IFAC-SYSID2003

Aug. 27, 2003

Functional Analytic Framework for Model Selection

Fraunhofer Institut Rechnerarchitektur und Softwaretechnik

Masashi Sugiyama

Tokyo Institute of Technology, Tokyo, Japan Fraunhofer FIRST-IDA, Berlin, Germany

Regression Problem

 $f(\boldsymbol{x})$:Underlying function $\hat{f}(\boldsymbol{x})$:Learned function $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$:Training examples $y_i = f(\boldsymbol{x}_i) + \epsilon_i$ (noise) $\epsilon_i \stackrel{i.i.d.}{\sim} \mod 0$, variance σ^2

From $\{(x_i, y_i)\}_{i=1}^n$, obtain a good approximation $\hat{f}(x)$ to f(x)

Model Selection

Appropriate

Too complex

Choice of the model is extremely important for obtaining good learned function $\hat{f}(x)$!

(Model refers to, e.g., regularization parameter)

- Model is chosen such that a generalization error estimator is minimized.
- Therefore, model selection research is essentially to pursue an accurate estimator of the generalization error.
- We are interested in
 - Having a novel method in different framework.
 - Estimating the generalization error with small (finite) samples.

Formulating Regression Problem⁵ as Function Approximation Problem

H : A functional Hilbert space
We assume $f, \hat{f} \in H$

We shall measure the "goodness" of the learned function \hat{f} (or the generalization error) by

$$\mathbf{E}||\hat{f} - f||^2$$

E :Expectation over noise $\|\cdot\|$:Norm in H

Function Spaces for Learning

- In learning problems, we sample values of the target function at sample points (e.g., $f(x_1)$).
- Therefore, values of the target function at sample points should be specified.
- This means that usual L_2 -space is not suitable for learning problems.

 f_1 and f_2 have different values at x_0 $f_1(x_0) \neq f_2(x_0)$ But they are treated as 6

the same function in L_2

$$f_1 = f_2$$

Reproducing Kernel Hilbert Spaces

- In a reproducing kernel Hilbert space (RKHS), a value of a function at an input point is always specified.
- Indeed, an RKHS *H* has the reproducing kernel K(x, x') with reproducing property:

 $\langle f, K(\cdot, \boldsymbol{x}') \rangle = f(\boldsymbol{x}')$

 $\langle \cdot, \cdot
angle$:Inner product in H

Sampling Operator

For any RKHS H, there exists a linear operator A from H to \mathbb{R}^n such that

$$Af = (f(\boldsymbol{x}_1), f(\boldsymbol{x}_2), \dots, f(\boldsymbol{x}_n))^{\top}$$

Indeed,
$$A = \sum_{i=1}^{n} \left(\boldsymbol{e}_i \otimes \overline{K(\cdot, \boldsymbol{x}_i)} \right)$$

 $(\cdot \otimes \overline{\cdot})$:Neumann-Schatten product $(f \otimes \overline{g}) h = \langle h, g \rangle f$ For vectors, $(f \otimes \overline{g}) = fg^{\top}$

 e_i : i-th standard basis in \mathbb{R}^n

E : Expectation over noise

Tricks for Estimating Generalization Error

- We want to estimate $E||\hat{f} f||^2$. But it includes unknown f so it is not straightforward.
- To cope with this problem,

We shall estimate only its essential part

$$E\|\hat{f} - f\|^2 = E\|\hat{f}\|^2 - 2E\langle\hat{f}, f\rangle + \|f\|^2$$

Essential part J Constant
 $J = E\|\hat{f} - f\|^2 - \|f\|^2$

• We focus on the kernel regression model:

$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$

 \boldsymbol{n}

 $K(\boldsymbol{x}, \boldsymbol{x'})$:Reproducing kernel of H

A Key Lemma

Estimating Essential Part J

$$J = \mathrm{E}\left(||\hat{f}||^2 - 2\langle \hat{f}, A^{\dagger} \boldsymbol{y} \rangle + 2\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle\right)$$
$$\boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2, \dots, \epsilon_n)$$

- $\|\hat{f}\|^2 2\langle \hat{f}, A^{\dagger} y \rangle + 2\langle \hat{f}, A^{\dagger} \epsilon \rangle \text{ is an unbiased}$ estimator of the essential gen. error J.
- However, the noise vector ϵ is unknown.

Let us define

$$preSIC = \|\hat{f}\|^2 - 2\langle \hat{f}, A^{\dagger} \boldsymbol{y} \rangle + 2\mathbf{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$$

Clearly, it is still unbiased: E[preSIC] = JWe would like to handle $E\langle \hat{f}, A^{\dagger} \epsilon \rangle$ well. How to Deal with $\mathrm{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$ ¹³

$$preSIC = \|\hat{f}\|^2 - 2\langle \hat{f}, A^{\dagger} \boldsymbol{y} \rangle + 2\mathbf{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$$

$$\hat{f} = X \boldsymbol{y} \qquad \boldsymbol{y} = (y_1, y_2, \dots, y_n)^\top$$

Depending on the type of learning operator X we consider the following three cases.

A) X is linear.

- **B)** X is non-linear but twice almost differentiable.
- **C)** X is general non-linear.

A) Examples of Linear Learning Operator

Kernel ridge regression
 A particular Gaussian process regression
 Least-squares support vector machine

 \boldsymbol{n}

$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$

$$\alpha_i : \text{Parameters to be learned}$$

$$\min_{\{\alpha_i\}} \left[\sum_{i=1}^n \left(\hat{f}(\boldsymbol{x}_i) - y_i \right)^2 + \boldsymbol{\lambda} \| \hat{f} \|^2 \right]$$

 λ :Ridge parameter

A) Linear Learning

When the learning operator X is linear, $E\langle \hat{f}, A^{\dagger} \epsilon \rangle = \sigma^2 tr(XX^*)$

> $\hat{f} = X \boldsymbol{y}$ X^* : Adjoint of X $preSIC = \|\hat{f}\|^2 - 2\langle \hat{f}, A^{\dagger} \boldsymbol{y} \rangle + 2 \mathbf{E} \langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$

This induces the subspace information criterion (SIC): M. Sugiyama & H. Ogawa (Neural Comp. 2001) M. Sugiyama & K.-R. Müller (JMLR, 2002) $SIC = ||\hat{f}||^2 - 2\langle \hat{f}, A^{\dagger} y \rangle + 2\sigma^2 \operatorname{tr} (XX^*)$

SIC is unbiased with finite samples: E[SIC] = J How to Deal with $\operatorname{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$ ¹⁶

$$preSIC = \|\hat{f}\|^2 - 2\langle \hat{f}, A^{\dagger} \boldsymbol{y} \rangle + 2\mathbf{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$$

$$\hat{f} = X \boldsymbol{y} \qquad \boldsymbol{y} = (y_1, y_2, \dots, y_n)^\top$$

Depending on the type of learning operator X we consider the following three cases.

A) X is linear.

B) X is non-linear but twice almost differentiable.

C) X is general non-linear.

B) Examples of Twice Almost ¹⁷ Differentiable Learning Operator

Support vector regression with Huber's loss

$$\min_{\{\alpha_i\}} \left[\sum_{i=1}^n \rho\left(\hat{f}(\boldsymbol{x}_i) - y_i \right) + \frac{\lambda}{\|\hat{f}\|^2} \right] \hat{f}(\boldsymbol{x}) = \sum_{i=1}^n \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$

 λ :Ridge parameter

 \boldsymbol{n}

$$o(y) = \begin{cases} \frac{1}{2}y^2 & (|y| \le t) \\ t|y| - \frac{1}{2}t^2 & (|y| > t) \end{cases}$$

$$t : \text{Threshold}$$

B) Twice Differentiable Learning¹⁸

For the Gaussian noise, we have

$$E\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle = E\left(\sigma^{2} \sum_{i=1}^{n} \frac{\partial [A^{\dagger} X]_{i}(\boldsymbol{y})}{\partial y_{i}}\right)$$

 $[A^{\dagger}X](\boldsymbol{y})$:Vector-valued function

$$preSIC = \|\hat{f}\|^2 - 2\langle \hat{f}, A^{\dagger} \boldsymbol{y} \rangle + 2\mathbf{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$$

SIC for twice almost differentiable learning: $SIC = ||\hat{f}||^2 - 2\langle \hat{f}, A^{\dagger}y \rangle + 2\sigma^2 \sum_{i=1}^n \frac{\partial [A^{\dagger}X]_i(y)}{\partial y_i}$ It reduces to the original SIC if X is linear. It is still unbiased with finite samples: E[SIC] = J How to Deal with $\mathrm{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$ ¹⁹

$$preSIC = \|\hat{f}\|^2 - 2\langle \hat{f}, A^{\dagger} \boldsymbol{y} \rangle + 2\mathbf{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$$

$$\hat{f} = X \boldsymbol{y} \qquad \boldsymbol{y} = (y_1, y_2, \dots, y_n)^\top$$

Depending on the type of learning operator X we consider the following three cases.

A) X is linear.

B) X is non-linear but twice almost differentiable.

C) X is general non-linear.

C) Examples of General ²⁰ Non-Linear Learning Operator

Kernel sparse regression

$$\min_{\{\alpha_i\}} \left[\sum_{i=1}^n \left(\hat{f}(\boldsymbol{x}_i) - y_i \right)^2 + \lambda \sum_{i=1}^n |\alpha_i| \right] \quad \hat{f}(\boldsymbol{x}) = \sum_{i=1}^n \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$

Support vector regression with Vapnik's loss

$$\min_{\{\alpha_i\}} \left[\sum_{i=1}^n \left| \hat{f}(\boldsymbol{x}_i) - y_i \right|_{\varepsilon} + \lambda \| \hat{f} \|^2 \right]$$

$$|y|_{\varepsilon} = \begin{cases} 0 & (|y| \le \varepsilon) \\ |y| - \varepsilon & (|y| > \varepsilon) \end{cases}$$

C) General Non-Linear Learning²¹

Approximation by the bootstrap $\mathrm{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle \approx \mathrm{E}^{b} \langle \hat{f}^{b}, A^{\dagger} \hat{\boldsymbol{\epsilon}}^{b} \rangle$

 $\mathbf{E}^{b} : \mathbf{Expectation} \text{ over bootstrap replications}$ $preSIC = \|\hat{f}\|^{2} - 2\langle \hat{f}, A^{\dagger} \boldsymbol{y} \rangle + 2\mathbf{E}\langle \hat{f}, A^{\dagger} \boldsymbol{\epsilon} \rangle$

Bootstrap approximation of SIC (BASIC):

 $BASIC = \|\hat{f}\|^2 - 2\langle \hat{f}, A^{\dagger} \boldsymbol{y} \rangle + 2\mathbf{E}^b \langle \hat{f}^b, A^{\dagger} \hat{\boldsymbol{\epsilon}}^b \rangle$

BASIC is almost unbiased: $E[BASIC] \approx J$

Simulation: Learning Sinc function²²

Simulation: DELVE Data Sets ²³

Normalized test error

Data	RSIC	Cross Validation	Empirical Bayes
Abalone	1.0144 ± 0.0002	1.0146 ± 0.0002	1.0204 ± 0.0003
Boston	1.0016 ± 0.0007	1.0071 ± 0.0007	1.1406 ± 0.0008
Bank-8fm	1.0703 ± 0.0001	1.0708 ± 0.0001	1.0030 ± 0.0001
Bank-8nm	1.0002 ± 0.0004	1.0461 ± 0.0005	1.0477 ± 0.0005
Bank-8fh	1.0025 ± 0.0003	1.0026 ± 0.0003	1.0003 ± 0.0003
Bank-8nh	1.0028 ± 0.0005	1.2177 ± 0.0008	1.4200 ± 0.0008
Kin-8fm	1.0000 ± 0.0001	1.0010 ± 0.0001	1.4548 ± 0.0004
Kin-8nm	1.0097 ± 0.0010	1.0241 ± 0.0007	1.0371 ± 0.0006
Kin-8fh	1.0021 ± 0.0003	1.0057 ± 0.0003	1.2025 ± 0.0001
Kin-8nh	1.0451 ± 0.0009	1.0017 ± 0.0004	1.0361 ± 0.0004

Red: Best or comparable (95%t-test)

Conclusions

- We provided a functional analytic framework for regression, where the generalization error is measured using the RKHS norm: $\mathbf{E}||\hat{f} - f||^2$
- Within this framework, we derived a generalization error estimator called SIC.
 - A) Linear learning (Kernel ridge, GPR, LS-SVM): SIC is exact unbiased with finite samples.
 - B) Twice almost differentiable learning (SVR+Huber):
 SIC is exact unbiased with finite samples.
 - C) Non-linear learning (K-sparse, SVR+Vapnik): BASIC is almost unbiased.