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Abstract

Image restoration from degraded images lies at the foundation of image processing,
pattern recognition, and computer vision, so it has been extensively studied. A
large number of image restoration filters have been devised so far. It is known that
a certain filter works excellently for a certain type of original image or degradation.
However, the same filter may not be suitable for other images, so the selection of
filters is exceedingly important in practice. Moreover, if a filter includes adjustable
parameters such as the regularization parameter or threshold, its restoration per-
formance relies heavily on the choice of the parameter values. In this paper, we
therefore discuss the problem of optimizing the filter type and parameter values.
Our method is based on the subspace information criterion (SIC), which is an un-
biased estimator of the expected squared error between the restored and original
images. Since SIC is applicable to any linear filters, one can optimize the filter
type and parameter values in a consistent fashion. Our emphasis in this article is
laid on the practical concerns of SIC, such as the noise variance estimation, com-
putational issues, and comparison with existing methods. Specifically, we derive an
analytic form of the optimal parameter values for the moving-average filter, which
will greatly reduce the computational cost. Experiments with the regularization
filter show that SIC is comparable to existing methods in the small degradation
case, and SIC tends to outperform existing methods in the severe degradation case.
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1 Introduction

The goal of image restoration is to recover the original clean image given a degraded
image. This topic lies at the foundation of image processing, pattern recognition, and
computer vision, so it has been extensively studied. So far, a large number of image
restoration filters have been devised and their properties are investigated thoroughly, e.g.,
the inverse filter [1], the Wiener filter [2], the regularization filter [3, 4, 5], the moving-
average filter [6], the parametric Wiener filter [7], and the band-pass filter [6].

It is empirically known that a certain filter works excellently for a certain type of
original image or degradation while it may not be suitable for other images, i.e., there
is no universally optimal filter. Therefore, the choice of the filter is as important as the
development of new efficient filters. Furthermore, if a filter includes parameters to be
adjusted, its restoration performance relies heavily on the choice of the parameter values.
For example, the regularization filter includes the regularization parameter, the moving-
average filter has degrees of freedom in the choice of the weight pattern, and the band-pass
filter contains the band-width to be determined.

For this reason, we discuss the problem of optimizing the filter type or parameter
values. Specifically, we would like to optimize the filter so that the expected squared
error (ESE) of the restored image is minimized. This is not a straightforward task since
the unknown original image itself is required to directly calculate ESE. A general approach
to the task is deriving an alternative criterion to ESE, and determining the filter type or
parameter values so that the criterion is optimized [3, 4, 5]. The most crucial point in this
approach is how well the alternative criterion approximates the original ESE. This topic
is also a traditional concern in the communities of statistics and machine learning, and it
has been extensively studied [8, 9, 10, 11, 12, 13]. Most of the methods proposed so far
proved their usefulness in the asymptotic sense. However, in practice, we are interested
in the case with finite samples.

So far, an estimator of ESE called the subspace information criterion (SIC) was pro-
posed [14, 15]. Among several other interesting theoretical properties, SIC is shown to be
an unbiased estimator of ESE with finite samples. SIC has been successfully applied to
image restoration problems [16]. However, the study still lacks some practical concerns,
such as the noise variance estimation, computational issues, and comparison with existing
methods. In this paper, we therefore extensively investigate the characteristics of SIC.
Specifically, we derive an analytic form of the optimal parameter value for the moving-
average filter, which will greatly reduce the computational cost. Experiments with the
regularization filter show that SIC works as well as existing methods in the small degra-
dation case, and SIC tends to outperform existing methods in the severe degradation
case. As a conclusion, this paper provides a powerful tool for optimizing linear image
restoration filters.

The rest of this paper is organized as follows. In Section 2, the image restoration
problem is mathematically formulated. In Section 3, an unbiased estimator of ESE called
the subspace information criterion is reviewed. Section 4 gives a practical procedure
for optimizing linear filters by SIC. Some practical concerns are also discussed here. In
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Figure 1: Formulation of image restoration problem. f is the unknown original image. A
is the observation operator. g is the observed image. n is the additive noise with mean
zero. X is a linear restoration filter. f̂ is a restored image.

Section 5, computational issues are discussed, where SIC is applied to the moving-average
filter and an analytic form of the optimal parameter value is derived. In Section 6, the
performance of SIC is experimentally investigated through computer simulations. Finally,
Section 7 gives concluding remarks and future prospects.

2 Problem formulation

In this section, we formulate the problem of image restoration.
Let f(x, y) be an unknown original image in a real functional Hilbert space H1. Let

g(x, y) be an observed image in a real functional Hilbert space H2. Here, the domain
of f(x, y) or g(x, y) can be continuous or discrete, and H2 can be different from H1.
We assume that the dimension of H2 is finite. Let us consider a standard case that the
observed image g is given by

g = Af + n, (1)

where A is a known operator from H1 to H2, and n(x, y) is an additive noise in H2. We
assume that the mean noise is zero. A is called the observation operator and it expresses,
e.g., the sampling or blur process. Let f̂(x, y) be a restored image in H1. If a restoration
filter is denoted by X, then f̂ is expressed as

f̂ = Xg. (2)

In this paper, we restrict ourselves to a linear filter X. Note that in the simplest case that
the domains of H1 and H2 are both discrete, f , g, and f̂ can be expressed by (vertically
re-arranged) vectors, and A and X can be expressed by matrices. The above formulation
is summarized in Fig. 1.

We evaluate the quality of the restored image f̂ by the expected squared error (ESE):

ESE[X] = En‖f̂ − f‖2, (3)
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where En denotes the expectation over the noise and ‖ · ‖ denotes the norm in H1. The
norm is typically defined by1

‖f̂ − f‖2 =

∫ (
f̂(x, y) − f(x, y)

)2

dxdy. (4)

The goal of image restoration considered in this paper is to obtain the optimally restored
image f̂ that minimizes ESE given the observed image g.

3 Subspace information criterion for image restora-

tion

Since ESE defined by Eq.(3) includes the unknown original image f , it can not be directly
calculated. In this section, we review an unbiased estimator of ESE called the subspace
information criterion (SIC), which can be calculated without the original image f .

In the derivation of SIC, the following conditions are assumed.

1. A linear filter Xu that gives an unbiased estimate f̂u of the original image f is
available:

f̂u = Xug, (5)

where f̂u satisfies
Enf̂u = f. (6)

2. The noise covariance operator Q is known.

These assumptions may not be practical in some cases. In the next section, we will
come back to the assumptions and give practical methods for estimating Xu and Q. Until
then, we assume that Xu and Q are available.

It follows from Eq.(3) that ESE can be decomposed as follows (see e.g. [17, 18]).

ESE[X] = En‖f̂ − Enf̂ + Enf̂ − f‖2

= En‖f̂ − Enf̂‖2 + 2En〈f̂ − Enf̂ , Enf̂ − f〉 + En‖Enf̂ − f‖2

= En‖f̂ − Enf̂‖2 + ‖Enf̂ − f‖2, (7)

where 〈·, ·〉 denotes the inner product in H1. The first and second terms in Eq.(7) are
called the variance term and the bias term, respectively.

1Rigorously speaking, the inner product is first defined and then the norm is derived from the inner
product. Eq.(4) was actually derived from the inner product defined by

〈f, g〉 =
∫

f(x, y)g(x, y)dxdy.
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Figure 2: Basic idea of SIC. The unknown bias term ‖Enf̂−f‖2 (depicted by the solid line)
can be roughly estimated by ‖f̂ − f̂u‖2 (depicted by the dotted line), which is accessible.

It follows from Eqs.(2) and (1) that the variance term is expressed as

En‖f̂ − Enf̂‖2 = En‖Xg − EnXg‖2

= En‖X(Af + n) − EnX(Af + n)‖2

= En‖Xn‖2

= tr (XQX∗) , (8)

where X∗ denotes the adjoint of X, tr (·) denotes the trace of an operator, and Q is
the noise covariance operator. Since we assumed that Q is known, we can calculate the
variance term by Eq.(8).

On the other hand, the bias term ‖Enf̂ − f‖2 is inaccessible since both Enf̂ and f are
unavailable. Our key idea here is to use the unbiased estimate f̂u for estimating the bias
term, i.e., the bias term is roughly approximated by the squared distance between f̂ and
f̂u, which is accessible (Fig. 2):

‖f̂ − f̂u‖2. (9)

Indeed, it follows from Eqs.(6), (2), and (5) that the bias term is expressed as

‖Enf̂ − f‖2 = ‖f̂ − f̂u‖2 − ‖f̂ − f̂u‖2 + ‖Enf̂ − f‖2

= ‖f̂ − f̂u‖2 − ‖En(f̂ − f̂u) − En(f̂ − f̂u) + f̂ − f̂u‖2

+‖Enf̂ − Enf̂u‖2

= ‖Xg − Xug‖2 − ‖En(f̂ − f̂u)‖2

+2〈En(f̂ − f̂u), En(f̂ − f̂u) − (f̂ − f̂u)〉
−‖En(f̂ − f̂u) − (f̂ − f̂u)‖2 + ‖En(f̂ − f̂u)‖2

= ‖(X − Xu)g‖2 + 2〈En(f̂ − f̂u), En(f̂ − f̂u) − (f̂ − f̂u)〉
−‖En(f̂ − f̂u) − (f̂ − f̂u)‖2. (10)

The second and third terms in Eq.(10) can not be directly evaluated since they include
an inaccessible term En(f̂ − f̂u), so we will average out the second and third terms in
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Eq.(10) over the noise. Then the second term vanishes and it follows from Eqs.(2), (5),
and (1) that the third term yields

En(−‖En(f̂ − f̂u) − (f̂ − f̂u)‖2)

= −En‖En(X − Xu)g − (X − Xu)g‖2

= −En‖En(X − Xu)(Af + n) − (X − Xu)(Af + n)‖2

= −En‖(X − Xu)n‖2

= −tr ((X − Xu)Q(X − Xu)
∗) . (11)

Then we have the following subspace information criterion (SIC).

SIC[X] = ‖(X − Xu)g‖2 − tr ((X − Xu)Q(X − Xu)
∗) + tr (XQX∗) . (12)

The validity of SIC as an approximation to ESE is theoretically substantiated by the
fact that SIC is an unbiased estimator of ESE for any linear filter X [16]:

EnSIC[X] = ESE[X]. (13)

4 Application of SIC to filter optimization in practice

Although SIC derived in the previous section does not include the unknown original image
f , it still includes the factors which are sometimes unknown: the filter Xu that gives an
unbiased estimate f̂u of the original image f and the noise covariance operator Q (see
Section 3). Here, we show their practical estimation methods.

Let A∗ be the adjoint operator of A. When the range of A∗ is H1 (i.e., A∗A is non-
singular), the filter Xu is given by

Xu = A†, (14)

where † denotes the generalized inverse (see e.g. [19, 20, 21]). It is known that A† gives
the best linear unbiased estimator (BLUE), i.e., it gives the minimum variance estimator
among the unbiased ones (see e.g. [19]). How to apply SIC when A∗A is singular is
discussed in the article [22], so we do not go into the detail.

When the noise covariance operator Q is given in the form

Q = σ2I, (15)

where σ2 is the (unknown) noise variance and I denotes the identity operator, a robust
estimate of σ2 is given by (see [23])

σ̂2 =

(
MAD

0.6745

)2

, (16)

where MAD is the median of the magnitudes of all the coefficients at the finest decom-
position scale of the wavelet transform. It is empirically known that Eq.(16) gives a very
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accurate estimate of σ2 in practice. Other methods for estimating σ2 are given in, e.g.,
the references [24, 14].

Making naive use of SIC, suitable filter type and parameter values can be obtained as
follows. First, a finite set X of filters of different type or filters with different parameter
values is prepared. For each filter in the set X , the value of SIC is calculated. Then the
filter X̂ that minimizes SIC is selected:

X̂ = arg min
X∈X

SIC[X]. (17)

The selected filter X̂ is expected to be the best in terms of ESE.

5 Analytic solution for moving-average filter

The naive filter optimization method given by Eq.(17) is general and applicable to any
linear filter. The more filter candidates we have, the better filter we obtain. Therefore, we
would like to have as many filters as possible in the set X . However, the number of filters
in the set X should be kept as small as possible from the viewpoint of the computational
cost.

For a set X of filters, there are probably two schemes to reduce the computational
cost:

1. Utilize the calculation results of SIC for other filters. For example, when we have
two filters X1 and X2, calculating SIC[X2] based on the calculation result of SIC[X1]
may be computationally more efficient than straightforwardly calculating SIC[X1]
and SIC[X2] separately.

2. Remove filters from the set X that are found to be worse than others. For example,
if we can prove that X1 is better than X2, we can omit calculating SIC[X2].

In this paper, we focus on the scheme 2. The study along the scheme 1 is reserved for
the future.

A promising approach to the scheme 2 is solving the optimization problem analytically.
For example, analytically obtaining the optimal value of a continuous-valued parameter
corresponds to reducing an infinite number of candidates to one2. This will efficiently
reduce the computational cost. In this section, we consider the problem of optimizing
parameters in the moving-average filter [6], and derive an analytic form of the optimal
parameter value.

First, we describe the setting. Let H1 = H2 be sets of discrete images of size D × D,
i.e., f(x, y) and g(x, y) are defined on {1, 2, . . . , D}× {1, 2, . . . , D}. The inner product in
H1 (= H2) is defined by

〈f, g〉 =

D∑
x,y=1

f(x, y)g(x, y). (18)

2Note that in this paper, filters with different parameter values are regarded as different filters since
they are anyway different operators from the mathematical point of view.
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We assume that the observation operator A is identity:

A = I. (19)

In this case, the filter Xu defined by Eq.(5) is also given by the identity operator, according
to Eq.(14):

Xu = I. (20)

We also assume that the noise covariance operator Q is given by Eq.(15).
The moving-average filter X restores the image by the weighted average over nearby

pixels:

f̂(x, y) =
1

C

W∑
i,j=−W

wi,jh(x − i, y − j), (21)

where C is the normalizing constant defined by

C =
W∑

i,j=−W

wi,j. (22)

h(x, y) is the same image as g(x, y) but surrounded by mirrored images, i.e., h(x, y) is
defined on

{1 − W, 2 − W, . . . , D + W} × {1 − W, 2 − W, . . . , D + W} (23)

and h(x, y) is defined by
h(x, y) = g(x′, y′), (24)

where

x′ =


2 − x : 1 − W ≤ x ≤ 0,

x : 1 ≤ x ≤ D,
2D − x : D + 1 ≤ x ≤ D + W,

(25)

y′ =


2 − y : 1 − W ≤ y ≤ 0,

y : 1 ≤ y ≤ D,
2D − y : D + 1 ≤ y ≤ D + W.

(26)

The integer W (≥ 1) is called the window size, and the set {wi,j}W
i,j=−W of scalars is called

the weight pattern. We define the weight pattern like a pyramid shape3 (see Fig. 3), i.e.,

wi,j = (W − max(|i|, |j|))w + 1, (27)

where w is called the weight coefficient.

3It is possible to consider other parameterizations. However, we do not go into the detail here since
they may be solved similarly.
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Figure 3: Weight pattern (Window size W = 2).

From here on, we focus on a fixed window size W and derive an analytic form of
the weight coefficient w that minimizes SIC. As a result of a series of straightforward
calculations, SIC for the moving-average filter can be expressed as follows4:

SIC(w) =
aw2 + bw + c

(w + d)2
− σ2D2, (28)

where a, b, c, and d are the constants defined by

a =

D∑
x,y=1

t(x, y)2 + 2σ2D2Ws, (29)

b = 2
D∑

x,y=1

t(x, y)u(x, y) + 2σ2D2(1 + Wd)s, (30)

c =

D∑
x,y=1

u(x, y)2 + 2σ2D2sd, (31)

d =
3(2W + 1)

W (2W − 1)
, (32)

s =
3

W (2W + 1)(2W − 1)
, (33)

t(x, y) = s
W∑

i,j=−W

(W − max(|i|, |j|))h(x− i, y − j) − g(x, y), (34)

u(x, y) = s

W∑
i,j=−W

h(x − i, y − j) − dg(x, y). (35)

From Eq.(28), we immediately have the following theorem.

4Derivation is outlined in Appendix.
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Theorem 1 For a fixed W , SIC has the minimum with respect to w if and only if

2ad − b �= 0, (36)

ad2 − bd + c > 0. (37)

If the above conditions hold, the minimizer ŵ of SIC is given by

ŵ =
2c − bd

2ad − b
. (38)

A proof of Theorem 1 is omitted since it can be immediately obtained from Eq.(28)
with elementary calculation. We attempted computer simulations thousands of times with
different conditions, and empirically confirmed that the conditions (36) and (37) always
hold. Therefore, the verification of the conditions may be practically omitted.

In this section, we derived an analytic form of the optimal parameter value in the
moving-average filter. The result is rather simple but is a meaningful step toward the
development of filter optimization theories. We expect that it is possible to derive ana-
lytic forms of the optimal parameter values for various filters in the same way. Further
investigation along this line will be highly important since a collection of such results
forms an excellent set of filters that is practically extremely useful.

6 Computer simulations

Finally, the effectiveness of SIC is demonstrated through computer simulations.

6.1 Regularization filter

Let H1 = H2 be a set of discrete images of size 256 × 256, i.e., D = 256. The inner
product in H1 (= H2) is defined by

〈f, g〉 =
256∑

x,y=1

f(x, y)g(x, y). (39)

As the original image, let us employ three gray-scale images (i) Lena, (ii) Peppers, and
(iii) Girl displayed in Fig. 4. The pixel values {f(x, y)}256

x,y=1 of the images are integers in
[0, 255].

Let the degradation operator A be a horizontal blur given by

[Af ](x, y) =
1

2b + 1

b∑
i=−b

f(x + i mod 256, y), (40)

where b expresses the blur level. We attempt b = 8 and 16. We suppose that the noises
{n(x, y)}256

x,y=1 are independently drawn from the normal distribution with mean zero and
variance σ2. We attempt σ2 = 1 and 4.
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Figure 4: Original images.

In this experiment, we would like to compare the performance of the proposed method
with that of existing methods. For this reason, we will use the regularization filter for
restoration since there exist a number of parameter optimization methods tailored for the
regularization filter. The regularization filter X is defined as the minimizer of

‖AXg − g‖2 + α‖Xg‖2, (41)

where α is a positive scalar called the regularization parameter, which is to be determined.
The regularization filter X is given by

X = (A∗A + αI)−1A∗. (42)

The regularization parameter α is selected from

{10−5, 10−4, 10−3, . . . , 103}, (43)
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i.e., Eq.(42) is substituted into SIC and SIC is regarded as a function of the regularization
parameter α. We choose the one that minimizes SIC as the best regularization parameter.

Fig. 5 depicts the frequency responses of the blur operator A with the blur level b = 8,
the inverse of the blur operator, the original image Lena, and the regularization filters
with different values of the regularization parameter α in Eq.(43). This shows that the
blur operator A is a low-pass filter, and the inverse of the blur operator amplifies high
frequency components. The regularization filter also amplifies high frequency components
for small α, and it tends to be a low-pass filter as α gets large.

The experiments are repeated 100 times for each original image, each blur lever b, and
each noise variance σ2, changing the noise {n(x, y)}256

x,y=1 in each trial. The noise variance
σ2 is estimated by Eq.(16), where we use Daubechies’s compactly supported wavelets with
external phase and 4 vanishing moments [25].

As mentioned above, there are a large number of parameter optimization methods
for the regularization filter. Here we compare the proposed SIC with some of the rep-
resentative methods: Mallows’s CL [8], the leave-one-out cross-validation (CV) [26], the
generalized cross-validation (GCV) [12], the network information criterion (NIC) [27], a
Bayesian information criterion (ABIC) [28], and Vapnik’s measure (VM) [29]. We measure
the actual error of the restored image f̂ by the following mean squared error (MSE):

MSE =
1

D2

D∑
x,y=1

(
f̂(x, y) − f(x, y)

)2

. (44)

In the following experiments, the value of SIC is divided by D2 so that it is consistent
with the above MSE.

Because of the lack of space, we only show the simulation results with Lena in the
easiest and hardest cases in detail. The results for the easiest case with (b, σ2) = (8, 1) are
displayed in Fig. 6, and the results for the hardest cases with (b, σ2) = (16, 4) are displayed
in Fig. 7. The top-left graphs show the mean value of each criterion corresponding to each
α. The error-bar shows the standard error. Note that the vertical scale of MSE, SIC, CL,
CV, and VM are the same. The top-center graphs show the distribution of the selected
value α by each criterion. ‘OPT’ denotes the optimal selection that minimizes MSE. The
top-right graphs show the distribution of the obtained MSE by each criterion. Examples
of observed image and restored image by SIC are displayed below the graphs.

The top-left graphs show that SIC gives a very good estimate of MSE and its accuracy
is remarkable. Consequently, SIC always specifies the best regularization parameter that
minimizes MSE. In the easiest case with (b, σ2) = (8, 1) (Fig. 6), all methods except
GCV and ABIC work excellently. However, when it comes to the hardest case with
(b, σ2) = (16, 4) (Fig. 7), SIC tends to outperform other methods. In Fig. 7, the variance
of SIC is rather large. Now we investigate a cause of the large variance. SIC is expressed
as

SIC[X] = ‖f̂‖2 + 2〈f̂ , f̂u〉 + ‖f̂u‖2

+2σ2tr (XX∗
u) − σ2tr (XuX

∗
u) . (45)
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Figure 5: Frequency responses of the blur operator A, the inverse of the blur operator,
the original image Lena, and the regularization filters X with different values of the regu-
larization parameter α in Eq.(43). The horizontal axis denotes the normalized frequency
and the vertical axis denotes the magnitude of the frequency response.
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value of each criterion (top-left), distribution of selected parameter value (top-center),
distribution of actual MSE (top-right), observed image (bottom-left), and restored image
by SIC (bottom-right).
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Figure 7: Simulation Results with Lena in the hardest case (b = 16 and σ2 = 4). SIC
outperforms other methods. The obtained errors by GCV are not properly plotted in the
graph since they are such large values as around 1.2 × 104.
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Figure 8: SIC and SIC without irrelevant terms (SICr) when (b, σ2) = (16, 4).

In Eq.(45), ‖f̂u‖2 and σ2tr (XuX
∗
u) are irrelevant to the regularization parameter α. Let

SICr (SIC relevant) be SIC without the irrelevant terms:

SICr[X] = ‖f̂‖2 + 2〈f̂ , f̂u〉 + 2σ2tr (XX∗
u) . (46)

Fig. 8 depicts the values of MSE, SIC, and SICr when (b, σ2) = (16, 4). The vertical
scale of the three graphs is the same. The graphs show that the variance of SICr is very
small and SICr approximates MSE very accurately, though it is biased. This implies that
the large variance of SIC is dominated by the variance of the irrelevant terms ‖f̂u‖2 and
σ2tr (XuX

∗
u). Therefore, we come to the conclusion that the large variance of SIC does

not degrade the performance of SIC.
Simulation results with Peppers and Girl were almost the same as those of Lena, so

we only show the images in Fig. 9.

6.2 Moving-average filter

The previous simulation demonstrated the effectiveness of SIC. Now we experimentally
investigate the performance of Theorem 1.

Let us again employ (i) Lena, (ii) Peppers, and (iii) Girl displayed in Fig. 4 as the
original image. Let the observation operator A be an identity operator. The noises
{n(x, y)}256

x,y=1 are independently drawn from the normal distribution with mean zero and
variance σ2. In this case, the noise covariance operator Q is given by σ2I. We attempt
the noise variance σ2 = 900, 1600, and 2500. The noise variance is estimated by the same
method as that used in Section 6.1. We use the moving-average filter with the pyramid-
shaped weight pattern (see Section 5). The window size W is selected from {1, 2, 3, 4, 5},
and the weight coefficient w is determined by Eq.(38). We measure the actual error of the
restored image f̂ by MSE defined by Eq.(44). For reference, we also examine the weight
coefficient w̃ that minimizes MSE. It is not possible to analytically obtain w̃, so we search
it by the gradient descent method with accuracy 10−2.
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Observed ‘Girl’ (MSE=381) SIC restoration (MSE=157)

Figure 9: Results with Peppers and Girl (b = 16 and σ2 = 4).
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Table 1: Maximum relative error by SIC over 100 trials.

σ2 = 900 σ2 = 1600 σ2 = 2500

Lena 2.5 × 10−7 9.4 × 10−3 1.3 × 10−7

Peppers 0 1.1 × 10−2 1.5 × 10−7

Girl 8.8 × 10−3 0 1.2 × 10−2

The experiments are repeated 100 times for each original image and each noise vari-
ance, changing the noise in each trial.

Let us define the relative error of the restored image obtained by SIC as follows.

MSESIC − MSEOPT

MSESIC
, (47)

where MSESIC denotes MSE of the restored image by SIC and MSEOPT denotes MSE of
the optimally restored image. Table 1 displays the maximum value of the relative error
over 100 trials. The table shows that the relative error is very small so Theorem 1 works
excellently in practice.

7 Conclusions and future works

The subspace information criterion (SIC) is an unbiased estimator of the expected squared
error for any linear filter. Computer simulations demonstrated that SIC gives a very
accurate estimate of the actual squared error under various conditions, and the analytic
form of the optimal parameter values for the moving-average filter works excellently in
practice.

This paper provided a powerful tool for filter optimization. However, there is still
plenty of room for further investigation.

In Section 5, we mentioned the computational issues of selecting filters from given
candidates. As pointed out there, methods for efficiently comparing a large number of
filters (possible, an infinitely large number) are indispensable for practical use. Developing
methods for calculating values of SIC using the calculation results of SIC for other filters,
or methods for removing worse filters from the candidates (e.g., obtaining an analytic
form of a parameter) will be promising directions in this line.

In Section 2, we stated that our goal is to find a restored image that minimizes the
expected squared error (ESE). However, the potential and essential problem is that ESE
can be different from humans’ visual system. Therefore, it is extremely important to find
an alternative error measure that reflects humans’ visual system well. We expect that SIC
will still play a critical role in this future scenario, which is supported by the fact that
SIC is valid for any weighted norms. That is, if an alternative error measure is expressed
in the form of the weighted norm, SIC can be straightforwardly applied without any
modification. For example, we can incorporate the prior knowledge that humans’ visual
system is sensitive to the error around the edges by putting higher weight on the edge
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regions. Finding an appropriate weight pattern would be a promising approach to this
important and essential problem.

Another challenging scenario is to consider the case where the observation operator is
not available. For such a case, it is practically important to devise a general method for
estimating the observation operator. It still remains to see whether SIC works well for
estimated observation operators.

We entirely focused on linear filters. Generalizing SIC so that non-linear filters can be
dealt with is also a considerably important direction for the future.

Finally, as well as the reinforcement of the filter optimization theories, the development
of new efficient restoration filters is extremely essential.
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A Derivation of Eq.(28)

Substituting A = I and Q = σ2I into Eq.(12), we have

SIC[X] =
D∑

x,y=1

(
f̂(x, y) − g(x, y)

)2

+ 2σ2tr (X) − σ2D2. (48)

From Eq.(27), the normalizing constant C defined by Eq.(22) is expressed as

C =
1

s
(w + d), (49)

where s and d are defined by Eqs.(33) and (32), respectively. From Eqs.(21), (27), and
(49), the first term in Eq.(48) is expressed as

D∑
x,y=1

(
f̂(x, y) − g(x, y)

)2

=
D∑

x,y=1

(
1

C

W∑
i,j=−W

wi,jh(x − i, y − j) − g(x, y)

)2

=
1

C2

D∑
x,y=1

(
W∑

i,j=−W

((W − max(|i|, |j|))w + 1)h(x − i, y − j) − Cg(x, y)

)2

=
1

(w + d)2

D∑
x,y=1

(t(x, y)w + u(x, y))2 , (50)
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where t(x, y) and u(x, y) are defined by Eqs.(34) and (35), respectively. From Eqs.(27)
and (49) the second term in Eq.(48) is expressed as

2σ2tr (X) = 2σ2

D∑
x,y=1

1

C
w0,0

= 2σ2
D∑

x,y=1

1

C
(Ww + 1)

=
2σ2D2

C2
(Ww + 1)C

=
2σ2D2s

(w + d)2

(
Ww2 + (1 + Wd)w + d

)
. (51)

Substituting Eqs.(50) and (51) into Eq.(48), we have Eq.(28).
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