that

‖ 1√
M

Angn‖2

=

M1∑
m1=1

M2∑
m2=1

· · ·
ML∑

mL=1

∣∣∣∣〈gn(·), 1√
M

Kn(·, xm)〉
∣∣∣∣
2

=
1

M

M1∑
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M2∑
m2=1

· · ·
ML∑

mL=1

|gn(xm)|2

=
1

M

M1∑
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M2∑
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· · ·
ML∑

mL=1∣∣∣∣∣
n1∑

p1=−n1

n2∑
p2=−n2

· · ·
nL∑

pL=−nL

ap1,p2,...,pL

L∏
l=1

exp(iplξ
(l)
m )

∣∣∣∣∣
2

=
1

M

M1∑
m1=1

M2∑
m2=1

· · ·
ML∑

mL=1

n1∑
p1=−n1

n2∑
p2=−n2

· · ·
nL∑

pL=−nL
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n1∑
p′1=−n1

n2∑
p′2=−n2

· · ·
nL∑

p′L=−nL

ap1,p2,...,pL
ap′1,p′2,...,p′L

L∏
l=1

exp
(
i(pl − p′l)ξ

(l)
m

)

=
1

M

n1∑
p1=−n1

n2∑
p2=−n2

· · ·
nL∑

pL=−nL

n1∑
p′1=−n1

n2∑
p′2=−n2

· · ·
nL∑

p′L=−nL

ap1,p2,...,pL
ap′1,p′2,...,p′L

×
L∏

l=1

[
Ml∑

ml=1

exp

(
i(pl − p′l)

2πml

Ml

)]

×
L∏

l=1

exp

(
i(pl − p′l)(cl − 2π

Ml
)

)
. (50)

Since it holds for any integers pl and p′l that

Ml∑
ml=1

exp

(
i(pl − p′l)

2πml

Ml

)
=

{
0 if pl �= p′l,

Ml if pl = p′l,
(51)

Eq.(50) yields

‖ 1√
M

Angn‖2

=
1

M

n1∑
p1=−n1

n2∑
p2=−n2

· · ·
nL∑

pL=−nL

|ap1,p2,...,pL
|2

×
L∏

l=1

Ml ×
L∏

l=1

exp(0)

=
n1∑

p1=−n1

n2∑
p2=−n2

· · ·
nL∑

pL=−nL

|ap1,p2,...,pL
|2

= ‖gn‖2, (52)

which concludes the proof.
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