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Abstract

The problem of designing the regularization term and regularization parameter for
linear regression models is discussed. Previously, we derived an approximation to
the generalization error called the subspace information criterion (SIC), which is
an unbiased estimator of the generalization error with finite samples under certain
conditions. In this paper, we apply SIC to regularization learning and use it for
(a) choosing the optimal regularization term and regularization parameter from
given candidates, and (b) obtaining the closed form of the optimal regularization
parameter for a fixed regularization term. The effectiveness of SIC is demonstrated
through computer simulations with artificial and real data.
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Nomenclature

f(x) : learning target function
D : domain of f(x)
xm : m-th sample point
ym : m-th sample value
εm : m-th noise
(xm, ym) : m-th training example
M : the number of training examples
y : M -dimensional vector consisting of {ym}Mm=1

ε : M -dimensional vector consisting of {εm}Mm=1

ϕp(x) : p-th basis function
θp : p-th coefficient
µ : the number of basis functions
JG : generalization error
JTE : training error
JR : regularized training error
T : regularization matrix
α : regularization parameter
A : design matrix
XT,α : regularization learning matrix
U : µ-dimensional matrix
θ : true parameter

θ̂T,α : regularization estimate

θ̂u : unbiased estimate
σ2 : noise variance

1 Introduction

The purpose of supervised learning is acquiring a higher level of the generalization ca-
pability. Least mean squares (LMS) learning, aimed at minimizing the training error, is
widely used for obtaining a learning result from training examples. However, LMS learn-
ing sometimes causes so-called over-fitting and yields a lower level of the generalization
capability. To avoid over-fitting, regularization learning (which is referred to as ridge
regression or weight decay in a special case) is often employed. Regularization learning
is aimed at minimizing the weighted sum of the training error and a regularization term.
The weight parameter is called the regularization parameter. Intuitively, the regulariza-
tion term makes the learning result function smooth for avoiding over-fitting. A difficulty
of using regularization learning is that the choice of the regularization term and regular-
ization parameter (i.e., the type and level of smoothing) is crucial for acquiring a higher
level of the generalization capability.

So far, research from various standpoints have been conducted for designing the reg-
ularization term and regularization parameter. One of the classic approaches is based on
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the discrepancy principle (Groetsch, 1984; Morozov, 1993; Kunisch & Zou, 1998). The
discrepancy principle asserts that the training error should be equal to the noise variance.
A heuristic motivation for this principle is that it does not make sense to ask for an es-
timation with the training error less than the noise variance since only the noisy sample
values are available (Groetsch, 1984). The traditional cross-validation is one of the well-
known methods for determining the regularization term and regularization parameter. In
k-fold cross-validation, training examples are divided into k disjoint sets. k − 1 sets are
used for obtaining a learning result function and the rest is used for evaluating its error.
This procedure is repeated for all k combinations and the mean error is regarded as an
estimate of the generalization error. If k is equal to the number of training examples, it
is specially called the leave-one-out cross-validation. CL (Mallows, 1973), which is also
referred to as the unbiased risk estimate (Wahba, 1990), gives an unbiased estimate of
the error between estimated and true values at training sample points. CL requires an
estimate of the noise variance. In contrast, the generalized cross-validation (Craven &
Wahba, 1979), which is a simplified version of the leave-one-out cross-validation, can be
calculated without estimating the noise variance. Within the framework of the Bayesian
statistics, Akaike (1980) proposed a Bayesian information criterion. It is aimed at choos-
ing the regularization term and regularization parameter so that the marginal likelihood
of the regularization parameter is maximized (see also MacKay, 1992; Watanabe, 2001).
Shibata (1989) extended Akaike’s information criterion (Akaike, 1974), which evaluates
the generalization error itself in the asymptotic sense, to choose the regularization param-
eter (see also, Murata et al., 1994; Konishi & Kitagawa, 1996). From the viewpoint of the
structural risk minimization principle (Vapnik, 1995), Cherkassky et al., (1999) proposed
Vapnik’s measure, which is a probabilistic upper bound of the generalization error.

In this article, we apply the subspace information criterion (SIC) (Sugiyama & Ogawa,
2001, 2002) to the problem of designing the regularization term and regularization pa-
rameter. SIC gives an unbiased estimate of the generalization error with finite samples
under certain conditions. SIC is used for (a) choosing the optimal regularization term
and regularization parameter from given candidates, and (b) obtaining the closed form of
the optimal regularization parameter for a fixed regularization term. The effectiveness of
SIC is demonstrated through computer simulations with artificial and real data.

2 Problem formulation

In this section, the supervised learning problem is mathematically formulated.

2.1 Supervised learning

Let us consider the supervised learning problem of obtaining an approximation to a target
function from a set of M training examples. Let f(x) be a learning target function of L
variables defined on a subset D of the L-dimensional Euclidean space R

L. The training
examples are made up of sample points xm in D and corresponding sample values ym in
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R:
{(xm, ym) | ym = f(xm) + εm}Mm=1, (1)

where ym is degraded by unknown additive noise εm. We assume that εm is independently
drawn from a distribution with mean zero and variance σ2.

For the time being, we assume that the unknown learning target function f(x) can be
expressed by a linear combination of µ specified basis functions {ϕp(x)}µp=1:

f(x) =

µ∑
p=1

θpϕp(x), (2)

where {θp}µp=1 are unknown. The assumption that f(x) is realizable is removed in Sec-
tion 3.2.3.

Let A be an M × µ matrix with the (m, p)-th element being

Am,p = ϕp(xm). (3)

A is called the design matrix and it extracts the values of a function at sample points
{xm}Mm=1:

Aθ = (f(x1), f(x2), . . . , f(xM))�, (4)

where � denotes the transpose of a vector (or matrix) and θ is the µ-dimensional vector
defined by

θ = (θ1, θ2, . . . , θµ)�. (5)

We assume that the rank of A is µ. The condition holds only if M ≥ µ.
Let y and ε be M -dimensional vectors defined by

y = (y1, y2, . . . , yM)�, (6)

ε = (ε1, ε2, . . . , εM)�. (7)

Then the relationship between θ and y can be expressed as

y = Aθ + ε. (8)

Let X be a matrix that gives a learning result function f̂ (x):

θ̂ = Xy, (9)

f̂(x) =

µ∑
p=1

θ̂pϕp(x). (10)

X is called a learning matrix.
The purpose of supervised learning is to obtain the optimal approximation f̂ (x) that

minimizes a generalization error JG. In this article, we define JG by

JG = E�

∫
D

(
f̂(x)− f(x)

)2

q(x)dx, (11)

where E� denotes the expectation over the noise ε and q(x) denotes the probability density
function of future (test) input points. In Eq.(11), we suppose that f̂ is obtained from
noisy training examples {(xm, ym)}Mm=1, i.e., it depends on the noise.
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2.2 Regularization learning

In general, the learning matrix X is obtained on the basis of a learning criterion. Least
mean squares (LMS) learning is often used as the learning criterion.

Definition 1 (Least mean squares learning) A matrix X is called the LMS learning
matrix if X minimizes the training error JTE:

JTE =
1

M

M∑
m=1

(
f̂(xm)− ym

)2

. (12)

LMS learning sometimes causes over-fitting and yields a lower level of the generaliza-
tion capability. To avoid over-fitting, we will use regularization learning:

Definition 2 (Regularization learning) Let T be a µ ′ × µ matrix and α be a positive
constant. A matrix X is called the regularization learning matrix if X minimizes the
regularized training error JR:

JR =

M∑
m=1

(
f̂(xm)− ym

)2

+ α‖T θ̂‖2. (13)

T is called the regularization matrix and α is called the regularization parameter.
‖T θ̂‖2 is called the regularization term. When T is the identity matrix, regularization
learning is called ridge regression or weight decay.

Let XT,α be the regularization learning matrix obtained with T and α. XT,α is ex-
pressed as

XT,α = (B + αT�T )−1A�, (14)

where B is defined by
B = A�A. (15)

A difficulty of using regularization learning is that the choice of T and α is crucial for
acquiring a higher level of the generalization capability. In the following sections, we will
discuss the problem of designing T and α for optimal generalization.

3 Subspace information criterion for regularization

learning

Since the generalization error JG defined by Eq.(11) includes the unknown learning target
function f(x), it is not possible to directly optimize the regularization matrix T and
regularization parameter α. In this section, we give an unbiased estimator of JG called
the subspace information criterion (SIC) for regularization learning.
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θ̂u
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Figure 1: Intuitive idea of SIC. The solid line denotes the bias of θ̂T,α. It can be roughly
estimated by the dotted line, which can be calculated.

3.1 Subspace information criterion

Let U be a µ-dimensional matrix with the (p, p′)-th element being

Up,p′ =

∫
D

ϕp(x)ϕp′(x)q(x)dx. (16)

Then the generalization error of f̂T,α(x) is expressed as

JG[T, α] = E�‖θ̂T,α − θ‖2U , (17)

where ‖ · ‖2U is the norm weighted by U :

‖θ‖2U = θ�Uθ. (18)

It is known that JG can be decomposed into the bias and variance:

JG[T, α] = ‖E�θ̂T,α − θ‖2U + σ2tr
(
UXT,αX�

T,α

)
. (19)

Let Xu be a learning matrix that gives an unbiased estimate θ̂u of the true θ:

θ̂u = Xuy, (20)

E�θ̂u = θ. (21)

In the present setting, Xu is given by

Xu = B−1A�. (22)

For the time being, we assume that the correlation matrix U and the noise variance σ2

are available. We will discuss their estimation methods in Section 3.2.
An intuitive idea of SIC is that the bias term ‖E�θ̂T,α − θ‖2U can be roughly approx-

imated by ‖θ̂T,α − θ̂u‖2U (see Fig.1). However, ‖θ̂T,α − θ̂u‖2U is larger than the bias term
on average. According to Sugiyama and Ogawa (2001), an unbiased estimate of the bias
term is given by

‖θ̂T,α − θ̂u‖2U − σ2tr
(
U(XT,α −Xu)(XT,α −Xu)�

)
. (23)

Then the subspace information criterion (SIC) is given as follows.
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Definition 3 (Subspace information criterion for regularization learning) The
following functional SIC is called the subspace information criterion for regularization
learning:

SIC[T, α] = ‖θ̂T,α − θ̂u‖2U − σ2tr
(
U(XT,α −Xu)(XT,α −Xu)�

)
+ σ2tr

(
UXT,αX�

T,α

)
. (24)

The name subspace information criterion originated in Sugiyama and Ogawa (2001),
where the criterion is used for selecting the subspace for LMS learning (see also Sugiyama
and Ogawa (2002) for its evaluation).

The validity of SIC as an approximation to the generalization error JG is theoretically
substantiated by the following proposition.

Proposition 1 (Sugiyama & Ogawa, 2001) For any T and α, SIC is an unbiased esti-
mator of the generalization error JG:

E�SIC[T, α] = JG[T, α]. (25)

3.2 SIC in practice

Although SIC does not include the unknown learning target function f(x), it still includes
factors which are sometimes unknown: the noise variance σ2, the correlation matrix U
defined by Eq.(16), and basis functions {ϕp(x)}µp=1 whose span includes f(x). Here, we
show their practical estimation methods.

3.2.1 Noise variance σ2

If M > µ, an unbiased estimate of σ2 is given as follows (Fedorov, 1972).

σ̂2 =
‖AB−1A�y − y‖2

M − µ
. (26)

Note that the unbiasedness of SIC is still maintained (i.e. Proposition 1 holds) if σ2 is
estimated by Eq.(26). Also, the following estimate is often used in practice (Wahba,
1990):

σ̂2 =
‖AXT,αy − y‖2
M − tr (AXT,α)

. (27)

3.2.2 Correlation matrix U

The correlation matrix U is estimated in practice as follows.

(a) Unlabeled sample points: When unlabeled sample points {x′
m}M ′

m=1 (i.e., sample
points without sample values) are available, U is estimated by

Ûp,p′ =
1

M ′

M ′∑
m=1

ϕp(x
′
m)ϕp′(x

′
m). (28)
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Note that in some practical problems, a large number of unlabeled sample points are
available (see e.g. Schuurmans & Southey, 2000), so U can be accurately estimated
by Eq.(28). Furthermore, if {x′

m}M ′
m=1 are the future test input points, SIC gives an

unbiased estimate of the error at {x′
m}M ′

m=1.

(b) Uniform distribution: When a bounded region D′, from which future test sample
points are drawn, is known, U may be estimated by

Ûp,p′ =
1

|D′|
∫
D′

ϕp(x)ϕp′(x)dx. (29)

(c) Empirical distribution: When no knowledge on future test input points is avail-
able, training sample points {xm}Mm=1 may be used instead of unlabeled sample
points {x′

m}M ′
m=1 in Eq.(28). In this case, an estimate of U is given by

Û =
1

M
B. (30)

Note that in this case, SIC essentially agrees with CL proposed by Mallows (1973),
which is a generalization of Mallows’s CP (Mallows, 1964). It is known that CP is
essentially equivalent to Akaike’s information criterion (AIC) proposed by Akaike
(1974) (see e.g. Konishi & Kitagawa, 1996). Similarly, for regularization learning,
CL is essentially equivalent to the criteria by Shibata (1989), Murata et al. (1994),
and Konishi and Kitagawa (1996). Therefore, SIC can be regarded as an extension
of these methods since additional information such as unlabeled sample points can
be effectively utilized in SIC. Comparison of SIC to CL and AIC is given in Sugiyama
and Ogawa (2001), and the analysis can be carried over into the present paper.

(d) Vicinal distribution: The empirical distribution may be improved by

Ûp,p′ =
1

M

M∑
m=1

∫
D

ϕp(x)ϕp′(x)φ(x;xm)dx, (31)

where φ(x;xm) is a probability density function centered on xm, e.g., the normalized
Gaussian function with mean xm.

(e) Identity matrix: If you want to save the computational cost, U may be just esti-
mated by

Û = I. (32)

3.2.3 Basis functions {ϕp(x)}µp=1 whose span includes f(x)

Let us consider an unrealizable learning target function f(x) given by

f(x) =

µ∑
p=1

θpϕp(x) + g(x), (33)



Optimal Regularization by SIC 9

where g(x) is an unknown function. Without loss of generality, we assume that g(x) is
orthogonal to {ϕp(x)}µp=1:∫

D
g(x)ϕp(x)q(x)dx = 0 for p = 1, 2, . . . , µ. (34)

Then the generalization error of f̂T,α(x) is expressed as

JG = E�

∫
D

(
f̂T,α(x)− f(x)

)2

q(x)dx

= E�‖θ̂T,α − θ‖2U +

∫
D

(g(x))2 q(x)dx. (35)

Since the second term is irrelevant to T and α, we focus on the first term.
If a learning matrix Xu that gives an unbiased estimate of θ is available, an unbiased

estimate of the first term in Eq.(35) can be obtained in the same manner as Section 3.1.
Therefore, the concept of SIC is still valid in unrealizable scenarios. However, it is not
generally possible to obtain an unbiased learning matrix Xu for an unrealizable learning
target function.

In practice, Eq.(22) may be used even in unrealizable scenarios. Then it holds that

E�B
−1A�y = θ + B−1A�z, (36)

where z is an M -dimensional vector defined as

z = (g(x1), g(x2), . . . , g(xM ))�. (37)

This means that if f(x) is approximately included in the span of {ϕp(x)}µp=1 (i.e., g(x) is
nearly a zero function), Eq.(36) gives a nearly unbiased estimate of θ. In this case, SIC
is almost an unbiased estimator of the generalization error.

Furthermore, when sample points {xm}Mm=1 are independently drawn from the prob-
ability density function q(x) in Eq.(35), the central limit theorem asserts that 1

M
B con-

verges to U and 1
M

A�z converges to zero as M tends to infinity, with asymptotic bias
Op(M

−1/2). This implies that Eq.(36) is consistent for any unrealizable learning target
functions so SIC is consistent in unrealizable scenarios.

4 Optimal selection of regularization matrix and reg-

ularization parameter from given pairs

If a set M of finite pairs of the regularization matrix T and regularization parameter α
are given as candidates, SIC can be used for choosing the optimal pair (T̂ , α̂) from the
set M. That is, calculate the value of SIC for each pair (T, α), and choose the one that
minimizes SIC:

(T̂ , α̂) = argmin
(T,α)∈M

SIC[T, α]. (38)
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SIC includes terms which are irrelevant to T and α. If such terms are ignored, SIC is
reduced to

SIC[T, α] = θ̂
�
T,αU(θ̂T,α − 2θ̂u) + 2σ2tr

(
U(A�A + αT�T )−1

)
. (39)

5 Active design of optimal regularization parameter

In this section, we give a method for actively determining the optimal regularization
parameter for a fixed regularization matrix.

5.1 Second order approximation

Let us consider the case when the regularization matrix T is non-singular. Especially, we
focus on

T = I (40)

for simplicity. However, all the discussion in Section 5.1 can be easily scaled to any
non-singular T by replacing A, B, and U with

A←− AT −1, (41)

B ←− (T−1)�BT−1, (42)

U ←− (T−1)�UT−1. (43)

Let Xα be the regularization learning matrix obtained with the regularization matrix I
and regularization parameter α:

Xα = XI,α = (B + αI)−1A�. (44)

Then the following lemma holds.

Lemma 1 For a positive integer n, the regularization learning matrix Xα is expressed as

Xα =
n∑

j=1

(−α)j−1B−jA� + (−α)nB−(n+1)(I + αB−1)−1A�. (45)

All proofs are provided in Appendix. When sample points {xm}Mm=1 are independently
drawn from a probability density function r(x), the eigenvalues of B−1 are O (

1
M

)
as M

tends to infinity. Based on the fact, we have the following lemma.

Lemma 2 Let ŜIC be defined by

ŜIC[α] = α2
(‖B−2A�y‖2U + 2σ2tr

(
UB−3

))
− 2ασ2tr

(
UB−2

)
+ σ2tr

(
UB−1

)
. (46)

ŜIC is an approximation to SIC with precision O
((

α
M

)3
)

as M tends to infinity:

ŜIC[α]− SIC[α] = O
(( α

M

)3
)

. (47)
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Note that U may be replaced by 1
M

B if q(x), from which future (test) input points
are drawn, agrees with r(x), from which training sample points are drawn. Lemma 2
immediately gives the following theorem.

Theorem 1 Let α
�SIC be defined by

α
�SIC =

σ2tr (UB−2)

‖B−2A�y‖2U + 2σ2tr (UB−3)
. (48)

ŜIC is minimized with respect to α if and only if α = α
�SIC.

Theorem 1 is clear from Lemma 2, so its proof is omitted. The validity of α
�SIC

is
assessed by the following lemmas.

Lemma 3 Let ĴG be defined by

ĴG[α] = α2
(‖B−1θ‖2U + 3σ2tr

(
UB−3

))
− 2ασ2tr

(
UB−2

)
+ σ2tr

(
UB−1

)
. (49)

ĴG is an approximation to JG with precision O
((

α
M

)3
)

as M tends to infinity:

ĴG[α]− JG[α] = O
(( α

M

)3
)

. (50)

Lemma 4 Let α
�OPT

be defined by

α
�OPT

=
σ2tr (UB−2)

‖B−1θ‖2U + 3σ2tr (UB−3)
. (51)

ĴG is minimized with respect to α if and only if α = α
�OPT

.

Lemma 5 It holds that

E�‖B−2A�y‖2U = ‖B−1θ‖2U + σ2tr
(
UB−3

)
. (52)

Proof of Lemmas 4 and 5 are omitted since they are clear. Lemmas 4 and 5 imply
that α

�SIC given by Eq.(48) can be regarded as an estimate of α
�OPT

with the denominator
in Eq.(51) estimated by its unbiased estimate1. This assures the validity of α

�SIC . Note
that the unbiasedness of the denominator does not imply the unbiasedness of α

�SIC.

1This property is still maintained if the noise variance σ 2 in α
�SIC is estimated by

Eq.(26). In this case, the numerator of α
�SIC

is also an unbiased estimate of that of α
�OPT

.
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Remark. In the above discussion, the learning matrix Xα given by Eq.(44) is used for
calculating the learning result function, while higher order terms caused by Xα are ignored
when the regularization parameter is optimized.

In contrast, if an approximated learning matrix X ′
α is used for both calculating learning

result functions and optimizing the regularization parameter, all the discussions can be
exact. Indeed, let X ′

α be the first two terms in Eq.(45):

X ′
α = B−1A� − αB−2A�. (53)

Then α′
SIC and α′

OPT that rigorously minimize SIC and JG with Xα replaced by X ′
α are

given by

α′
SIC =

σ2tr (αUB−2)

‖B−2A�y‖2U
, (54)

α′
OPT =

σ2tr (UB−2)

‖B−1θ‖2U + σ2tr (UB−3)
. (55)

5.2 Rigorous solution when T = A

We gave the closed form of the optimal regularization parameter when SIC is approx-
imated up to the second order terms. Here, we derive the rigorous solution when the
regularization matrix T is given by2

T = A. (56)

In this case, the regularization learning matrix is given by

XA,α = (B + αB)−1A� =
1

α + 1
B−1A�. (57)

Then the following theorem holds.

Theorem 2 Let αSIC be defined by

αSIC =
σ2tr (UB−1)

‖B−1A�y‖2U − σ2tr (UB−1)
. (58)

Under the condition
‖B−1A�y‖2U > σ2tr

(
UB−1

)
, (59)

SIC is minimized with respect to α if and only if α = αSIC.

If Eq.(59) does not hold, αSIC tends to be infinity. The following lemmas play impor-
tant roles for assessing the validity of αSIC.

2This setting is borrowed from Hagiwara and Kuno (2000).
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Lemma 6 Let αOPT be defined by

αOPT =
σ2tr (UB−1)

‖θ‖2U
. (60)

JG is minimized with respect to α if and only if α = αOPT .

Lemma 7 It holds that

E�‖B−1A�y‖2U = ‖θ‖2U + σ2tr
(
UB−1

)
. (61)

A proof of Lemma 7 is omitted since it is clear. Lemmas 6 and 7 imply that αSIC

given by Eq.(58) can be regarded as an estimate of αOPT with the denominator in Eq.(60)
estimated by its unbiased estimate3. This assures the validity of αSIC .

6 Computer simulations

In this section, the effectiveness of SIC is experimentally investigated through computer
simulations. We assumed the availability of the following items in the derivation of SIC
(Section 3.1):

• Basis functions {ϕp(x)}µp=1 whose span includes the learning target function f(x),

• Unbiased learning matrix Xu,

• Noise variance σ2,

• Correlation matrix U .

Here, we consider practical situations where none of them are available, and experimen-
tally evaluate the robustness of SIC.

6.1 One-dimensional artificial data

Let the dimension L of the input vector x be 1, and the number µ of basis functions be
21. Let the basis functions {ϕp(x)}21

p=1 be{
1,
√

2 sin px,
√

2 cos px
}10

p=1
(62)

defined on D = [−π, π]. Let us consider the following functions as the learning target
function f(x), which are not included in the span of Eq.(62).

3Similar to the discussion in Section 5.1, this property is still maintained if σ 2 is esti-
mated by Eq.(26).
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Figure 2: Profiles of learning target functions.

(i) Continuous function:
f(x) = 2 sinc x. (63)

(ii) Discontinuous function:

f(x) =

{
5 : x ∈ (− π

10
, π

10
),

0 : otherwise.
(64)

Their profiles are illustrated in Fig.2.
The identity matrix I is adopted as the regularization matrix T . In this case, the

regularization learning matrix Xα is given by Eq.(44), and the learning result function
f̂α(x) is given by Xαy. We use the following values as candidates of the regularization
parameter α:

α = 10−2, 10−1.5, 10−1, . . . , 102. (65)

M sample points {xm}Mm=1 are randomly created in the domain D. The noises {εm}Mm=1

are independently drawn from the normal distribution with mean 0 and variance σ2. We
attempt (M,σ2) = (200, 0.05) and (50, 0.2). Simulations are repeated 100 times for each
condition, changing the noises {εm}Mm=1 in each trial.

We compare SIC with the leave-one-out cross-validation (CV) (see e.g. Orr, 1996), the
generalized cross-validation (GCV) (Craven & Wahba, 1979), the network information
criterion (NIC) (Murata et al., 1994; Murata, 1998), a Bayesian information criterion
(ABIC) (Akaike, 1980), and Vapnik’s measure (VM) (Cherkassky et al., 1999).

In SIC, the noise variance σ2 is estimated by Eq.(27). For estimating the correlation
matrix U , we use 1000 randomly created unlabeled sample points. Using such unlabeled
sample points, U is estimated by Eq.(28).

We also investigate the performance of α
�SIC given by Eq.(48). In this case, σ2 is

estimated by Eq.(26) since Eq.(27) can not be used for α
�SIC .
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Figure 3: Distributions of error measured by Eq.(66). ‘OPT’ denotes the optimal selection
that minimizes the error. ‘SIC*’ denotes α

�SIC
. Note that the vertical scale is different in

each graph.

We shall measure the error of a learning result function f̂α(x) at 1000 randomly created
test points {x′′

m}1000
m=1:

Error[α] =
1

1000

1000∑
m=1

(
f̂α(x′′

m)− f(x′′
m)

)2

. (66)

Note that the test points are different from the unlabeled sampled points used in SIC.
Fig.3 depicts the simulation results, where the vertical axis denotes the error measured

by Eq.(66). The box plot notation specifies marks at 95, 75, 50, 25, and 5 percentiles
of values. ‘OPT’ denotes the optimal selection from Eq.(65) that minimizes the error.
‘SIC*’ denotes α

�SIC .
When (M,σ2) = (200, 0.05), all methods work well. When (M,σ2) = (50, 0.2), SIC,

GCV, and NIC work better than other methods. As discussed in Section 3.2.2, SIC
essentially agrees with NIC when training sample points are used instead of unlabeled
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Figure 4: Simulation results in detail. Value of each criterion (left) and selected values of
the regularization parameter (right).

sample points for estimating the matrix U . We expected that SIC outperforms NIC since
we used additional unlabeled sample points. However, NIC also works very well for the
target function (i) so no clear difference can be observed. For the target function (ii), SIC
works slightly better than NIC.

In order to further analyze the simulation result, we investigate the value of each
criterion and selected values of the regularization parameter when (M,σ 2) = (50, 0.2) (see
Figs.4 and 5). The left graphs show the values of the error and model selection criteria
corresponding to each α. The solid line denotes the mean values over 100 trials. The
right graphs show the distributions of selected α. ‘OPT’ denotes the optimal selection
that minimizes the error. Note that in this simulation, SIC is calculated by Eq.(39)
where constant terms are ignored, so SIC is shifted in the graph. These graphs show that
SIC, GCV, and NIC give good estimates of the error. CV, GCV, ABIC, and VM tend to
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Figure 5: Simulation results in detail.

select larger regularization parameter while NIC is inclined to select smaller regularization
parameter, if they are compared with SIC.

6.2 Multi-dimensional real data

To further investigate the performance of SIC, we perform a simulation with a multi-
dimensional dataset called the abalone dataset (Rasmussen et al, 1996).

The abalone dataset has 4177 samples with 9 variables. We use the second to eighth
variables as the input vector x and the ninth variable as the output value y. The first vari-
able is ignored because it is qualitative. 120 randomly chosen samples {(xm, ym)}120

m=1 are
used for training, and the remaining 4057 samples {(x′′

m, y′′
m)}4057

m=1 are used for measuring
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the generalization error:

Error[α] =
1

4057

4057∑
m=1

(
f̂α(x′′

m)− y′′
m

)2

. (67)

Let the number µ of basis functions be 50, and the basis functions {ϕp(x)}50
p=1 be

the Gaussian functions with variance 10 centered on the first 50 training sample points
{xm}50

m=1:

ϕp(x) = exp

(‖x− xp‖2
10

)
for p = 1, 2, . . . , 50. (68)

The identity matrix is adopted as the regularization matrix T , and the following values
are used as candidates of the regularization parameter α:

α = 10−8, 10−7, 10−6, . . . , 101. (69)

Simulations are repeated 100 times, changing the training sample points {xm}120
m=1 in each

trial. We again compare 6 criteria described in Section 6.1. In this simulation, we do
not have unlabeled sample points, so the correlation matrix U should be estimated only
from training examples. Here we will estimate U by Eq.(31) with φ(x;xm) being the
normalized Gaussian function with standard deviation 0.01.

The simulation results are depicted in Fig.6. The top graph shows the obtained error.
This result implies that SIC outperforms CV, GCV and NIC, and it is comparable to ABIC
and VM. The bottom-left graphs show the values of the error and model selection criteria
corresponding to each α. The solid line denotes the mean values of 100 trials. The mean
value of ABIC when α = 10−8 is 298.9. The bottom-right graphs show the distributions
of selected α. ‘OPT’ denotes the optimal selection from Eq.(69) that minimizes the error.
In this simulation, CV, GCV, and NIC tend to select smaller regularization parameter,
while SIC, ABIC, and VM seem to specify reasonable regularization parameter.

7 Conclusion

The problem of designing the regularization term and regularization parameter for optimal
generalization was discussed. Based on the subspace information criterion (SIC), we gave
a method for choosing the optimal regularization term and regularization parameter from
given candidates, and derived the closed form of the optimal regularization parameter for
a fixed regularization term. The simulation studies showed that SIC can be considered as
one of the good model selection criteria.

SIC is an unbiased estimator of the generalization error if the probability density
function of future (test) input points is available. When unlabeled sample points are
available, the probability density function can be accurately estimated. However, when
such additional information is not available, the probability density function should be
estimated only from training sample points. If the probability density function is replaced
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Figure 6: Simulation results with abalone dataset. The mean value of ABIC when α =
10−8 is 298.9.
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by the empirical density function, SIC is reduced to the traditional Mallows’s CL. Devising
a better estimation method of the probability density function is a promising future work.

We proved in Section 3.2.3 that even if the learning target function is not included in
the model, SIC is an asymptotic unbiased estimator of the generalization error. However,
as described there, if an unbiased estimate of the best approximation in the model is avail-
able, SIC is an exact unbiased estimator of the generalization error even in unrealizable
scenarios. Our important future work is to investigate the condition when an unbiased
estimate of the best approximation can be obtained in unrealizable cases.

Finally, it is important to further investigate the properties of SIC, especially its
relation to other model selection criteria.

Acknowledgement

The authors would like to thank Dr. Klaus-Robert Müller, Dr. Koji Tsuda, and Dr. Mo-
toaki Kawanabe for their valuable comments.

Appendix

A Proof of Lemma 1

It holds for any symmetric positive matrix Z that

(I + Z)−1 = Z−1(I + Z−1)−1, (70)

(I + Z−1)−1 = I − Z−1(I + Z−1)−1. (71)

Eq.(70) can be confirmed by multiplying (I + Z) from the left-hand side and (I + Z−1)
from the right-hand side. Eq.(71) can be confirmed by multiplying (I + Z−1) from the
right-hand side. If Eq.(71) is repeatedly applied to Eq.(70), we have

(I + Z)−1 = Z−1
[
I − Z−1(I + Z−1)−1

]
= Z−1 − Z−2(I + Z−1)−1

= Z−1 − Z−2
[
I − Z−1(I + Z−1)−1

]
= Z−1 − Z−2 + Z−3(I + Z−1)−1

...

= −
n∑

j=1

(−Z)−j − (−Z)−(n+1)(I + Z−1)−1, (72)

where n is an arbitrary fixed positive integer. Then it follows from Eqs.(44) and (72) with
Z = α−1B that

Xα = α−1(I + α−1B)−1A�
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= α−1

(
−

n∑
j=1

(−α)jB−j − (−α)n+1B−(n+1)(I + αB−1)−1

)
A�

=
n∑

j=1

(−α)j−1B−jA� + (−α)nB−(n+1)(I + αB−1)−1A�, (73)

which concludes the proof.

B Proof of Lemma 2

In the following discussion, terms dominated by O
((

α
M

)3
)

are ignored. It follows from

Eq.(45) that
Xα ≈ B−1A� − αB−2A� + α2B−3A�. (74)

Then it holds that

XαX�
α ≈

(
B−1A� − αB−2A� + α2B−3A�) (

AB−1 − αAB−2 + α2AB−3
)

≈ B−1 − 2αB−2 + 3α2B−3. (75)

It follows from Eqs.(74) and (22) that

Xα −Xu ≈ −αB−2A� + α2B−3A�, (76)

which yields

(Xα −Xu)�U(Xα −Xu) ≈ (−αAB−2 + α2AB−3
)
U

(−αB−2A� + α2B−3A�)
≈ α2AB−2UB−2A�. (77)

Then it follows from Eqs.(24), (77), and (75) that

SIC[α] = y�(Xα −Xu)�U(Xα −Xu)y

− σ2tr
(
(Xα −Xu)�U(Xα −Xu)

)
+ σ2tr

(
UXαX�

α

)
≈ α2y�AB−2UB−2A�y − α2σ2tr

(
AB−2UB−2A�)

+ σ2tr
(
UB−1 − 2αUB−2 + 3α2UB−3

)
= ŜIC[α], (78)

which concludes the proof.

C Proof of Lemma 3

In the following discussion, terms dominated by O
((

α
M

)3
)

are ignored. It follows from

Eq.(74) that
XαA− I ≈ −αB−1 + α2B−2, (79)
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which yields

(XαA− I)�U(XαA− I) ≈ (−αB−1 + α2B−2)U(−αB−1 + α2B−2)

≈ α2B−1UB−1. (80)

It follows from Eqs.(19), (80), and (75) that

JG[α] = θ�(XαA− I)�U(XαA− I)θ + σ2tr
(
UXαX�

α

)
≈ α2θ�B−1UB−1θ + σ2tr

(
UB−1 − 2αUB−2 + 3α2UB−3

)
= ĴG[α], (81)

which concludes the proof.

D Proof of Theorem 2

It follows from Eqs.(57) and (22) that

XA,α −Xu = − α

α + 1
B−1A�. (82)

Then it follows from Eqs.(24), (82), and (57) that

SIC[α] =
α2‖B−1A�y‖2U

(α + 1)2
− α2σ2tr (UB−1)

(α + 1)2
+

σ2tr (UB−1)

(α + 1)2

=
α2

(‖B−1A�y‖2U − σ2tr (UB−1)
)

+ σ2tr (UB−1)

(α + 1)2
. (83)

It is straightforward to show that (aα2 + b)/(α+1)2 is minimized with respect to α if and
only if α = b/a. Therefore, SIC is minimized with respect to α if and only if α = α SIC.

E Proof of Lemma 6

It follows from Eq.(57) that

XA,αA− I = − α

α + 1
I. (84)

Then it follows from Eqs.(19), (84), and (57) that

JG[α] = θ�(XA,αA− I)�U(XA,αA− I)θ + σ2tr
(
UXA,αX�

A,α

)
=

α2‖θ‖2U
(α + 1)2

+
σ2tr (UB−1)

(α + 1)2
, (85)

which is minimized with respect to α if and only if α = αOPT (see the proof of Theorem 2
for detail).
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