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Abstract

Recently, a new model selection criterion called the subspace information criterion
(SIC) was proposed. SIC works well with small samples since it gives an unbiased es-
timate of the generalization error with finite samples. In this paper, we theoretically
and experimentally evaluate the effectiveness of SIC in comparison with existing
model selection techniques including the traditional leave-one-out cross-validation
(CV), Mallows’s CP , Akaike’s information criterion (AIC), Sugiura’s corrected AIC
(cAIC), Schwarz’s Bayesian information criterion (BIC), Rissanen’s minimum de-
scription length criterion (MDL), and Vapnik’s measure (VM). Theoretical evalua-
tion includes the comparison of the generalization measure, approximation method,
and restriction on model candidates and learning methods. Experimentally, the per-
formance of SIC in various situations is investigated. The simulations show that SIC
outperforms existing techniques especially when the number of training examples is
small and the noise variance is large.
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1 Introduction

Supervised learning is estimating unknown input-output dependency from available input-
output examples. Once the dependency has been accurately estimated, it can be used for
predicting output values corresponding to novel input points. This ability is called the
generalization capability.

The level of the generalization capability depends heavily on the choice of the model.
The model indicates, for example, the type and number of basis functions used for learning.
The problem of choosing the model that provides the optimal generalization capability is
called model selection.

Model selection has been extensively studied in the field of statistics. A classic ap-
proach to model selection is to find the learning result that minimizes the predictive
training error, i.e., the mean error between estimated and true values at sample points
contained in the training set. CP by Mallows (1964, 1973), the generalized cross-validation
(GCV) by Craven and Wahba (1979), and the criterion by Mikhal’skii (1987) are based
on this approach. Asymptotic optimality of CP and GCV are shown by Li (1986) (see
also Wahba, 1990). However, with finite samples, the optimal generalization capability is
not guaranteed since they do not evaluate the generalization error itself.

In contrast, model selection methods which explicitly evaluate the generalization error
have been studied from various standpoints, e.g. the information statistics (Akaike, 1974;
Takeuchi, 1976; Sugiura, 1978; Konishi & Kitagawa, 1996; Ishiguro et al., 1997) and
structural risk minimization (Vapnik, 1995; Cherkassky et al., 1999). Model selection has
also been studied from the viewpoints of Bayesian statistics (Schwarz, 1978; Akaike, 1980;
MacKay, 1992) and stochastic complexity (Rissanen, 1978, 1987, 1996; Yamanishi, 1998).

Recently, a new model selection criterion called the subspace information criterion
(SIC) was proposed by Sugiyama and Ogawa (1999, 2001). SIC works well with small
samples since it gives an unbiased estimate of the generalization error with finite samples.
In this paper, we evaluate the effectiveness of SIC in comparison with existing model
selection techniques including the traditional leave-one-out cross-validation (CV), CP by
Mallows (1964, 1973), Akaike’s information criterion (AIC) by Akaike (1974), corrected
AIC (cAIC) by Sugiura (1978), the Bayesian information criterion (BIC) by Schwarz
(1978), the minimum description length criterion (MDL) by Rissanen (1978, 1987, 1996),
and Vapnik’s measure (VM) by Cherkassky et al. (1999).

This paper is organized as follows. In Section 2, the problem of model selection is
mathematically formulated. Within this formulation, the derivation of SIC is briefly
reviewed in Section 3, and a practical calculation method of SIC for subset regression
is given in Section 4. In Section 5, SIC is theoretically compared with existing model
selection techniques from points of view of the generalization measure, approximation
method, and restriction on model candidates and learning methods. Finally, Section 6 is
devoted to computer simulations for experimentally comparing SIC with existing model
selection techniques. The simulations will demonstrate that SIC outperforms existing
methods especially when the number of training examples is small and the noise variance
is large.
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2 Problem formulation

In this section, the problem of model selection is mathematically formulated.
Let us consider the supervised learning problem of obtaining an approximation to a

learning target function from a set of training examples. Let the learning target function
f(x) be a complex function of L variables defined on a subset D of the L-dimensional
Euclidean space RL. The training examples are made up of sample points xm in D and
corresponding sample values ym in C:

{(xm, ym) | ym = f(xm) + εm}Mm=1, (1)

where ym is degraded by additive noise εm. The purpose of supervised learning is to obtain
the learning result function that minimizes a certain generalization error.

Let θ be a set of factors which determines learning result functions, for example, the
type and number of basis functions. We call θ a model. Let f̂θ(x) be a learning result
function obtained with a model θ. We assume that f(x) and f̂θ(x) belong to a reproducing
kernel Hilbert space1 H . If such a functional Hilbert space H is unknown, then a functional
Hilbert space which approximately includes the learning target function f(x) is practically
adopted (see Sections 5.2 and 6.5 for detail). We measure the generalization error of f̂θ(x)
by

JG = Eε‖f̂θ − f‖2, (2)

where Eε denotes the ensemble average over the noise and ‖ · ‖ denotes the norm in H .
In the regression case, JG is typically expressed as

JG = Eε

∫ ∣∣∣f̂θ(u)− f(u)
∣∣∣2 p(u)du, (3)

where p(·) is the probability density function of future (test) input points u. Note that
the generalization measure JG is not averaged over training sample points {xm}Mm=1, i.e.,
we consider a fixed design {xm}Mm=1 (see Section 5.1 for detail). Then the problem of
model selection considered in this paper is formulated as follows.

1The reproducing kernel of H , denoted by KH(x, x′), is a bivariate function defined on D × D which
satisfies the following conditions (see Aronszajn, 1950; Bergman, 1970; Wahba, 1990; Saitoh, 1988, 1997):

• For any fixed x′ in D, KH(x, x′) is a function of x in H .

• For any function f in H and for any x′ in D, it holds that

〈f(·), KH(·, x′)〉 = f(x′),

where 〈·, ·〉 stands for the inner product in H .

The reproducing kernel of H can be expressed by using an orthonormal basis {ϕp(x)}µp=1 in H as

KH(x, x′) =
µ∑

p=1

ϕp(x)ϕp(x′),

where µ is the dimension of H .



Theoretical and Experimental Evaluation of Subspace Information Criterion 4

Definition 1 (Model selection) From a set M of model candidates, select the best
model θ̂ that minimizes the generalization error JG:

θ̂ = argmin
θ∈M

JG[θ]. (4)

3 Subspace information criterion (SIC)

In this section, we briefly review the derivation of a model selection criterion called the
subspace information criterion (SIC).

Let y, z, and ε be M-dimensional vectors consisting of {ym}Mm=1, {f(xm)}Mm=1, and
{εm}Mm=1, respectively:

y = z + ε. (5)

In the derivation of SIC, we assume the following conditions.

1. The learning result function f̂θ(x) obtained with the model θ is given by using a
linear operator Xθ as

f̂θ = Xθy. (6)

2. The mean noise is zero:
Eεε = 0. (7)

3. A linear operator Xu which gives an unbiased learning result function f̂u(x) is avail-
able:

Eεf̂u = f, (8)

where
f̂u = Xuy. (9)

Assumption 1 implies that the range of Xθ becomes a subspace of H . The unbiased
learning result function f̂u is used for estimating the generalization error of f̂θ.

It follows from Eqs.(6), (8), (5), and (7) that the generalization error of f̂θ can be
exactly expressed by using f̂u and the noise covariance matrix Q as

JG[θ] = ‖Eεf̂θ − f‖2 + Eε‖f̂θ − Eεf̂θ‖2
= ‖f̂θ − f̂u‖2 − ‖f̂θ − f̂u‖2 + ‖Eεf̂θ − f‖2 + Eε‖Xθy − EεXθy‖2
= ‖f̂θ − f̂u‖2 − ‖Eε(f̂θ − f̂u)− Eε(f̂θ − f̂u) + f̂θ − f̂u‖2

+ ‖Eε(f̂θ − f̂u)‖2 + Eε‖Xθ(z + ε)− EεXθ(z + ε)‖2
= ‖f̂θ − f̂u‖2 − ‖Eε(f̂θ − f̂u)‖2
− 2Re〈Eε(f̂θ − f̂u),−Eε(f̂θ − f̂u) + f̂θ − f̂u〉
− ‖Eε(f̂θ − f̂u)− (f̂θ − f̂u)‖2 + ‖Eε(f̂θ − f̂u)‖2 + Eε‖Xθε‖2

= ‖f̂θ − f̂u‖2 − 2Re〈Eε(f̂θ − f̂u),−Eε(f̂θ − f̂u) + f̂θ − f̂u〉
− ‖Eε(f̂θ − f̂u)− (f̂θ − f̂u)‖2 + tr (XθQX∗

θ ) , (10)
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where ‘Re’, 〈·, ·〉, tr (·), and X∗
θ stand for the real part of a complex number, the inner

product in H , the trace of an operator, and the adjoint operator of Xθ, respectively.
The second and third terms in Eq.(10) can not be directly evaluated since Eε(f̂θ − f̂u)
is unknown, so we shall average these terms out over the noise. Then the second term
vanishes:

EεRe〈Eε(f̂θ − f̂u),−Eε(f̂θ − f̂u) + f̂θ − f̂u〉 = 0. (11)

And it follows from Eqs.(6), (9), (5), and (7) that the third term yields

Eε‖Eε(f̂θ − f̂u)− (f̂θ − f̂u)‖2
= Eε‖Eε(Xθ −Xu)y − (Xθ −Xu)y‖2
= Eε‖Eε(Xθ −Xu)(z + ε)− (Xθ −Xu)(z + ε)‖2
= Eε‖(Xθ −Xu)ε‖2
= tr ((Xθ −Xu)Q(Xθ −Xu)

∗) . (12)

Then we have the following criterion.

Definition 2 (Subspace information criterion) (Sugiyama & Ogawa, 1999, 2001)
The following functional SIC[θ] is called the subspace information criterion for a model θ.

SIC[θ] = ‖f̂θ − f̂u‖2 − tr ((Xθ −Xu)Q(Xθ −Xu)
∗) + tr (XθQX∗

θ ) . (13)

The model that minimizes SIC is called the minimum SIC (MSIC) model. An impor-
tant property of SIC is that it is an unbiased estimate of the generalization error:

Eε SIC[θ] = JG[θ] (14)

since it follows from Eqs.(13), (11), (12), and (10) that

Eε SIC[θ] = Eε‖f̂θ − f̂u‖2 − tr ((Xθ −Xu)Q(Xθ −Xu)
∗)

+ tr (XθQX∗
θ )

= EεJG[θ]

= JG[θ]. (15)

Eq.(14) supports the effectiveness of SIC as a model selection criterion.

4 Practical calculation of SIC for subset regression

Although SIC does not include the unknown learning target function f(x), it requires
other information which is often unknown, e.g. an unbiased estimate f̂u and the noise
covariance matrix Q. In this section, we give a practical calculation method of SIC for
linear regression models under the following conditions.
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(a) The learning target function f(x) is expressed by using a given set {ϕp(x)}µp=1 of µ
linearly independent functions as

f(x) =
µ∑

p=1

apϕp(x). (16)

This implies that f(x) is included in a µ-dimensional functional Hilbert space H
spanned by {ϕp(x)}µp=1. If such a set {ϕp(x)}µp=1 of basis functions is unknown,
basis functions which approximately express the learning target function f(x) are
practically adopted (see Sections 5.2 and 6.5 for detail).

(b) The so-called design matrix B, which is a M × µ matrix with (m, p)-th element
being ϕp(xm) (see e.g. Efron & Tibshirani, 1993; Orr, 1996), has the rank µ:

rank B = µ, (17)

where
[B]m,p = ϕp(xm). (18)

[·]m,p denotes the (m, p)-th element of a matrix.

(c) The number of training examples is larger than the number of basis functions:

M > µ. (19)

(d) The noise covariance matrix Q is given as

Q = σ2IM (20)

where σ2 > 0 and IM is the M-dimensional identity matrix.

(e) The generalization measure JG is defined by Eq.(3).

(f) The following µ-dimensional covariance matrix U is known:

[U ]p,p′ =
∫

ϕp′(u)ϕp(u)p(u)du, (21)

where ϕp(u) is the complex conjugate of ϕp(u) and p(u) is the probability density
function of future sample points u (see Sections 5.2 and 6.4 if U is unknown).

(g) Least mean squares (LMS) learning (i.e., the training error minimization learning)
in a subspace S spanned by a subset of {ϕp(x)}µp=1 is adopted:

min
g∈S

1

M

M∑
m=1

|g(xm)− ym|2 . (22)
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Under the assumptions (a) and (b), the best linear unbiased estimate (BLUE) of f ,
which is the linear unbiased estimate of f with minimum variance (see e.g. Albert, 1972),
can be obtained. We adopt BLUE as f̂u, which is given as

f̂u(x) =
µ∑

p=1

[B†y]pϕp(x), (23)

where B† is the Moore-Penrose generalized inverse2 of B and [·]p denotes the p-th element
of a vector. Under the assumptions (a), (b), (c), and (d), an unbiased estimate of the
noise variance σ2 is given as (see e.g. Fedorov, 1972)

σ̂2 =
〈y − BB†y, y〉

M − µ
. (24)

Let θ be a subset of indices {1, 2, . . . , µ} and Bθ be an M × µ matrix whose (m, p)-th
element is

[Bθ]m,p =




ϕp(xm) if p ∈ θ,

0 otherwise.
(25)

Then the LMS estimate (i.e., the minimum training error estimate) of f in a subspace
spanned by a subset {ϕp(x)}p∈θ is given as (see e.g. Efron & Tibshirani, 1993)

f̂θ(x) =
∑
p∈θ

[B†
θy]pϕp(x). (26)

Let W be an operator from Cµ to H defined as

W =
µ∑

p=1

(ϕp ⊗ ep) , (27)

where (· ⊗ ·) denotes the Neumann-Schatten product3 and ep is the p-th vector of the
so-called standard basis in Cµ. From Eqs.(23), (26), and (27), operators Xu and Xθ in
Eqs.(9) and (6) are expressed as

Xu = WB†, (28)

Xθ = WB†
θ. (29)

2A matrix A is called the Moore-Penrose generalized inverse of a matrix B if A satisfies the following
four conditions (see e.g. Albert, 1972; Ben-Israel & Greville, 1974).

BAB = B, ABA = A, (BA)∗ = BA, and (AB)∗ = AB.

The Moore-Penrose generalized inverse is unique and denoted as B†.
3For any fixed g in a Hilbert space H1 and any fixed f in a Hilbert space H2, the Neumann-Schatten

product (f ⊗ g) is an operator from H1 to H2 defined by using any h ∈ H1 as (see Schatten, 1970)

(f ⊗ g) h = 〈h, g〉f.
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Since it follows from Eqs.(21), (27), and (3) that U = W ∗W , SIC is reduced to as

SIC[θ] = 〈U(B†
θ − B†)y, (B†

θ −B†)y〉
− σ̂2tr

(
U(B†

θ −B†)(B†
θ − B†)∗

)
+ σ̂2tr

(
UB†

θ(B
†
θ)

∗) . (30)

Note that Eq.(30) is an unbiased estimate of the generalization error, i.e., Eq.(14) holds.
Practically, we recommend using Tikhonov’s regularization (Tikhonov & Arsenin, 1977)
for calculating the Moore-Penrose generalized inverse:

B† ←− (B∗B + γIµ)−1B∗, (31)

where γ is a small positive constant and Iµ is the µ-dimensional identity matrix.

5 Theoretical evaluation of SIC

In this section, SIC is compared with the traditional leave-one-out cross-validation (CV),
CP by Mallows (1964, 1973), Akaike’s information criterion (AIC) by Akaike (1974),
corrected AIC (cAIC) by Sugiura (1978), the Bayesian information criterion (BIC) by
Schwarz (1978), the minimum description length criterion (MDL) by Rissanen (1978,
1987, 1996), and Vapnik’s measure (VM) by Cherkassky et al. (1999).

5.1 Generalization measure

SIC can adopt any norm in the functional Hilbert space as the generalization measure
(see Eq.(2)) as long as it can be calculated. It is, for example, expressed as Eq.(3). The
derivatives of the functions f̂θ(x) and f(x) can also be included in the generalization
measures (with the Sobolev norm).

CP adopts the predictive training error as the error measure:

1

M
Eε

M∑
m=1

∣∣∣f̂θ(xm)− f(xm)
∣∣∣2 . (32)

Note that Eq.(32) does not evaluate the error at future sample points u, and it is equivalent
to Eq.(3) with p(u) replaced by the empirical distribution. It is shown that Eq.(32)
converges to Eq.(3) when training sample points {xm}Mm=1 are subject to p(·) and the
number M of training examples tends to be infinity.

CV adopts the leave-one-out error as the error measure:

M∑
m=1

∣∣∣f̂ (m)
θ (xm)− ym

∣∣∣2 , (33)

where f̂
(m)
θ denotes the learning result function obtained from the training examples with-

out (xm, ym). Eq.(33) also does not directly evaluate the error at future sample points u.
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The relation between Eq.(33) and the generalization measure Eq.(3) is not well recognized
yet.

AIC and cAIC adopt the expected Kullback-Leibler information (Kullback & Leibler,
1951) over all training sets {(xm, ym)}Mm=1 as the generalization measure, which is concep-
tually similar to the expectation of Eq.(3) over training sample points {xm}Mm=1 (Murata
et al., 1994):

E{xm}Eε

∫ ∣∣∣f̂θ(u)− f(u)
∣∣∣2 p(u)du. (34)

Although p(·) can be unknown in AIC and cAIC, instead training sample points {xm}Mm=1

and future sample points u are assumed to be independently subject to the same probabil-
ity density function p(·) and the generalization measure is further averaged over training
sample points. If one adopts the generalization measure averaged over training sample
points (Eq.(34)), the purpose of model selection is to obtain the model that gives good
learning result functions on average (i.e., sample-point-independent model selection). In
contrast, if one adopts the generalization measure which is not averaged over training
sample points (Eq.(3)), the purpose of model selection is to obtain the model that gives
the optimal learning result function from a given, particular training set (i.e., sample-
point-dependent model selection). This implies that the latter standpoint is suitable for
acquiring the best prediction performance from given training examples.

BIC gives an estimate of the evidence (MacKay, 1992) and MDL gives an estimate
of the description length of the model and data. The relation between the evidence,
description length of the model and data, and generalization error is not clear.

The generalization measure adopted in VM is a probabilistic upper bound of the risk
functional: ∫ ∣∣∣f̂θ(u)− f(u)

∣∣∣2 p(u)du, (35)

where p(·) can be unknown but training sample points {xm}Mm=1 and future sample points
u are assumed to be independently subject to the same probability density function p(·)
instead.

5.2 Approximation methods

CP , AIC, cAIC, BIC, MDL, and VM are based on the training error:

1

M

M∑
m=1

∣∣∣f̂θ(xm)− ym

∣∣∣2 . (36)

In contrast, CV and SIC do not use the training error and they directly evaluate the error
measures.

CP is an unbiased estimate of the predictive training error given by Eq.(32) with finite
samples. Since the predictive training error asymptotically agrees with the generaliza-
tion error given by Eq.(3), it can be regarded as an approximation of Eq.(3). Although
asymptotic optimality of CP is shown by Li (1986), its effectiveness with small samples is
not theoretically sure.
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In CV, the leave-one-out error given by Eq.(33) can be regarded as an approximation
of the generalization error (i.e., the error at future sample points u) since it is shown that
the model selection by CV is asymptotically equivalent to that by AIC (Stone, 1977; see
also Amari et al., 1997 for asymptotic analysis). Although it is known that CV practically
works well, its mechanism in small sample cases is not well recognized yet.

Although AIC directly evaluates the generalization error, it is assumed in the deriva-
tion that the number of training examples is very large. This means that when the number
of training examples is small, the approximation is no longer valid. BIC and MDL also
use asymptotic approximation so they have the same drawback.

cAIC, VM, and SIC do not assume the availability of a large number of training
examples for evaluating the generalization error. Therefore, they will work well with
small samples. cAIC is a modified AIC with consideration of small sample effect for
faithful4 models. However, its performance for unfaithful models is not sure. VM gives a
probabilistic upper bound of Eq.(35) based on the VC theory (Vapnik, 1995). Although
VM is derived under general setting, some heuristics are used in its derivation and the
tightness of the upper bound is not evaluated yet.

SIC utilizes only the noise characteristics in its derivation, and it gives an unbiased
estimate of the generalization error JG with finite samples. However, its variance is not
theoretically investigated yet (see Section 6 for experimental evaluation). In order to
calculate SIC, rather restrictive conditions should be assumed as shown in Section 4.
However, these conditions do not have to be rigorously satisfied in practice. For exam-
ple, when H is unknown, a functional Hilbert space Ĥ with the following properties is
practically adopted.

• Ĥ approximately includes the learning target function f(x).

• The dimension of Ĥ is less than the number M of training examples.

• Ĥ includes all model candidates in the set M (see Definition 1).

As shown in Section 6.5, such a functional Hilbert space Ĥ is practically useful. When the
covariance matrix U defined by Eq.(21) is unknown, it can be estimated from unlabeled
sample points {x′

m}M ′
m=1 (i.e., sample points without sample values {y′

m}M ′
m=1) as

[Û ]p,p′ =
1

M ′

M ′∑
m=1

ϕp′(x
′
m)ϕp(x′

m). (37)

If the training sample points {xm}Mm=1 are used instead of unlabeled sample points, then
SIC agrees with Mallows’s CP . For this reason, SIC can be regarded as an extension of
CP (see also Sugiyama and Ogawa, 2000b, 2001).

4A model is said to be faithful if the learning target function can be expressed by the model (Murata
et al., 1994).
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5.3 Restriction on model candidates

AIC and cAIC are valid only when model candidates in the setM are nested (Takeuchi,
1983; Murata et al., 1994). As Murata et al. (1994) pointed out, the fact is known to
those who work on AIC, but it is still not well known to those who apply AIC in practice.
In contrast, SIC imposes no restriction on model candidates in the setM except that the
range of Xθ is included in the functional Hilbert space H .

5.4 Restriction on learning methods

AIC, cAIC, BIC, and MDL are specialized for maximum likelihood estimation, which is
equivalent to LMS learning if the noise is subject to the normal distribution. cAIC is valid
only for linear regression models. A generalized AIC proposed by Murata et al. (1994) and
Konishi and Kitagawa (1996) relaxed the restriction of maximum likelihood estimation.
CP is specialized for LMS learning with linear regression models. An extension of CP

called CL by Mallows (1973), VM, and SIC are applicable to various learning methods
expressed by linear operators (see Eq.(6)) including regularization learning with quadratic
regularizers (ridge regression). Note that in VM, the VC-dimension (Vapnik, 1995) should
be explicitly calculated. SIC for regularization learning with quadratic regularizers is
studied in Sugiyama and Ogawa (2000a). SIC can also be approximately applied to non-
linear operators (see Tsuda et al., 2000 for sparse regressors).

6 Experimental evaluation of SIC

In this section, SIC is experimentally compared with existing model selection techniques
through computer simulations.

6.1 Basic simulations

First, we consider the case when all the assumptions in Section 4 are satisfied. Let the
learning target function f(x) be

f(x) =
1

10

50∑
p=1

(sin px + cos px) (38)

defined on [−π, π]. Let us consider a set of the following 201 basis functions which includes
f(x):

{1, sin px, cos px}100p=1. (39)

Let the set M of model candidates be

M = {θ0, θ10, θ20, . . . , θ100}, (40)
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where θn indicates the following regression model:

f̂θn(x) = â0 +
n∑

p=1

(â2p−1 sin px + â2p cos px). (41)

Note that the number of basis functions in the model θn is 2n+1. Let us assume that the
training sample points {xm}Mm=1 and future sample points u are independently subject to
the same uniform distribution on [−π, π]. Let the noise εm be independently subject to
the same normal distribution with mean 0 and variance σ2.

εm ∼ N(0, σ2). (42)

For calculating the Moore-Penrose generalized inverse, we use Eq.(31) with γ = 0.1. The
following model selection criteria are compared.

(a) Subspace information criterion (SIC) (Sugiyama & Ogawa, 1999, 2001):
The model θ100 is regarded as H . We assume that the covariance matrix U given
by Eq.(21) is exactly known. Since U is the identity matrix in the above setting,
SIC for a model θn is given as

SIC[θn] = ‖(B†
θn
−B†)y‖2 − σ̂2tr

(
(B†

θn
− B†)(B†

θn
− B†)∗

)
+ σ̂2tr

(
B†

θn
(B†

θn
)∗

)
, (43)

where σ̂2 is given by Eq.(24).

(b) Leave-one-out cross-validation (CV): A closed form expression of the leave-one-
out error (Eq.(33)) for a linear regression model θn is given as (see Orr, 1996)

CV[θn] =
‖(diag(Zθn))−1Zθny‖2

M
, (44)

where Zθn is an M-dimensional matrix defined as

Zθn = IM −BθnB†
θn

. (45)

The matrix ‘diag(Zθn)’ is the same size and has the same diagonal as Zθn but is zero
off the diagonal.

(c) CP (Mallows, 1964, 1973): CP for a model θn is given as

CP [θn] =
‖Zθny‖2

M
+

2σ̂2(2n + 1)

M
− σ̂2, (46)

where σ̂2 is given by Eq.(24). Note that
‖Zθny‖2

M
is the training error of a learning

result function f̂θn(x) (see Eq.(36)).
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(d) Akaike’s information criterion (AIC) (Akaike, 1974): Since the noise is sub-
ject to the normal distribution, AIC is expressed as

AIC[θn] = M log
‖Zθny‖2

M
+ 2(2n + 1 + 1). (47)

(e) Corrected AIC (cAIC) (Sugiura, 1978): Since the noise is subject to the normal
distribution, cAIC is expressed as

cAIC[θn] = M log
‖Zθny‖2

M
+

2(2n + 1 + 1)M

M − (2n + 1)− 2
. (48)

(f) Bayesian information criterion (BIC) (Schwarz, 1978): Since the noise is
subject to the normal distribution, BIC is expressed as

BIC[θn] = M log
‖Zθny‖2

M
+ (2n + 1 + 1) log M. (49)

Note that the minimum description length criterion (MDL) (Rissanen, 1978, 1987,
1996) is also given by Eq.(49).

(g) Vapnik’s measure (VM) (Cherkassky et al., 1999): Since the VC-dimension
of the model θn is 2n + 1 (Vapnik, 1995), VM is expressed as

VM[θn] =
‖Zθny‖2

M

/
max


0, 1−

√
p− p log p +

log M

2M


 , (50)

where

p =
2n + 1

M
. (51)

Note that in AIC, cAIC, and BIC (MDL), the information that the noise is subject to
the normal distribution is used. We shall measure the error of a learning result function
f̂θn(x) by

Error[θn] =
1

2π

∫ π

−π

∣∣∣f̂θn(x)− f(x)
∣∣∣2 dx. (52)

The simulation is performed 100 times for (M, σ2) = (500, 0.2), (250, 0.2), (500, 0.6), and
(250, 0.6), with changing the noise {εm}Mm=1 in each trial.

Figures 1, 2, 3, and 4 show the simulation results. The top eight graphs show the values
of the error (Eq.(52)) and model selection criteria corresponding to the order n of models
(see Eq.(40)). The box plot notation specifies marks at 95, 75, 50, 25, and 5 percentiles
of values. The solid line denotes the mean values. The bottom-left eight graphs show the
distribution of the selected order n of models. ‘OPT’ indicates the optimal model that
minimizes the error. The bottom-right eight graphs show the distribution of the error
obtained by the model selected by each criterion.
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When (M, σ2) = (500, 0.2) (Figure 1), all model selection criteria work well. When
(M, σ2) = (250, 0.2) (Figure 2), AIC tends to select larger models and BIC (MDL) is
inclined to select smaller models, so they provide large errors. This may be caused since
AIC and BIC (MDL) are derived under the assumption that the number M of training
examples is very large. When (M, σ2) = (500, 0.6) (Figure 3), BIC (MDL) and VM show
a tendency to select smaller models and they result in large errors. This implies that
BIC (MDL) and VM are not robust against the noise. Finally, when (M, σ2) = (250, 0.6)
(Figure 4), SIC works better than other criteria. In this case, CP almost always selects
θ50, AIC tends to select larger models, and other criteria tend to select smaller models.
As a result, they give large errors.

The simulation results show that SIC outperforms other model selection criteria espe-
cially when the number M of training examples is small and the noise variance σ2 is large.
Although SIC almost always gives a very good estimate of the true error on average, its
variance is rather large when M = 250 (Figures 2 and 4). However, the large variance of
SIC may be dominated by terms that are irrelevant to model selection since SIC given by
Eq.(43) is expressed as

SIC[θn] = ‖B†
θn

y‖2 − 2Re〈B†
θn

y, B†y〉+ ‖B†y‖2
+ 2σ̂2Re tr

(
B†

θn
(B†)∗

)
− σ̂2tr

(
B†(B†)∗

)
, (53)

where the third and fifth terms are irrelevant to θn. It should be noted that CP almost
always selects the true model θ50 in any cases. This implies that CP is more suitable for
finding the true model than finding the model with minimum generalization error.

6.2 Uniform noise

Let us investigate the robustness of SIC against non-Gaussian noise. We consider the
same setting as Section 6.1 but the noise εm is subject to the uniform distribution on
[−0.3, 0.3]. The simulation results for M = 500 and 250 are displayed in Figures 5 and 6,
respectively. The results show that SIC works well even in the uniform noise case.

6.3 Changing the dimension of H

Now we investigate the influence of changing H when (M, σ2) = (250, 0.2). The simulation
is performed with the same setting as Section 6.1 but H is changed as θ120, θ100, θ80, or
θ60. Note that when H is specified by θ80 or θ60, we only consider the model candidates
whose orders are less than or equal to the order of H (see Eq.(40)). The simulation results
displayed in Figure 7 show that the variance of SIC is reduced as H is small. This may
be because f̂u and σ̂2 tend to be accurate as H is small (see Eq.(53)). The performance
of SIC is almost the same when H is specified by θ100, θ80, or θ60. However, when H is
specified by θ120, the variance is rather large. This implies that when the dimension of
H is very close to the number M of training examples (e.g. when H is specified by θ120,
dim H = 241 and M = 250), SIC tends to be inaccurate.



Theoretical and Experimental Evaluation of Subspace Information Criterion 15

6.4 Estimating U from unlabeled sample points

Let us investigate the robustness of SIC when the covariance matrix U (see Eq.(21)), which
is assumed to be known in the simulations in Section 6.1, is estimated from unlabeled
sample points {x′

m}M ′
m=1 as Eq.(37). The simulation is performed with the same setting as

Section 6.1 but U is estimated with M ′ unlabeled sample points. M ′ is changed as M ′ =
500, 250, 100, and 50. Figure 8 displays the simulation results when (M, σ2) = (500, 0.6).
The simulation results show that the good performance of SIC is maintained as the number
M ′ of unlabeled sample points is small. This implies that SIC will work well if only a
rough estimate of U is available.

6.5 Unrealizable learning target function

Finally, we consider the case when the learning target function f(x) is not included in
H . The simulation is performed with the same setting as Section 6.1 but the learning
target function f(x) is the step function or 1

1+x2 defined on [−π, π]. Let the number M
of training examples be 100. We decide the function space H following Section 5.2. Since
M = 100, the dimension of H should be less than 100. Moreover, as shown in Section 6.3,
the dimension of H should not be close to M . For this reason, we adopt θ20 as H . Let the
set M of model candidates be {θ0, θ2, θ4, . . . , θ20}, which are included in H . We measure
the error of a learning result function f̂θn(x) from 1000 future sample points {uj}1000j=1

randomly generated in [−π, π] as

Error[θn] =
1

1000

1000∑
j=1

∣∣∣f̂θn(uj)− f(uj)
∣∣∣2 . (54)

The simulation results with the learning target function being the step function for
(M, σ2) = (100, 0.1) are displayed in Figure 9. The simulation results with f(x) = 1

1+x2

for (M, σ2) = (100, 0.03) are displayed in Figure 10. These results show that SIC seems
still effective even in unrealizable cases as long as the Hilbert space H approximately
includes the learning target function f(x). However, further experiments may be needed
to confirm the robustness against unrealizable learning target functions.

7 Conclusion

In this paper, we theoretically and experimentally evaluated the effectiveness of the model
selection criterion called the subspace information criterion (SIC) in comparison with the
traditional leave-one-out cross-validation (CV), Mallows’s CP , Akaike’s information cri-
terion (AIC), Sugiura’s corrected AIC (cAIC), Schwarz’s Bayesian information criterion
(BIC), Rissanen’s minimum description length criterion (MDL), and Vapnik’s measure
(VM). Theoretical evaluation included the comparison of the generalization measure, ap-
proximation method, and restriction on model candidates and learning methods. Exper-
imentally, SIC was shown to outperform existing techniques especially when the number
of training examples is small and the noise variance is large.
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Despite the outstanding performance of SIC, its variance is rather large when the
number of training examples is small. Further work is needed to investigate the variance.
The simulation results showed that SIC seems still effective even in unrealizable cases
as long as the functional Hilbert space approximately includes the learning target func-
tion. However, further experiments may be necessary for confirming the robustness. The
concept of SIC given in Section 3 is valid even when the number of training examples is
not larger than the dimension of the functional Hilbert space which includes the learning
target function. Devising a practical calculation method of SIC for such a case is also
important future work.
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Figure 1: Simulation results when (M, σ2) = (500, 0.2).
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Figure 2: Simulation results when (M, σ2) = (250, 0.2).
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Figure 3: Simulation results when (M, σ2) = (500, 0.6).
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Figure 4: Simulation results when (M, σ2) = (250, 0.6).
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Figure 5: Simulation results when M = 500 with uniform noise.
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Figure 6: Simulation results when M = 250 with uniform noise.
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Figure 7: Simulation results when (M, σ2) = (250, 0.2) with changing H . ‘SIC+θj ’ denotes
the case when SIC is calculated with H specified by θj .
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Figure 8: Simulation results when (M, σ2) = (500, 0.6) with the covariance matrix U (see
Eq.(21)) estimated from unlabeled sample points as Eq.(37). ‘SIC+trueU ’ denotes the
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Figure 9: Simulation results when (M, σ2) = (100, 0.1) with unrealizable learning target
function: f(x) is the step function.
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Figure 10: Simulation results when (M, σ2) = (100, 0.03) with unrealizable learning target
function: f(x) = 1

1+x2 .


