
IEEE Transactions on Neural Networks, vol.13, no.1, pp.70–80, 2002. 1

Subspace Information Criterion
for Non-Quadratic Regularizers

— Model Selection for Sparse Regressors

Koji Tsuda∗+, Masashi Sugiyama† and Klaus-Robert Müller∗‡
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Abstract

Non-quadratic regularizers, in particular the �1 norm regularizer can yield sparse
solutions that generalize well. In this work we propose the Generalized Subspace
Information Criterion (GSIC) that allows to predict the generalization error for this
useful family of regularizers. We show that under some technical assumptions GSIC
is an asymptotically unbiased estimator of the generalization error. GSIC is demon-
strated to have a good performance in experiments with the �1 norm regularizer as
we compare with the Network Information Criterion and cross-validation in rela-
tively large sample cases. However in the small sample case, GSIC tends to fail to
capture the optimal model due to its large variance. Therefore, also a biased version
of GSIC is introduced, which achieves reliable model selection in the relevant and
challenging scenario of high dimensional data and few samples.
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1 Introduction

Supervised learning techniques allow to estimate underlying unknown statistical input-
output relations from given training data [1, 2, 3]. In this process one has to be careful
not to overfit the training data, but to estimate the underlying statistical data generation
process, such that the learning machine generalizes well, i.e. that it gives a good estimate
even for unseen data.

One way to avoid overfitting is to restrict the function class from which the estimators
are chosen. Thus, one introduces a preference from complicated models towards simpler
models for example by choosing a model with a small VC dimension [1] or by introducing
regularization [4]. Intuitively this amounts to selecting a smoother model.

In this paper we will consider regularization for enhancing the generalization capability.
Here the parameters θ of the learning machine are determined such that a weighted sum
of the training error and the regularization term R

Error(θ) = TrainingError(θ) + λR(θ) (1)

is minimized, where λ is called the regularization constant. If the regularization constant
λ is too large, then the estimator is under-fitting, the estimation is too smooth and
the generalization error becomes large. If λ is selected too small, then overfitting and
high frequency (“wiggly”) estimators result. Therefore, the problem of model selection,
i.e. in our case determining the value of the regularization constant is essential for good
generalization performance. There is a large body of literature of how to choose the
regularization constant (e.g. for neural networks see [2, 5, 6]). The ideal criterion would
be the generalization error itself, or approximations thereof, e.g. in a worst or average
case setting. The former considers the worst generalization error achieved on all possible
training sets (see e.g. methods based on VC theory [7, 1]). The latter considers ensemble
averages over all possible training sets, for example the Network Information Criterion
(NIC) [8, 9] or the Subspace Information Criterion (SIC) [10]. Furthermore there are
very successful criteria such as cross validation [11], CL [12] or the Bayesian evidence
framework [13, 14], which approximately evaluate the ensemble error using the training
data. In this paper, we will focus on prediction methods for the ensemble average of the
generalization error.

The prediction of the generalization error becomes easier if additional unlabeled input
data points are known. NIC – a generalization of Akaike’s information criterion [15] – is a
typical method which does not make use of the distribution of unlabeled additional data
points. It only assumes that all data has essentially the same distribution as the training
samples. For example in text classification [16] many additional unlabeled samples are
available, so an accurate estimation of the input distribution beyond the training data
is possible. SIC – a generalization of CL – makes use of additional unlabeled data and
therefore has been shown to perform better than NIC, particularly in the small sample
setting [10]. The technical feature of SIC is that it predicts the generalization error by
utilizing a reference estimator, which is an unbiased estimate of the true parameter. SIC
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was so far only applicable to linear regression with quadratic regularizers, which includes
e.g. weight decay (see [2, 17, 18]).

Recently, sparsity inducing non-quadratic regularizers have become rather popular
since with still good generalization properties [19, 20, 21, 22, 23, 24, 25] sparse solutions
(i.e. most of the model parameters become zero) are found in the training process.1 Often
they are based on l1 regularization. Since such regularization terms are non-quadratic,
the original SIC criterion cannot be applied to them.

In this work we therefore propose the Generalized Subspace Information Criterion
(GSIC) that allows to predict the generalization error for the family of non-quadratic reg-
ularizers. Among several other interesting theoretical properties, we will – under several
assumptions – show that GSIC is an asymptotically unbiased estimator of the generaliza-
tion error.

In experiments with relatively large samples, GSIC achieves a good performance as
we compare with NIC and cross-validation. However, in small sample cases, GSIC tends
to fail to capture the optimal model due to its large variance. To alleviate this problem,
we introduce a biased version of GSIC, which is derived from a reference estimator reg-
ularized by a quadratic regularizer. This biased version (GSICb) introduces yet another
model selection problem: determining the regularization constant of the reference esti-
mator. But, since a quadratic regularizer is used here, the regularization constant can
be determined by efficient algorithms [5]. In experiments using an �1 norm regularizer,
GSICb shows an excellent performance, when compared to NIC and cross-validation.

The rest of this paper is organized as follows: In Sec. 2, we formulate the problem of
generalization error prediction in detail. In Sec. 3, the generalized SIC for non-quadratic
regularizer is proposed, and its asymptotic bias is investigated. Sec. 4 introduces a biased
version of GSIC for small sample cases. Sec. 5 considers the application of GSIC to sparse
regressors. Experiments in Sec. 6 give a comparison of our method with NIC and cross
validation. Finally, Sec. 7 gives concluding remarks.

2 Preliminaries

In a linear regression problem, a target function is approximated by a parametric model
which is linear in parameters. Let us assume that the target function f(x), x ∈ R

d, is
contained in a parametric model

f�(x) =

p∑
i=1

θiφi(x), (2)

1In principle one could select the parameters afterwards by feature selection techniques [26]. However,
such a two-stage scheme has often a more complex algorithmic structure and is harder to analyze. The
�1 regularizer appears more simple.
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where φi : R
d → R is a given (nonlinear) basis function and θ ∈ R

p is the parameter
vector. Then, we can describe f(x) as

f(x) =

p∑
i=1

θ∗i φi(x), (3)

where θ∗i is the true parameter.2 The training examples consist of input points xi ∈ R
d

and the corresponding output yi ∈ R, which are degraded by additive noise εi:

yi = f(xi) + εi. (4)

We assume that all random variables {εi}ni=1 are independent and subject to the same
symmetric distribution with mean zero and variance σ2. In this paper, we focus on the
case where the parameter θ is determined by finding θ that minimizes a weighted sum of
squared errors and a (twice differentiable) regularization term R(θ)

Lr =
1

n

n∑
i=1

(f�(xi)− yi)
2 + λR(θ), (5)

where λ is called the regularization constant. Let us define θ̂ as the solution of the
optimization problem:

θ̂ = argmin
�

Lr(θ). (6)

The generalization error of θ̂ is

E�[(f(x)− f
�̂
(x))2] =

∫
(f(x)− f

�̂
(x))2q(x)dx, (7)

where q(x) denotes the distribution of input x. Let us assume that the solution of (5)
is unique. Then, the solution θ̂ is considered an implicit function of training examples
{(xi, yi)}ni=1:

θ̂(x1, · · · ,xn, y1, · · · , yn). (8)

In model selection, the optimal λ should be determined so that the generalization error
is minimized. However, since θ̂ depends on random variables yi, the generalization error
(7) is also a random variable. In order to compare two random variables, we focus on the
mean only. The mean generalization error

JG = E�E�[(f(x)− f
�̂
(x))2], (9)

2Assuming there is a true parameter may seem restrictive, but this is actually not a strong condi-
tion, because in sparse regression it is common to start with a large number of basis functions and to
subsequently reduce the number of them by minimizing a sparseness inducing error function.
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is called ensemble average, where θ̂(x1, · · · ,xn, y1, · · · , yn) is abbreviated as θ̂ and E� :=
Eε1 · · ·Eεn .

For the sake of a better geometrical understanding, we define the inner product in
parameter space as

〈θ,θ′〉 = E�[(

p∑
j=1

θjφj(x))(

p∑
k=1

θ′kφk(x))]

= θT Pθ′, (10)

where P is the matrix whose (i, j) element is given as

Pij = E�[φi(x)φj(x)]. (11)

Then we can rewrite the ensemble average of the generalization error using the norm of
parameter space3 as

JG = E�‖θ̂ − θ∗‖2. (12)

The matrix P can be exactly calculated if we know the input distribution q(x). If q(x)
is unknown, P can be estimated, e.g. by using the unlabeled samples {x′

k}mk=1 [16] or one
can assume that q(x) is the uniform distribution over some domain.

3 Generalization Error Prediction

In this section, we derive a generalization error prediction method called Generalized
Subspace Information Criterion (GSIC).

3.1 Basic Idea

Fig. 1 illustrates the idea. With respect to different training sets, the parameter θ̂ takes
various values and forms a distribution, where θm is the mean of θ̂, i.e., θm = E�[θ̂]. The
generalization error JG is the average distance between θ̂ and the underlying true solution
θ∗. Because there is no information about θ∗, we introduce another parameter θ̂u such
that θ̂u is an unbiased estimate of θ∗:

E�[θ̂
u] = θ∗. (13)

A typical choice of θ̂u is the least mean squares estimator (i.e. without the regularizer)

[10].4 Then the distance between θ̂ and θ̂u (the broken line in Fig. 1) gives a rough estimate
of the generalization error. We will derive an unbiased estimator of the generalization error
by adding modification terms to this distance. Note that this technique to use an unbiased
estimator was first introduced in SIC [10].

3This is actually a seminorm, because the norm ‖θ‖ will vanish for nonzero θ if θ lies in the null space
of P . However, our theoretical discussions hold even when P has a null space.

4Notice that the least mean squares estimator is unbiased only when n ≥ p.
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Figure 1: Basic idea for evaluating the generalization error.

3.2 Generalized Subspace Information Criterion

In this section, we will derive an unbiased estimator of JG. JG can be decomposed into
the bias and variance (see also [27, 28]) as

E�‖θ̂ − θ∗‖2 = E�‖θ̂ − θm + θm − θ∗‖2
= E�‖w + θm − θ∗‖2
= ‖θm − θ∗‖2 + 2E�〈θm − θ∗,w〉+ E�‖w‖2
= ‖θm − θ∗‖2 + E�〈w,w〉, (14)

where w := θ̂ − θm. The bias term can be expressed by using ‖θ̂ − θ̂u‖2 as

‖θm − θ∗‖2 = ‖θ̂ − θ̂u‖2 − ‖θ̂ − θ̂u‖2 + ‖θm − θ∗‖2
= ‖θ̂ − θ̂u‖2 − ‖θ̂ − θm + θm − θ̂u + θ∗ − θ∗‖2 + ‖θm − θ∗‖2
= ‖θ̂ − θ̂u‖2 − ‖w + θm − v − θ∗‖2 + ‖θm − θ∗‖2
= ‖θ̂ − θ̂u‖2 − ‖w − v‖2 − 2〈w − v,θm − θ∗〉, (15)

where v := θ̂u − θ∗. The second and third terms in (15) can not be directly evaluated,
so we average out these terms. Then the second term yields

−E�‖w − v‖2 = −E�〈w,w〉 + 2E�〈w,v〉 −E�〈v,v〉, (16)

and the third term vanishes as

E�〈w − v,θm − θ∗〉 = 〈E�w −E�v,θm − θ∗〉 = 0, (17)

because E�w = E�v = 0. This approximation yields the unbiased estimator of JG called
the Generalized Subspace Information Criterion.
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Definition 1 (Generalized Subspace Information Criterion) The following func-
tional is defined as the Generalized Subspace Information Criterion:

GSIC = ‖θ̂ − θ̂u‖2 + 2E�〈w,v〉 −E�〈v,v〉. (18)

Note that the proposed GSIC includes SIC as a special case.

3.3 GSIC for Quadratic Regularizers

For calculating (18), an unbiased estimate θ̂u, the variance terms E�〈w,v〉 and E�〈v,v〉
are required. In this section, we will show how to calculate these terms in linear regression

with a quadratic regularizer R(θ) = θ̂
T
Rθ̂, which results in the original SIC [10, 29, 18].

Let K be the n× p matrix whose (i, j) element is φj(xi) and y = (y1, . . . , yn)T . K is

sometimes called the design matrix [30]. When ( 1
n
KT K + λR) is invertible, θ̂ is given as

[18]:

θ̂ =
1

n
(
1

n
KT K + λR)−1KT y. (19)

When KT K is invertible, an unbiased estimate θ̂u is given as [10]

θ̂u = (KT K)−1KT y. (20)

Then the first term in (18) can be calculated. The second and third term can be exactly
calculated as [10, 18]

E�〈w,v〉 = σ2tr(PW ), (21)

E�〈v,v〉 = σ2tr(PV ), (22)

where tr(·) denotes the sum of diagonal elements of a matrix, where P is defined by (11),
and W and V are the p× p matrices defined as

W =
1

n
(
1

n
KT K + λR)−1, (23)

V = (KT K)−1. (24)

This finally yields the original SIC for quadratic regularizers [18]:

SIC = (θ̂ − θ̂u)TP (θ̂ − θ̂u) + 2σ2tr(PW )− σ2tr(PV ), (25)

which gives an unbiased estimate of JG [10]. Usually, the variance σ2 is not known, so we
use its unbiased estimate instead. When n > p, its unbiased estimate is given as [31]

σ̂2 =
yT y − (Kθ̂u)T y

n− p
. (26)

Even when we replace σ2 by σ̂2, the unbiasedness property is conserved [10].
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3.4 GSIC for Non-Quadratic Regularizers

When we are concerned with non-quadratic regularizers, θ̂ can not be obtained analyt-
ically like in (19). Instead, it is usually obtained by some optimization method (e.g.
[32, 8]). For this reason, it is difficult to evaluate the second term E�〈w,v〉 in (18). So
we approximate E�〈w,v〉 under the assumption that the Hessian H = [ ∂2Lr

∂θi∂θj
] of the loss

function Lr is invertible for any θ̂. Then, E�〈w,v〉 is approximated as

E�〈w,v〉 ≈ σ2tr(PW 0), (27)

where

W 0 =
1

n

(
1

n
KT K +

1

2
λ∇∇R(θ̂)

)−1

, (28)

and ∇∇R(θ̂) is the p× p matrix whose (i, j) element is ∂R(�)
∂θi∂θj

∣∣
�=�̂

. The derivation of this

approximation is described in appendix I. It gives GSIC for non-quadratic regularizers,
which we propose in this paper:

Definition 2 (GSIC for Non-Quadratic Regularizers) The following functional is
called the Generalized Subspace Information Criterion for non-quadratic regularizers:

GSIC = (θ̂ − θ̂u)T P (θ̂ − θ̂u) + 2σ2tr(PW 0)− σ2tr(PV ), (29)

where θ̂u, P , W 0, and V are given by (20), (11), (28), and (24), respectively.

When the regularization term is quadratic, GSIC agrees with the original SIC (25).
When σ2 is not known, it is replaced by σ̂2 as in SIC. With regard to the relationship
between GSIC and the generalization error JG, we have the following theorem.

Theorem 1 Assuming that θ̂ can be represented as a b-th (b < ∞) order polynomial
of y and the moments of εi up to b-th order are bounded, then GSIC for non-quadratic
regularizers is an asymptotic unbiased estimate of JG:

E�[GSIC] = JG + O(n−2). (30)

A proof of the above theorem is provided in appendix II. In order to discuss theoretical
properties of GSIC with more mathematical rigor, it would be necessary to obtain a version
of the theorem without the assumption that θ̂ is a finite order polynomial of y. This,
however, would go beyond the scope of this paper, which explores mainly the practical
performance of GSIC.
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4 Biased GSIC

In practical situations, it is common that as many basis functions as training examples are
used, e.g. the Gaussian functions centered on all input points. In such cases, the unbiased
solution θ̂u tends to have a large variance, which also makes the variance of GSIC large.
Therefore model selection can become unstable.

For reducing the variance, it is effective to replace θ̂u by θ̂α obtained by weight decay
regularization as

θ̂α = (KT K + αI)−1KTy, (31)

where I is the p × p identity matrix. The (conceptual) distributions of θ̂u and θ̂α are

illustrated in Fig. 2. Although the mean of θ̂α has a small bias away from the true
parameter θ∗, the variance of θ̂α becomes much smaller than that of θ̂u. We observe
that by using the regularized θ̂α instead of θ̂u, GSIC becomes slightly biased but its
variance is drastically reduced. However, now another regularization constant α has to
be determined. By adjusting α such that θ̂α is an accurate estimator of θ∗, the error of
GSIC is expected to be improved. Indeed, this expectation is supported by simulations in
Sec.6.1. Fortunately, it is by far easier to determine α for weight decay regularization than
to determine λ in the sparse regressor since in the weight decay case, the leave-one-out
error can be efficiently computed in closed-form [5]:

LOOerror =
yTU(diag(U))−2Uy

n
, (32)

where U = In − K(KT K + αI)−1KT and In denotes the n × n identity matrix. Also
other sophisticated methods are available such as CL [12] and GCV [33]5. By using the
closed-form result for the weight decay regularization parameter α, a good estimate of
the noise variance σ2 is obtained as (see e.g. [33])

σ̂2 =
yT Z2y

tr(Z)
, (33)

where Z = I − K(KT K + αI)−1KT . Note that using (33) instead of (26) also slightly
increases the bias of GSIC, but the variance is even further decreased. We call this
technique biased GSIC (GSICb).

5 Applying GSIC to Sparse Regression

It is well-known that the �1 norm regularization leads to a sparse solution, where most
of the parameters θi’s are zero [19, 21]. A sparse regressor is practically useful because it

5A detailed review for weight decay regularization is available in [5].
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Figure 2: Illustration of the distributions of θ̂u (not regularized) and θ̂
α

(regularized).

The difference is that the variance of θ̂
α

gets smaller and the mean of θ̂
α

(denoted as •
in the figure) does no longer coincide with the true parameter θ∗. The gain of shrinking
the variance is expected to by far exceed this bias.

automatically selects necessary basis functions and moreover a sparse solution saves the
computational cost. The loss function for the sparse regressor is given as

Lr =
1

n

n∑
i=1

(f�(xi)− yi)
2 + λ

p∑
i=1

|θi|. (34)

Minimizing Lr with respect to θ is done by a convex quadratic programming [32]. Let us
decompose θ = θ+ − θ−, where all elements of θ+ and θ− are nonnegative. Then, the
minimizer of Lr with respect to θ is obtained by finding θ+ and θ− that minimize

1

n
ξTξ + λ

p∑
i=1

(θ+
i + θ−i ) (35)

under the constraint that K(θ+−θ−) = y+ξ, θ+ ≥ 0, and θ− ≥ 0. We briefly explain why
solving the problem (35) leads to the optimal solution of (34): At the optimal solution,
either θ+

i or θ−i is zero, because otherwise the value of (35) can be reduced without
violating constraints by the following manipulation:

{θ+
i , θ−i } ← {θ+

i − θ−i , 0} when θ+
i − θ−i ≥ 0,

{θ+
i , θ−i } ← {0, θ−i − θ+

i } when θ+
i − θ−i < 0.

When this implicit constraint is taken into account,

θ+
i + θ−i = |θi|. (36)
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Figure 3: Learning target function and 100 training examples with σ = 0.3.

We can see that the two problems are equivalent because (34) is obtained by substituting
(36) and the equality constraints into (35).

As for sparse regressors ∇∇R is not well defined, GSIC cannot applied directly. In
order to apply GSIC to the sparse regressor, we need to approximate the regularization
term R(θ) =

∑p
i=1 |θi| by a continuous function as

R′(θ) =

p∑
i=1

θi tanh(γθi), (37)

where the slope is e.g. γ = 10. Then, ∇∇R is a diagonal matrix whose i-th element is

∇∇Rii = 2(γsech2(γθ̂i)− γ2θ̂isech
2(γθ̂i) tanh(γθ̂i)). (38)

Using (38), we can compute W 0 from Eq.(28) and therefore calculate GSIC for the sparse
regressor. Because of this approximation, we are investigating the generalization error
of the approximated regressor, not that of the sparse regressor itself. It is a further
interesting topic to consider how to choose the approximator for minimizing the difference
of the generalization errors, but outside the scope of this contribution.

6 Experiments

In this section, we perform experiments for sparse regressors. Notice that the purpose
of the experiments is to demonstrate that GSIC actually works for generalization error
prediction of sparse regressors.
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6.1 Illustrative Example

Let the regression function be

f�(x) =
50∑
i=1

θi exp

(
−‖x− si‖2

η2

)
, (39)

where η = 1 and 50 template samples si’s are equally spaced in [−15, 15]. We obtain the
true parameter θ∗ by the least mean squares estimate with {(si, g(si))}50

i=1, where

g(x) = |x|−1 sin |x|. (40)

For training, n input points {xi}ni=1 are chosen randomly from the uniform distribution on
[−15, 15]. The output values are obtained as yi = f(xi)+ εi, where εi’s are independently
subject to a normal distribution with mean zero and standard deviation σ. The target
function and training examples are displayed in Fig. 3. The regularization constant is
selected from

λ = 1.0× 10−4, 1.0× 10−3.5, . . . , 1.0× 10−1 (41)

by 10-fold cross validation (CV), NIC, GSIC and GSICb. Also, 100 additional unla-
beled samples {x′

i}100
i=1 are given from the uniform distribution on [−15, 15]. In GSIC and

GSICb, the distribution q(x) of these additional input points is estimated by the empirical
distribution of the unlabeled samples:

q(x) =
1

100

100∑
i=1

δ(x− x′
i), (42)

where δ(x) = 1 when x = 0 and otherwise δ(x) = 0. The true generalization error is
measured by

Error =

∫ 15

−15

(f�(x)− f(x))2 dx. (43)

The performance of CV, NIC, and GSIC is measured by the generalization error at
the selected λ (Fig. 4). The experiment consists of 100 trials with different noise. When
n = 200, all criteria work well with no significant difference. As n decreases to 60, CV
still works well, but NIC and GSIC tend to give a large generalization error.

In order to investigate the cause of errors by NIC and GSIC in detail, actual values
of CV, NIC, and GSIC are displayed in Fig. 5 for (n, σ) = (60, 0.3) and (200, 0.3). Note

that the values of GSIC in the figure are biased, because we ignored the terms ‖θ̂u‖2
and σ̂2tr(PV ), which are irrelevant to model selection. Thus we can see the essential
contributions to the variance of the estimate.

When (n, σ) = (200, 0.3), the shape of the curves by CV, NIC, and GSIC are very close
to the true curve, which explains why the model selection was carried out successfully.
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Figure 4: Generalization errors at selected λ for the respective model selection criterion
shown with standard box plot (100 trials). The box plot notation specifies marks at 95,
75, 50, 25, and 5 percentiles of values. ‘OPT’ denotes the generalization error with the
optimal λ.
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Figure 5: Values of each criterion by 100 trials shown with standard box plot. The
horizontal axis denotes log λ. The solid line denotes the mean values.
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Figure 6: (Top) The generalization error at selected λ by GSICb with changing α (n = 60
and σ = 0.3). The horizontal axis denotes log α. The results of cross validation and GSIC

are also shown for comparison. (Bottom) Generalization errors of θ̂α with changing α.

Although CV still gives an accurate curve when (n, σ) = (60, 0.3), the curves of NIC and
GSIC are no longer accurate. These graphs also show that the inaccuracy of the curves
by NIC and GSIC has different characteristics. The NIC curve is tilted towards the left,
which shows that NIC tends to choose smaller regularization constants. This figure tells
us that the unbiasedness of NIC is essentially lost because of the small sample effect. In
GSIC, huge variance dominates the graph, so the shape of the average curve is unreliable.
The variance of GSIC is large especially when the regularization constant λ is small. So,
for explaining the failure in NIC, the bias plays a main role whereas in GSIC, the variance
is of primal importance.

In order to reduce the variance of GSIC, we use the biased version GSICb. The top
graph in Fig. 6 shows the generalization error of GSICb at the selected λ value as a
function of the weight decay parameter α:

α = 1.0 × 10−4, 1.0 × 10−3.5, . . . , 1.0 × 101. (44)

The bottom graph in Fig. 6 displays the true generalization error of θ̂α with changing
α. These graph shows that the minimum of these two curves approximately agrees. This
means that if α is determined such that the true generalization error of θ̂α is minimized,
then the performance of GSICb is expected to be the best. In the experiments, we use
a leave-one-out cross-validation to approximate the true generalization error and thus
to determine α (see Sec. 4). Note that for GSICb, the noise variance is estimated by
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Figure 7: Computation time. The horizontal axis denotes the number of training examples
and the vertical axis denotes the computation time in seconds. The plot of GSICb shows
the overall computation time which includes the model selection procedure for choosing
α. The plot of CV shows the computation time of actually performing the 10-fold cross
validation procedure by repeating to solve the quadratic programming problem (35).

(33). Fig. 4 shows that GSICb works as well as other methods when n = 200. With
the decrease of n to 60, GSICb tends to work much better than NIC and non-regularized
GSIC, and its performance is comparable to CV. Fig. 5 shows that the shape of the GSICb
curve shadows the true curve nicely when (n, σ) = (200, 0.3). Note that terms which are
irrelevant to model selection are ignored also in GSICb because of the similar reason to
above. When (n, σ) = (60, 0.3), the variance of the GSICb curve is far reduced compared
to that of the non-regularized GSIC curve, and its shape coincides very well with the true
curve. This implies that the introduction of regularization parameter α for obtaining a
reference estimator (cf. (31) and (33)) drastically reduces the variance with an irrelevant
effect on the bias. Therefore, GSICb works well even for small samples.

The computation times of GSICb and CV are plotted in Fig. 7. The plot of GSICb
shows the overall computation time which includes the model selection procedure for
choosing α. The plot of CV shows the computation time of actually performing the 10-
fold cross validation procedure by repeating to solve the convex quadratic programming
problem (35). In this experiment GSICb is much faster than CV, and the advantage
increases as n becomes larger.6

In summary, this illustrative one dimensional experiment shows that non-regularized
GSIC performs well when n is large, but it can become unstable for small sample cases.
Although it is heuristically derived, GSICb works comparably well as CV in the cases
studied and it is computationally much more efficient than CV.

6The computation of the leave-one-out error for weight decay (32) is O(n2).
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6.2 Experiment on Multidimensional Data

To further inspect the performance of GSIC(b), we studied a number of multidimensional
data sets provided by DELVE [34]; we will report exemplarily about results on the Boston
Housing data in this work. The Boston Housing data set has 506 points in 14 dimensional
space, where we used the 14th variable MEDV as the output value. Each input variable
is divided by its maximum value for normalization. We randomly choose 50 samples for
training and 100 samples as unlabeled data. The 356 remaining test samples are used for
measuring the generalization error. The regression function is described as

f�(x) =

50∑
i=1

θik(x,xi), (45)

where k is the third-order ANOVA decomposition kernel [35, 1]:

k(xi,xj) =
∑

1≤k1<k2<...<k3≤13

ϕ(xik1 , xjk1)ϕ(xik2, xjk2)ϕ(xik3, xjk3) (46)

constructed from a linear spline kernel ϕ [36]:

ϕ(xi, xj) = 1 + xixj + xixj min(xi, xj)− xi + xj

2
(min(xi, xj))

2 +
(min(xi, xj))

3

3
. (47)

Here, all of the 50 training samples are used as template samples. As candidate values
for the regularization parameter λ, 10 equally spaced points in the log scale are taken
from [10−3, 103]. In GSICb, we used the same candidate values for α. Note that, in the
cross validation process of this experiment, the basis functions corresponding to hold-out
training samples are not used, i.e. the regressor from Eq.(45) has accordingly fewer basis
functions. The result of 100 trials are summarized in Fig. 8. We included the result of
leave-one-out cross validation as well as 10-fold cross validation. Even in the challenging
situation that the number of samples is the same as the number of parameters, GSICb
performed comparably to 10-fold cross validation and leave-one-out cross validation.

7 Concluding Remarks

In this paper, we proposed GSIC and GSICb, two generalization error prediction meth-
ods for non-quadratic regularizers, which make use of the distribution of additional unla-
beled input points. They extend SIC, whose range of application is limited to quadratic
regularizers. Theoretically, the bias of GSIC was shown to vanish asymptotically. In
experiments, GSIC worked well with larger samples in its original form, and its regular-
ized variant GSICb worked excellently even for small sample sizes. Therefore GSIC(b) is
an interesting stand-alone model selection technique. Another aspect of GSICb is that
it makes use of a well-tuned reference estimator. So conceptually, we can understand
GSICb as a technique to achieve good model selection from a reference estimator, i.e. we
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Figure 8: Generalization errors at selected λ by 100 trials in Boston Housing dataset.
The number of samples is 50. The results are shown with the standard box plot. ’LOO’
denotes the result of leave-one-out cross validation

can transfer regularization knowledge from one learning machine to another. GSICb is
especially useful when the model selection of the reference estimator – as in our case –
can be done efficiently. Thus we can save a good amount of computation time.

Future work will focus on theoretical aspects of choosing reference estimators for
GSICb. An interesting question here is how to optimally transfer e.g. regularization infor-
mation from a reference estimator to another learning machine or in general between two
learning machines. For this purpose, we will analyze both bias and variance of GSICb, for
instance along the lines of [37]. Furthermore we plan to apply GSIC(b) to classification
and unsupervised learning.
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A Derivation of GSIC

In this section, we will show the derivation of (27). Because we assumed that the
solution of the learning problem is unique, θ̂ is considered as a function of y. Let
z := (f(x1), . . . , f(xn))T and ε := (ε1, . . . , εn)T . Also, let the derivatives of θ̂(y) be
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denoted as

∇θ̂i(y) :=

(
∂θ̂i

∂y1
(y), . . . ,

∂θ̂i

∂yn
(y)

)T

, (48)

and ∇θ̂(y) := (∇θ̂1(y), · · · ,∇θ̂p(y))T . Then, θ̂(y) can be expressed via Taylor expansion
as follows:

θ̂i(y) = θ̂i(z + ε) = θ̂i(z) +∇θ̂i(z)T ε + Si, (49)

where Si is the residual. Then, wi (i-th element of w) is described as

wi = θ̂i(z + ε)−E�[θ̂i(z + ε)] = ∇θ̂i(z)Tε + Si − E�[Si]. (50)

Expressing an unbiased estimator θ̂u(y) by (20)7, ∇θ̂u(y) is given as

∇θ̂u = (KTK)−1KT , (51)

and hence vi (i-th element of v) is described as

vi = ∇θ̂u
i

T ε. (52)

Now E�〈w,v〉 is written as

E�〈w,v〉 =

p∑
i=1

p∑
j=1

PijE�[wivj], (53)

where E�[wivj] is expressed as

E�[wivj] = σ2∇θ̂i(z)T∇θ̂u
j + E�[Si(∇θ̂u

j
Tε)]. (54)

Here, we approximate E�[wivj] by

E�[wivj] ≈ σ2∇θ̂i(y)T∇θ̂u
j , (55)

i.e., the second term of (54) is ignored and z in the first term is replaced by y. The
analysis of the error due to the approximation using Eq.(55) will be given in the proof of
Theorem 1 (Appendix II) under several assumptions. Then we obtain

E�〈w,v〉 ≈ σ2tr(PW 0) (56)

where

W 0 = ∇θ̂(y)∇θ̂uT
. (57)

7For simplicity, we derive the GSIC for non-quadratic regularizers based on this unbiased estimator
here. However, you can trace the same way when you use a different unbiased estimator.
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The derivatives ∇θ̂(y) can be obtained from the saddle point equation,

∂Lr

∂θi
= 0, (i = 1, . . . , p). (58)

Differentiating the above equation with respect to yk, we have

p∑
j=1

∂2Lr

∂θi∂θj

∂θj

∂yk
+

∂2Lr

∂θi∂yk
= 0.

In matrix representation,

H∇θ̂(y) + M = 0,

where H is a p × p matrix whose (i, j) element is Hij = ∂2Lr

∂θi∂θj
, and M is a p × n matrix

whose (i, j) element is Mij = ∂2Lr

∂θi∂yj
. When H is invertible, ∇θ̂(y) is described as

∇θ̂(y) = −H−1M. (59)

Substituting (5) to (59), we have

∇θ̂(y) =
1

n

(
1

n
KT K +

1

2
λ∇∇R(θ̂(y))

)−1

KT . (60)

Consequently, (28) is derived by substituting (51) and (60) into (57).

B Proof of Theorem 1

Here, we shall show that the order of the error due to the approximation in (55) is O(n−2):

E�[Si(∇θ̂u
j

T ε)− σ2(∇θ̂i(y)−∇θ̂j(z))T∇θ̂u
j ] = O(n−2) (61)

First, we assume that θ̂(y) can be represented by b-th order polynomial (b < ∞), and
the moments of εi up to b-th order are bounded. Then, Si =

∑b
a=2 Sia and

Sia =
1

a!

n∑
k1=1

· · ·
n∑

ka=1

∂aθ̂i

∂yk1 · · · ∂yka

(z)εk1 · · · εka . (62)

We first show the following lemmas.

Lemma 1 Let i1, . . . , ia denote a set of indices such that 1 ≤ i1, . . . , ia ≤ n. Then, the
following relation holds:

E�[
n∑

i1=1

· · ·
n∑

ia=1

a∏
k=1

εik] =

{
0 ( a is odd )

O(na/2) (a is even)
(63)
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Lemma 2 The order of a-th order derivatives of θ̂(y) is described as

∂aθ̂i

∂yi1 · · · ∂yia

= O(n−a). (64)

Proofs of the above lemmas are given in appendix III and IV. Note that Lemma 2 also
holds for θ̂u(y) by setting λ = 0.

First, we will derive the order of the term E�[Si(∇θ̂u
j

T ε)].

E�[Sia(∇θ̂u
j

T ε)] = E�

(
n∑

k=1

∂θ̂u
j

∂yk
εk

)(
1

a!

n∑
i1=1

· · ·
n∑

ia=1

∂aθ̂i

∂yi1 · · · ∂yia

εi1 · · · εia

)

=
1

a!

n∑
k=1

n∑
i1=1

· · ·
n∑

ia=1

∂θ̂u
j

∂yk

∂aθ̂i

∂yi1 · · · ∂yia

E�[εkεi1 · · · εia ]

By using Lemmas 1 and 2, we have E�[Sia(∇θ̂u
j

T ε)] = O(n−1−a+(a+1)/2) when a is odd and

0 when a is even. Then, the order of E�[Si(∇θ̂u
j

Tε)] is equal to that of its leading term

E�[Si3(∇θ̂u
j

Tε)] = O(n−2).

Next, we focus on the other term E�[(∇θ̂i(y)−∇θ̂j(z))T∇θ̂u
j ], which is described as

E�[(∇θ̂i(y)−∇θ̂j(z))T∇θ̂u
j ] =

n∑
k=1

∂θ̂u
j

∂yk
(E�[

∂θ̂i

∂yk
(z + ε)]− ∂θ̂i

∂yk
(z)). (65)

By Taylor expansion, we have

E�[
∂θ̂i

∂yk
(z + ε)]− ∂θ̂i

∂yk
(z) = E�[

n∑
l=1

∂2θ̂i

∂yk∂yl
(z)εl] + E�[

b−1∑
a=2

Ta], (66)

where

Ta =
1

a!

n∑
i1=1

· · ·
n∑

ia=1

∂a+1θ̂i

∂yk∂yi1 · · · ∂yia

(z)εi1 · · · εia . (67)

The first term of the right-hand side of (66) is zero because each εi is independent and
has zero mean. From Lemmas 1 and 2, we have E�[Ta] = O(n−(a+1)+a/2), when a is even
and 0 when a is odd. Then, the order of E�[

∑b−1
a=2 Ta] is equal to that of its leading term

E�[
∑b−1

a=2 Ta] = O(n−2). By substituting this and the relation
∂θ̂u

j

∂yk
= O(n−1) into (65), we

have (61).

C Proof of Lemma 1

The task is to derive the order of Qa:

Qa =
n∑

i1=1

· · ·
n∑

ia=1

E�[εi1 · · · εia ], (68)
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Let us define an index vector i = (i1, . . . , ia)
T and assume that i contains r(i) unique

values v1(i) < · · · < vr(�)(i). Let the number of indices whose values are vj(i) be denoted
as mj(i)(≥ 1):

mj(i) = |{k | ik = vj(i)}| (69)

where | · | denote the cardinality of a set. For example, if i = (4, 4, 5, 2, 4, 2)T , then
r(i) = 3, v1(i) = 2, v2(i) = 4, v3(i) = 5, m1(i) = 2, m2(i) = 3, and m3(i) = 1. Also,
define the set of all index vectors as I, then Qa can be rewritten as

Qa =
∑
�∈I

E�[εi1 · · · εia], (70)

Let us define the subset of I as

I ′ = {i | mj(i) is even for j = 1, . . . , r(i)}. (71)

This excludes the index vectors where the same number appears odd times. Eε(ε
k
i ) = 0

when k is odd, because the distribution of εi is symmetric (See definition in Sec. 2) and
εi’s are independent. Therefore, we have E�[εi1 · · · εia ] = 0 for any i ∈ I ′. So, Qa is
rewritten as

Qa =
∑
�∈I ′

E�[εi1 · · · εia ]. (72)

Since the noise moments are bounded by assumption, there exists a positive constant M
that E�[εi1 · · · εia ] ≤M . Then, we have

Qa ≤M |I ′|. (73)

When a is odd, at least one mj(i) is odd for any i ∈ I. Therefore, I ′ is a null set and
Qa = 0. When a is even, mj(i) ≥ 2 for all i ∈ I ′. Then, the number of unique values are
bounded as r(i) ≤ a/2. So the cardinality of I ′ is less than na/2 and thus |I ′| = O(na/2).

D Proof of Lemma 2

Let us describe that the a-th order derivative of θ̂k as

q
(a)
i (θ̂(y),y) =

∂aθ̂k

∂yi1 · · · ∂yia

(74)

where i1, . . . , ia are indices in [1, n]. As a step to prove (64), we will prove that q
(a)
i (θ̂(y),y)

is described only by θ̂(y), that is, there is some function f such that q
(a)
i (θ̂(y),y) =

f(θ̂(y)).
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We construct this proof by induction. When c = 1, it is obvious that q
(1)
i is described

only by θ̂(y) from (60). Assume that the c-th order derivative is described only by θ̂(y),

that is, there is some function f such that q
(c)
i (θ̂(y),y) = f(θ̂(y)). Then, the (c + 1)-th

order derivative q
(c+1)
i (θ̂(y),y) can also be described by θ̂(y) only, because

q
(c+1)
i (θ̂,y) =

∂f

∂yic+1

=

p∑
k=1

∂f

∂θ̂k

∂θ̂k

∂yic+1

(75)

and ∂θ̂k

∂yic+1
is described only by θ̂(y) as in (60). By induction, it is proved that the

derivatives of any order are described only by θ̂(y).

Then, we proceed to prove (64). When c = 1, it is obvious that ∂θ̂k

∂yi
= O(n−1) from

(60). Assume that the order of q
(c)
i be O(n−m), then the order of q

(c+1)
i is O(n−(m+1))

from (75). Therefore, by induction, we have proven (64) for any a.
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