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Abstract: Model selection is one of the most important tasks in the identification of black-
box systems. In this paper, we give a novel model selection method from the viewpoint of
functional analysis. We formulate the system identification problem as a function approx-
imation problem in a reproducing kernel Hilbert space (RKHS), where the approximation
error is measured by the RKHS norm. Within this framework, we derive an estimator of the
approximation error called the subspace information criterion (SIC) and show its properties.
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1. INTRODUCTION

Model selection is one of the most important tasks in
the identification of black-box systems. The goal of
model selection is to determine the model such that the
approximation error between an estimated system and
the true system is minimized. However, the approxi-
mation error usually depends on the unknown system
so it can not be directly calculated. One of the general
approaches to model selection is to derive an estimator
of the approximation error and then to determine the
model such that the estimator is minimized. So far, a
number of methods for estimating the approximation
error have been proposed from various different stand-
points, e.g., methods based on the asymptotic statis-
tics (Akaike, 1974; Murata et al., 1994), the Vapnik-
Chervonenkis (VC) theory (Vapnik, 1995), resam-
pling techniques (Efron, 1979; Wahba, 1990; Efron
and Tibshirani, 1993), and the Bayesian statistics
(Schwarz, 1978; Akaike, 1980).

In this paper, we give a novel model selection method
from the viewpoint of functional analysis and show its
properties.

1 The author would like to thank Prof. Hidemitsu Ogawa for his
valuable comments and discussions. This research is partially sup-
ported by MEXT, Grants-in-Aid for Scientific Research, 14380158
and 14780262.

2. PROBLEM FORMULATION

Let us regard a black-box system as a real-valued
function f(x) of d variables defined on a subset D of
the d-dimensional Euclidean space R

d. We would like
to identify the function f(x) from a set of n input-
output samples. A sample consists of an input value
xi in D and a corresponding output value y i in R.
We assume that the output value yi is degraded by the
additive noise εi with mean zero. That is, the set of
samples are expressed as

{(xi, yi) | yi = f(xi) + εi}n
i=1. (1)

We consider the case where the unknown function
f(x) belongs to a specified reproducing kernel Hilbert
space (RKHS) H. The reproducing kernel of a func-
tional Hilbert space H is a bivariate function defined
on D × D. Let us denote the reproducing kernel of
H by K(x, x′). The reproducing kernel of H satisfies
the following conditions (Aronszajn, 1950):

• For any fixed x′ in D, K(x, x′) is a function of
x in H.

• For any function f in H and for any x ′ in D, it
holds that

〈f(·), K(·, x′)〉H = f(x′), (2)

where 〈·, ·〉H stands for the inner product in H.



Let f̂(x) be an estimate of the function f(x). The
goal of system identification is to find f̂(x) such that
it is as ‘close’ to f(x) as possible. We shall measure
the closeness between f̂(x) and f(x) by the expected
squared norm in the RKHS H:

Eε‖f̂ − f‖2
H, (3)

where Eε denotes the expectation over the noise
{εi}n

i=1 and ‖ · ‖H denotes the norm in the RKHS H.
That is, the goal is to find f̂ from H such that

min
f̂∈H

Eε‖f̂ − f‖2
H. (4)

Note that we do not take the expectation over input
points {xi}n

i=1, as is done in some statistical model
selection theories (Akaike, 1974; Murata et al., 1994).
Therefore, our approach may be more data-dependent.
Since ‖f‖2

H does not depend on f̂ , we subtract it and
use the following measure as the approximation error.

J = Eε‖f̂ − f‖2
H − ‖f‖2

H
= Eε‖f̂‖2

H − 2Eε〈f̂ , f〉H, (5)

where 〈·, ·〉H denotes the inner product in the RKHS
H. The approximation error J defined by Eq.(5) can
not be directly calculated since it includes the un-
known function f(x). The aim of this paper is to
derive an estimator of the approximation error J .

3. ESTIMATING APPROXIMATION ERROR J

In this section, we derive an estimator of the approxi-
mation error J called the subspace information crite-
rion (SIC) 2 .

3.1 Preliminary

Our key idea for estimating the approximation error J
is to use a linear unbiased estimate f̂u of the unknown
function f , instead of f itself. Here let us assume that
we have a linear operator Xu such that

f̂u = Xuy, Eεf̂u = f, (6)

where y = (y1, y2, . . . , yn)�. We will discuss how
to obtain the linear operator Xu in the following
sections.

Letting ε = (ε1, ε2, . . . , εn)�, we have the following
lemma.

2 The name ‘subspace information criterion’ came from the fact
that in our early work (Sugiyama and Ogawa, 2001), the criterion
was derived for the purpose of selecting subspace models in linear
regression.

Lemma 1. The approximation error J is expressed as

J = Eε

(
‖f̂‖2

H − 2〈f̂ , f̂u〉H + 2〈f̂ , Xuε〉H
)

. (7)

Based on the above lemma, let us define ‘preSIC’ by

preSIC = ‖f̂‖2
H − 2〈f̂ , f̂u〉H + 2Eε〈f̂ , Xuε〉H. (8)

The above quantity is named preSIC because SIC
will be derived based on this quantity. It is clear from
Lemma 1 that preSIC satisfies

EεpreSIC = J. (9)

The third term in preSIC is expected over the noise,
and it can not be directly calculated. In the following,
we shall give methods of calculating or approximating
the third term in preSIC under some conditions.

3.2 SIC for Linear Estimates

Let us consider the case where f̂ is a linear estimate,
i.e., with a linear operator X , f̂ is given by

f̂ = Xy. (10)

Eq.(10) includes, for example, least-squares or ridge
estimation (Hoerl and Kennard, 1970) for linear
or kernel regression models. A particular form of
the Gaussian process regression (Williams and Ras-
mussen, 1996) and the least-squares support vector
machines (Suykens et al., 2002) are also included.

Let Q be the noise covariance matrix, tr (·) be the
trace of an operator, and X ∗

u be the adjoint of Xu.
Then we have the following lemma.

Lemma 2. When f̂ is a linear estimate, it holds that

Eε〈f̂ , Xuε〉H = tr (XQX∗
u) . (11)

Based on the above lemma, we define SIC for linear
estimates as follows 3 .

SIC = ‖f̂‖2
H − 2〈f̂ , f̂u〉H + 2tr (XQX∗

u) . (12)

It is clear that the above SIC is an unbiased estimator
of the approximation error J .

EεSIC = J. (13)

3 In our early work (Sugiyama and Ogawa, 2001), SIC is defined
as

‖f̂ − f̂u‖2
H − tr ((X − Xu)Q(X − Xu)∗) + tr (XQX∗) ,

which is an unbiased estimator of Eq.(3). In the current paper,
we ignored some constant terms that correspond to an estimate of
‖f‖2

H thus do not depend on X.



3.3 SIC for Non-Linear Differentiable Estimates

Here let us consider the case where f̂ is a smooth non-
linear estimate, i.e., with a twice almost differentiable
(Stein, 1981) non-linear operator X , f̂ is given by

f̂ = X(y). (14)

For example, some of the M-estimators such as Hu-
ber’s robust estimation (Huber, 1981) for linear or
kernel regression models are expressed by Eq.(14).

When X(y) is almost differentiable, [X ∗
uX ](y) is

also almost differentiable since X ∗
u is linear. Note that

[X∗
uX ](y) is a vector-valued function from R

n to R
n.

Then we have the following lemma.

Lemma 3. When f̂ is a smooth non-linear estimate
and the noise {εi}n

i=1 is independently and identically
drawn from the normal distribution with mean 0 and
variance σ2, it holds that

Eε〈f̂ , Xuε〉H = σ2Eε

n∑
i=1

∂[X∗
uX ]i(y)
∂yi

, (15)

where [X∗
uX ]i(y) is the i-th output of the vector-

valued function [X ∗
uX ](y).

Based on the above lemma, we define SIC for smooth
non-linear estimates as follows.

SIC = ‖f̂‖2
H − 2〈f̂ , f̂u〉H

+2σ2
n∑

i=1

∂[X∗
uX ]i(y)
∂yi

. (16)

Note that even for smooth non-linear estimates, SIC
is an unbiased estimator of J , i.e., Eq.(13) holds. It
is easy to confirm that Eq.(16) agrees with Eq.(12)
when f̂ is a linear estimate. Therefore, Eq.(16) can be
regarded as a natural extension of Eq.(12).

3.4 Bootstrap Approximation of SIC for Non-Linear
Estimates

Finally, let us consider the case where f̂ is a general
non-linear estimate, i.e., with a general non-linear
operator X , f̂ is given by

f̂ = X(y). (17)

This includes, for example, �1-norm regularized
estimation for linear or kernel regression models
(Williams, 1995; Tibshirani, 1996; Chen et al., 1998)
or the support vector regression (Vapnik, 1995;
Schölkopf and Smola, 2002). For general non-linear
estimates, we shall approximate the third term in
preSIC by the bootstrap method (Efron, 1979; Efron
and Tibshirani, 1993). We define the bootstrap approx-
imation of SIC (BASIC) as follows.

BASIC = ‖f̂‖2
H − 2〈f̂ , f̂u〉H

+2Eb
ε〈f̂ b, Xuε̂b〉H. (18)

More specifically, we calculate the third term
Eb

ε〈f̂ b, Xuε̂b〉H by bootstrapping residuals as follows.

1. Obtain an approximation f̂ with samples
{(xi, yi)}n

i=1 as usual.
2. Estimate the noise by ε̂i = yi − f̂(xi).
3. Create bootstrap noise samples {ε̂b

i}n
i=1 by sam-

pling with replacement from {ε̂i}n
i=1.

4. Obtain an approximation f̂ b with the bootstrap
samples {(xi, y

b
i ) | yb

i = f̂(xi) + εb
i}n

i=1.
5. Calculate 〈f̂ b, Xuε̂b〉H.
6. Repeat 3. to 5. for a number of times and output

the mean of 〈f̂ b, Xuε̂b〉H.

4. WHEN UNBIASED ESTIMATE OF f IS
AVAILABLE

In the previous section, we derived SIC and its ap-
proximation for linear, smooth non-linear, and general
non-linear estimates. In their derivations, we assumed
that a linear unbiased estimate f̂u of the learning target
function f is available. In this section, we show how
to obtain f̂u.

4.1 Existence Condition for Unbiased Estimate of f

The following theorem shows the existence condition
for f̂u.

Theorem 4. A linear unbiased estimate f̂u of the
learning target function f exists if and only if the
functions {K(x, xi)}n

i=1 span the whole RKHS H.

Now we shall show how to obtain f̂u under the sit-
uation where the condition in the above theorem is
fulfilled. To this end, let us introduce the notion of
the Neumann-Schatten product (Schatten, 1970). For
any fixed g in a Hilbert space H1 and any fixed f in a
Hilbert space H2, the Neumann-Schatten product of f
and g, denoted by (f ⊗ g), is an operator from H1 to
H2 that satisfies for any h in H1

(f ⊗ g) h = 〈h, g〉f. (19)

When both H1 and H2 are the Euclidean spaces,
(f ⊗ g) is simply expressed as (f ⊗ g) = fg�. Using
the Neumann-Schatten product, let us define the linear
operator A by

A =
n∑

i=1

(
ei ⊗ K(·, xi)

)
, (20)

where ei is the i-th standard basis in R
n, i.e., it

is the n-dimensional vector with the i-th element 1



and others 0. The property of the reproducing kernel
implies that

Af = (f(x1), f(x2), . . . , f(xn))�. (21)

For this reason, A is called the sampling operator.

Let A† be the Moore-Penrose generalized inverse of A
(Albert, 1972). Then we have the following theorem.

Theorem 5. If the functions {K(x, xi)}n
i=1 span the

whole RKHS H, a linear operator Xu that provides an
unbiased estimate f̂u is given by

Xu = A†. (22)

It can be confirmed that A† provides the best linear
unbiased estimate of f (Albert, 1972).

4.2 SIC for Linear Regression Models

Here we consider a standard linear regression prob-
lem, and show how SIC can be applied.

Let us consider the case where the unknown function
f is of the form

f(x) =
p∑

i=1

α∗
i ϕi(x), (23)

where {ϕi(x)}p
i=1 are the specified basis functions

and {α∗
i }p

i=1 are unknown. We estimate f(x) by the
following linear regression model.

f̂(x) =
p∑

i=1

αiϕi(x). (24)

{αi}p
i=1 are parameters estimated by

α̂ = (α̂1, α̂2, . . . , α̂p)� = X(y), (25)

where X is a vector-valued function from R
n to R

p.
The approximation error is measured by the expected
weighted distance in the input domain D.

Eε

∫
D

(
f̂(x) − f(x)

)2

w(x)dx, (26)

where w(x) is a specified weight function. Let A be
the so-called design matrix whose (i, j)-th element is
given by ϕj(xi).

This setting corresponds to the case where the RKHS
H is spanned by {ϕi(x)}p

i=1 and the inner product is
defined by

〈f, g〉H =
∫
D

f(x)g(x)w(x)dx. (27)

Indeed, the reproducing kernel is given by

K(x, x′) =
p∑

i=1

ϕi(x)ϕ̃i(x′), (28)

where ϕ̃i(x) is the dual of ϕi(x) (Ogawa, 1998).
When {ϕi(x)}p

i=1 is the orthonormal basis in the
RKHS H, ϕ̃i(x) simply agrees with ϕi(x).

Then we have the following theorem.

Theorem 6. When the rank of A is p, the functions
{K(x, xi)}n

i=1 always span the whole RKHS H.

Therefore, when the rank of A is p, an unbiased
estimate f̂u of the learning target function f exists.
In this case, SIC can be calculated as follows.

• When X is linear,

SIC = α̂�Uα̂ − 2α̂�UA†y

+2tr
(
UXQ(A�)†

)
, (29)

where U is the p-dimensional matrix whose
(i, j)-th element is given by

U ij =
∫
D

ϕi(x)ϕj(x)w(x)dx. (30)

• When X is smooth non-linear,

SIC = α̂�Uα̂ − 2α̂�UA†y

+2σ2
n∑

i=1

∂[(A�)†UX]i(y)
∂yi

. (31)

• When X is general non-linear,

BASIC = α̂�Uα̂ − 2α̂�UA†y

+2Eb
εε̂

b�(A�)†Uα̂b. (32)

4.3 Estimating Prediction Error and Test Error

One of the common approximation error measures
may be the prediction error (or the expected test error)
defined by

∫
D

(
f̂(x) − f(x)

)2

p(x)dx, (33)

where p(x) is the probability density function from
which the (future) test input points are drawn. Letting
w(x) = p(x), we can use SIC for estimating the
prediction error.

However, p(x) is often unknown so the matrix U can
not be calculated. One of the options is to use the em-
pirical distribution of {xi}n

i=1 instead of p(x) under
the assumption that {xi}n

i=1 are independently and



identically drawn from p(x). That is, U is estimated
by

U ij ≈ 1
n

n∑
k=1

ϕi(xk)ϕj(xk). (34)

In this case, it can be confirmed that SIC for lin-
ear estimates essentially agrees with Mallows’s CL

(Mallows, 1973) and SIC for smooth non-linear es-
timates essentially agrees with Stein’s unbiased risk
estimator (Stein, 1981).

When input points without output values (which is
often referred to as unlabeled samples) are available,
another option comes in handy. That is, we estimate
p(x) by the empirical distribution of the unlabeled
samples. Then U is estimated by

U ij ≈ 1
n′

n′∑
k=1

ϕi(x′
k)ϕj(x′

k), (35)

where {x′
i}n′

i=1 are the unlabeled samples. Note that
ordinary samples {xi}n

i=1 can also be included in the
set of unlabeled samples.

In some cases, test input points {x′′
i }n′′

i=1 are known
in advance, and the goal is to estimate the output val-
ues {f(x′′

i )}n′′
i=1 corresponding to the test input points

(which is often referred to as the transductive infer-
ence). In such cases, SIC can be used for estimating
the error at the test points {x′′

i }n′′
i=1 by defining U as

U ij =
1
n′′

n′′∑
k=1

ϕi(x′′
k)ϕj(x′′

k). (36)

5. WHEN UNBIASED ESTIMATE OF f IS NOT
AVAILABLE

We showed in Section 4 that a linear unbiased estimate
f̂u of the unknown function f exists if and only if the
functions {K(x, xi)}n

i=1 span the whole RKHS H. In
this section, we consider the case where the functions
{K(x, xi)}n

i=1 do not span the whole RKHS H.

5.1 Existence Condition for Unbiased Estimate of
Projection of f

So far, we searched the approximation f̂ in the whole
RKHS H. Here we restrict ourselves to searching the
approximation f̂ within a subspace S of the RKHS H.

Let fS be the orthogonal projection of f onto the
subspace S. Recalling that 〈f̂ , f〉H = 〈f̂ , fS〉H for
f̂ ∈ S, the approximation error J defined by Eq.(5) is
expressed as

J = Eε‖f̂‖2
H − 2Eε〈f̂ , fS〉H, (37)

where f in Eq.(5) is simply replaced by fS . Therefore,
if a linear unbiased estimate of the projection fS

is available, we can make the same discussion as
Section 3. Indeed, the following theorem shows the
existence condition for a linear unbiased estimate of
the projection fS .

Theorem 7. (Sugiyama and Müller, 2002) A linear
unbiased estimate of the projection fS exists if and
only if the subspace S is included in the span of the
functions {K(x, xi)}n

i=1.

This theorem means that a linear unbiased estimate of
the projection fS exists if f̂ is searched in the span of
the functions {K(x, xi)}n

i=1, i.e., f̂ is searched of the
form

f̂(x) =
n∑

i=1

αiK(x, xi), (38)

where {αi}n
i=1 are parameters to be estimated.

The following theorem shows how to obtain a linear
unbiased estimate of the projection fS .

Theorem 8. If the subspace S is included in the span
of the functions {K(x, xi)}n

i=1, a linear operator Xu

that provides an unbiased estimate of the projection f
is given by Eq.(22).

Theorems 5 and 8 show that the same A† gives an
unbiased estimate of f or the projection of f .

When parameters {αi}n
i=1 in the kernel regression

model (38) are estimated by

α̂ = (α̂1, α̂2, . . . , α̂n)� = X(y), (39)

where X is a vector-valued function from R
n to R

n,
SIC can be calculated as follows.

• When X is linear,

SIC = α̂�Kα̂ − 2α̂�y + 2tr (XQ) . (40)

• When X is smooth non-linear,

SIC = α̂�Kα̂ − 2α̂�y

+2σ2
n∑

i=1

∂[X]i(y)
∂yi

. (41)

• When X is general non-linear,

BASIC = α̂�Kα̂ − 2α̂�y

+2Eb
εε̂

b�α̂b. (42)

5.2 Restriction on Generalization Measure

As shown above, even when the functions
{K(x, xi)}n

i=1 do not span the whole RKHS H,
SIC can be applied if the kernel regression model (38)
is used.



However, in this case, we should care about the fact
that the shape of the kernel function K(x, x ′) and the
definition of the norm in the RKHS H relate each
other. That is, if we use a desired kernel function,
then we can no longer define the approximation error
measure as desired. Conversely, if we use the desired
approximation error measure, then the shape of the
kernel function can no longer be chosen as desired.

For example, if the following Gaussian kernel is used

K(x, x′) = g(x − x′) = exp
(
−‖x− x′‖2

2

)
, (43)

then the norm in the Gaussian RKHS is given by

‖f̂ − f‖2
H =

∫ (
F [f̂ ](ω) − F [f ](ω)

)2

F [g](ω)
dω, (44)

where F [·] denotes the Fourier transform. This norm
has a property that high frequency components are
strongly penalized.

6. CONCLUSIONS

In this paper, we formulated the system identification
problem as a function approximation problem in a
reproducing kernel Hilbert space (RKHS), and derived
an estimator of the approximation error defined by the
RKHS norm called the subspace information criterion
(SIC). When the approximation function is estimated
in a linear or smooth non-linear fashion, SIC has an
analytic form and is an unbiased estimator of the true
approximation error. When the approximation func-
tion is estimated in a general non-linear fashion, we
proposed approximating SIC by the bootstrap method.
SIC can be applied when a linear unbiased estimate of
the unknown target function is available. We provided
the necessary and sufficient condition for the existence
of the linear unbiased estimate. For the cases where
such a linear unbiased estimate does not exist, we
further showed that SIC can be still applied if the
approximation function is a kernel regression model.
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