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Regression Problem

f(x) :Underlying function
f(a:) ‘Learned function

{(x;,y;) };_:Training examples

yi = () +

From {(z;,y:)};~, , obtain a good
approximation f(x) to f(x)




Model Selection

Target function f(x)
Learned function f(x)

00 simple Appropriate 00 complex

Choice of the model is extremely important
for obtaining good learned function f(x) !

(Model refers to, e.g., regularization parameter)



. Aims of Our Research

Model Is chosen such that a generalization
error estimator is minimized.

Therefore, model selection research Is
essentially to pursue an accurate
estimator of the generalization error.

We are interested In
® Having a novel method in different framework.

® Estimating the generalization error with small
(finite) samples.



Formulating Regression Problem ®
as Function Approximation Problem

H : A functional Hilbert space
We assume f,f € H

We shall measure the “gpodness”
of the learned function f (or the
generalization error) by

Ellf - 71

E :Expectation over noise
|- || :Normin H




Function Spaces for Learning °

In learning problems, we sample values of the
target function at sample points (e.g., f(x1) ).

Therefore, values of the target function at
sample points should be specified.

This means that usual L- -space Is not
suitable for learning problems.

Lo 1S spanned by

2 fl and f2 have
f ‘ /|f | dr < OO different values at zg

fi(zo) # fa(xo)

But they are treated as
the same functlon IN Lo



Reproducing Kernel Hilbert Spaceg

In a reproducing kernel Hilbert space
(RKHS), a value of a function at an input
point Is always specified.

ndeed, an RKHS H has the reproducing
kernel K (x, ") with reproducing property:

(f, K(-,2')) = f(z)

(-,-) :Inner product in H

B



Sampling Operator

For any RKHS H, there exists a linear
operator A from H to R" such that

Af = (f(z1), f(xa), ..., f(xn))T

Indeed, A = z“’: (6@ ® K(, CCJ)
i=1

(- ® ) :Neumann-Schatten product
(f@g)h=<h,g)f
For vectors, (f®7) = fg'

e;:1-th standard basis in R"
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Our Framework

RKHS _ Sample value space
H Sampling operator R
/ \ (Always linear) / \
Learning A f ()
target f(w) /\ Af — f(i.nz)
function Yy = Af s f(:;:n)
Gen. error 5 i €1
' ; f= Xy nmsi i
Elf - /I € =
Learning operator . €n
[ e (Generally non-linear) "
function J (Z)

\_

E :Expectation over noise

X C




Tricks for Estimating 10

Generalization Error

We want to estimate E||/ — f||>. But it includes
unknown / so it is not straightforward.

To cope with this problem,
®\VVe shall estimate only its essential part

E[lf — fII* = EIIfII* = 2E(f, /) + [ fII°
\ Y ) | R
Essential part J  Constant
J=E|f - fI” = If1I?
®\\e focus on the kernel regression model:

Z@z T, x;) K(x,x") :Reproducing
kernel of H




A Key Lemma H

For the kernel regression model,
the essential gen. error J Is expressed by

J=E (|2 - 2(f, ATy) + 2(f, A'e))

J=E|f—[I* = |IfI . E :Expectation over noise

Unknown target function f can be erased! |

Af — (f(wl)a f(wZ)a R f(wn))—r Y= (yl’ Y2, -+ yn)T
A" :Generalized inverse € = (€1,€,..., Gn)T



Estimating Essential Part J  *°

J=E (If|? - 2(f, Ay) + 2(f, Ale))

€= (e1,€,...,6n)"

1£112 = 2(f, ATy) 4+ 2(f, AT€) is an unbiased
estimator of the essential gen. error .J .
However, the noise vector € i1s unknown.

Let us define
preSIC = ||f||? — 2(f, ATy) + 2E(f, ATe)

Clearly, it is still unbiased: E[preSIC| =J
We would like to handle E(f, Afe) well.




How to Deal with E(f, ATe) *°

preSIC = ||f|I” — 2(f, ATy) + 2E(/, A'e)

A

f:Xy y:(ylay27"'7yn

)T

Depending on the type of learning operator X
we consider the following three cases.

[ A) X is linear. ]

B) X Is non-linear but twice almost differentiable.

C) X is general non-linear.



A) Examples of e

Linear Learning Operator

Kernel ridge regression
A particular Gaussian process regression
Least- squares support vector machine

EozZ (x, x;)

«; :Parameters to be learned
n

min | 3° (7o) - 1) #7112

loi} L 1=1

A :Ridge parameter



A) Linear Learning S

When the learning operator X is lineatr,
E(f, ATe) = o%tr (X X*)

f=Xy X ™ :Adjoint of X
preSIC = ||fII> — 2(f, ATy) + 2E(f, ATe)

his induces the subspace information
criterion (SIC): 1 Siana &1 Roie (v 3005

SIC = || — 2(f, Aly) + 207 (X x*) B

SIC Is unbiased with finite samples:
E[SIC|=J



How to Deal with E(f, ATe) *°

preSIC = ||f|I” — 2(f, ATy) + 2E(/, A'e)

A

f:Xy y:(ylay27"'7yn

)T

Depending on the type of learning operator X
we consider the following three cases.

A) X Is linear.

[ B) X Is non-linear but twice almost differentiable. ]

C) X is general non-linear.



B) Examples of Twice Almost *'

Differentiable Learning Operator

Support vector regression with Huber’s loss
f@)=> a;K(z, ;)
=1

min _Zn:p (f’(wz-) — y) +)\Hf|2:

L 1=1

A :Ridge parameter

\/ N > ly| >t
| | | | | t ‘Threshold

o R A I = S LN &)




B) Twice Differentiable Learning™

For the Gaussian noiseT we have
E(f, A'e) ( QZ A;; )
[ATX](y) :Vector-valued function

preSIC = ||f|* = 2(f, Aly) + 2E(f, A'e)

SIC for twice almost differentiable Iearning:

SIC = ||f||? = 2(f, Aty) 2022 ATX

It reduces to the original SIC |f X is Ilnear

It Is still unbiased with finite samples:
B[SIC] = J )




How to Deal with E(f, ATe) *

preSIC = ||f|I” — 2(f, ATy) + 2E(/, A'e)

A

f:Xy y:(ylay27"'7yn

)T

Depending on the type of learning operator X
we consider the following three cases.
A) X Is linear.

B) X Is non-linear but twice almost differentiable.

[ C) X is general non-linear. ]




C) Examples of General

20

Non-Linear Learning Operator

Kernel sparse regression

n

[y o]

L 1=1

Eaz (x, x;)

Support vector regression with Vapnik’s loss

+A £

min > ‘f(wz-) —
Ul i=1 y

_J 0 (yl<e
= e |

ly| — €

5

o = N w A

N/

0 2



C) General Non-Linear Learning **

Approximation by the bootstrap
E(f, ATe) ~ EX(f*, AT€")

E® :Expectation over bootstrap replications
preSIC = || fI? —2(f, Aly) + 2E(f, A'e)

Bootstrap approximation of SIC (BASIC):
BASIC = || f||? — 2(f, Aly) + 2E(f*, AT&")

BASIC Is almost unbiased:
E[BASIC] ~ J )



Simulation: Learning Sinc function®

1} o — ol
0.5¢ o
g . 2
05 % % 4
2 0o 2 E—
H :Gaussian RKHS 3 2 4 0 1 2 3

Kernel ridge regression

§ a; K CIZ wz 27

4}

%11;1 [Z (f(wi) — yz) +)\||f||2] """""""""" / SIC
=1 o P

A :Ridge parameter g




Simulation: DELVE Data Sets *°

Normalized test error

Data

RSIC

Cross Validation

Empirical Bayes

Abalone
Boston
Bank-8fm
Bank-8nm
Bank-8fh
Bank-8nh
Kin-8fm
Kin-8nm
Kin-8fh
Kin-8nh

1.0144 + 0.0002
1.0016 = 0.0007/
1.0703 + 0.0001
1.0002 + 0.0004
1.0025 + 0.0003
1.0028 + 0.0005
1.0000 + 0.0001
1.0097 = 0.0010
1.0021 + 0.0003
1.0451 £ 0.0009

1.0146 + 0.0002
1.0071 £ 0.000/
1.0708 = 0.0001
1.0461 = 0.0005
1.0026 + 0.0003
1.2177 £ 0.0008
1.0010 = 0.0001
1.0241 = 0.000/
1.0057 = 0.0003
1.0017 = 0.0004

1.0204 + 0.0003
1.1406 + 0.0008
1.0030 + 0.0001
1.0477 + 0.0005
1.0003 + 0.0003
1.4200 + 0.0008
1.4548 + 0.0004
1.0371 £ 0.0006
1.2025 + 0.0001
1.0361 £ 0.0004

Red: Best or comparable (95%t-test)
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Conclusions

24

N

)

We provided a functional analytic framework
for regression, where the generalization error Is
measured using the RKHS norm: E|/f — f|?

Within this framework, we derived a
generalization error estimator called SIC.

A) Linear learning (Kernel ridge, GPR, LS-SVM):
SIC Is exact unbiased with finite samples.

B) Twice almost differentiable learning (SVR+Huber):
SIC Is exact unbiased with finite samples.

C) Non-linear learning (K-sparse, SVR+Vapnik):
BASIC Is almost unbiased.




