
1IEICE Transactions on Information and Systems,
vol.E85-D, no.9, pp.1433–1442, Sep. 2002.

Incremental Construction of
Projection Generalizing Neural Networks

Masashi Sugiyama Hidemitsu Ogawa

Department of Computer Science,
Graduate School of Information Science and Engineering,

Tokyo Institute of Technology.

2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.

sugi@og.cs.titech.ac.jp

http://ogawa-www.cs.titech.ac.jp/~sugi/

Abstract

In many practical situations in NN learning, training examples tend to be supplied
one by one. In such situations, incremental learning seems more natural than batch
learning in view of the learning methods of human beings. In this paper, we propose
an incremental learning method in neural networks under the projection learning
criterion. Although projection learning is a linear learning method, achieving the
above goal is not straightforward since it involves redundant expressions of functions
with over-complete bases, which is essentially related to pseudo biorthogonal bases
(or frames). The proposed method provides exactly the same learning result as that
obtained by batch learning. It is theoretically shown that the proposed method is
more efficient in computation than batch learning.

Keywords

generalization capability, incremental learning, pseudo biorthogonal basis (PBOB),
projection learning, incremental projection learning, projection generalizing neural
network.

Incremental Construction of Projection Generalizing Neural Networks 2

1 Introduction

The purpose of learning in neural networks (NNs) is estimating an unknown input-output
rule from a finite number of training examples. If the rule is successfully identified, then
it is possible to estimate output values corresponding to novel input points. This ability
is called the generalization capability.

If we pay attention to the input-output relation of a NN, it can be regarded as a func-
tion. Based on this interpretation, the NN learning is formulated as an inverse problem
from the functional analytic point of view [15, 16]. This framework divides the NN learn-
ing into two stages. In the first stage, function approximation is performed on the basis
of a learning criterion independent of the architecture of NNs. So far, various learning
criteria have been proposed depending on the purpose, e.g., least mean squares learning,
projection learning [14], Wiener learning [18], parametric projection learning [20], and
regularization learning [11]. Also, methods for calculating learning result functions by
using all given training examples in a batch manner have been devised in the references
[14, 18, 20, 11]. In the second stage, a NN that represents the learning result function
is constructed. A general construction method of NNs has been proposed [16], which
enables us to perform batch learning in NNs on the basis of each learning criterion.

In many practical situations in NN learning, however, training examples tend to be
supplied one by one. In such situations, incremental learning seems more natural than
batch learning in view of the learning methods of human beings. Although many incre-
mental learning methods devised so far are more efficient than batch learning in compu-
tation, they do not generally provide as good generalization capability as batch learning
[21, 8, 9, 33, 32, 29, 24]. An incremental learning method which asymptotically provides
the same generalization capability as that obtained by batch learning was proposed [3].
Even with this method, however, learning results do not agree with those obtained by
batch learning in the non-asymptotic case, causing a crucial problem since the number of
training examples is always finite in practice. A method of incremental projection learn-
ing corresponding to the function approximation stage of the above mentioned framework
was given [26]. This method provides exactly the same learning result as that obtained
by batch projection learning with finite training examples. Properties of incremental
projection learning have been investigated in detail in the reference [27].

The aim of this paper is to give an incremental construction method of NNs under
the projection learning criterion, which enables us to perform incremental projection
learning in NNs. We are dealing with linear systems so that incremental projection
learning in NNs seems rather straightforward. However, this is not true since it involves
redundant expressions of functions with over-complete bases, which is essentially related
to the pseudo biorthogonal bases [13, 17] (or frames [4, 6]).

This paper is organized as follows. In Section 2, the NN learning problem is formulated
and the definition of projection learning is described. Section 3 reviews a method of batch
projection learning in NNs. Essentially, Sections 2 and 3 are reviews of the previous works,
so readers may skip over these sections and go straightly to Section 4. Section 4 gives a
method of incremental projection learning in NNs. In Section 5, the proposed method is

Incremental Construction of Projection Generalizing Neural Networks 3

analyzed regarding the condition of adding new hidden units. Finally, Section 6 is devoted
to computer simulations for experimentally investigating the effectiveness of the proposed
method.

2 Formulation of NN learning problem

In this section, the NN learning problem is formulated following the reference [15, 16],
and then the definition of projection learning [14] is reviewed. This section is essentially
the review of the above papers so readers who are interested in the main contents may
skip over this section.

2.1 NN learning as an inverse problem

Let us consider a learning problem of a three-layer feedforward NN with the numbers
of input and output units being L and 1, respectively. The relationship between input
x = (η1, . . . , ηL)� and output y of the NN is expressed by using a function f0(x) of L
variables as

y = f0(x). (1)

The NN learning problem is to obtain the optimal approximation to a target function f
from a set of m training examples made up of input signals xi ∈ RL and corresponding
output signals yi ∈ C:

{(xi, yi) | yi = f(xi) + ni : i = 1, 2, . . . , m}, (2)

where yi is degraded by additive noise ni. Basically, we assume that the noise covariance
matrix is known through this paper. However, as shown in Section 4.1, this assumption
is not needed if the noise covariance matrix is known to be proportional to the identity
matrix.

In many NN learning methods devised so far, learning algorithms are built upon a
certain architecture of NNs, i.e., a fixed number of hidden units, each with a prespecified
sigmoidal or radial basis functions. However, the restrictions sometimes prevent us from
obtaining the optimal approximation. Therefore, we may divide our NN learning problem
into two stages. Function approximation from given training examples is performed in
the first stage, and a NN which represents the approximated function is constructed in
the second stage.

To begin with, we formulate the function approximation problem corresponding to
the first stage. Let n(m) and y(m) be m-dimensional vectors with the i-th elements being
ni and yi, respectively. y(m) is called a sample value vector, and a space to which y(m)

belongs is called a sample value space. In this paper, the target function f is assumed to
belong to a reproducing kernel Hilbert space H [2]. (see also [30, 5]). Let us denote the
reproducing kernel of H by K(x, x′). If a function ψi(x) is defined as

ψi(x) = K(x, xi), (3)

Incremental Construction of Projection Generalizing Neural Networks 4

input hidden output

η1

η2

ηL

...
...

...

... f0(x)

layer layer layer

u1(x)

u2(x)

uN(x)

w1

w2

wN

Figure 1: The structure of a neural network.

then the value of f at a sample point xi is expressed as

f(xi) = 〈f, ψi〉. (4)

For this reason, ψi is called a sampling function. Let Am be an operator which maps f
to an m-dimensional vector with the i-th element being f(xi). We call Am a sampling
operator. Then the relationship between f and y(m) can be expressed as

y(m) = Amf + n(m). (5)

Note that Am is always a linear operator even when we are concerned with a non-linear
function f . Indeed, Am can be expressed by using the Neumann-Schatten product1 as

Am =

m∑
i=1

(
e
(m)
i ⊗ ψi

)
, (6)

where e
(m)
i is the i-th vector of the so-called standard basis in Cm. Let fm be a learning

result function obtained from m training examples and Xm be an operator which maps
y(m) to fm:

fm = Xmy
(m). (7)

Xm is called a learning operator. Then the first stage of the NN learning problem can be
reformulated as an inverse problem of obtaining Xm that provides the best approximation
fm to f under a certain criterion.

Now we go on to the second stage, i.e., the construction of a NN which represents
fm. In the second stage, the number N of hidden units, basis functions {uj(x)}Nj=1, and

1For any fixed g in a Hilbert space H1 and any fixed f in a Hilbert space H2, the Neumann-Schatten
product (f ⊗ g) is an operator from H1 to H2 defined by using any h ∈ H1 as follows [25]:

(f ⊗ g)h = 〈h, g〉f.

Incremental Construction of Projection Generalizing Neural Networks 5

weights {wj}Nj=1 on hidden-output connections are determined (Fig.1). In conventional
neural networks, the following basis function is commonly used:

uj(x) = σ(
L∑

k=1

wkjηk), (8)

where σ(·) is a sigmoidal activation function and wkj is a weight on the connection between
the k-th input unit and the j-th hidden unit. In this paper, {uj(x)}Nj=1 is given by e.g. the
reproducing kernel of H (see [5] for convenient reproducing kernel Hilbert spaces).

2.2 Projection learning

As mentioned above, the function approximation problem is formulated as an inverse
problem. Since image and signal restoration problems discussed in the references [14, 19]
are also formulated as the same form of inverse problems, the optimal image restoration
filters devised in these papers can be applied to the function approximation problem
discussed in this paper. We adopt the projection learning criterion. Let En, A∗

m, R(A∗
m),

and PR(A∗
m) be the ensemble average over the noise, the adjoint operator of Am, the range

of A∗
m, and the orthogonal projection operator onto R(A∗

m), respectively. Then projection
learning is defined as follows.

Definition 1 (Projection learning) [14] An operator Xm is called the projection learn-
ing operator if Xm minimizes the functional

JP [Xm] = En‖Xmn
(m)‖2 (9)

under the constraint
XmAm = PR(A∗

m). (10)

Since the learning result function fm is searched in R(A∗
m), this space is called the

approximation space for fm. From Eqs.(7) and (5), the learning result function fm can be
decomposed as

fm = XmAmf +Xmn
(m). (11)

The first and second terms of Eq.(11) are called the signal and noise components of fm,
respectively. The projection learning criterion requires the signal component to coincide
with the orthogonal projection of f onto R(A∗

m) and the noise component to minimize its
variance.

It has been shown that learning results obtained by projection learning are invariant
under the inner product in a sample value space [31]. Hence, the Euclidean inner product
is adopted without loss of generality.

Incremental Construction of Projection Generalizing Neural Networks 6

3 Batch projection learning in NNs

In this section, we review a method of batch projection learning in NNs, which forms a
basis for devising incremental learning techniques in the following sections. Therefore,
readers who are interested in the main contents may also skip over this section. We
first review batch projection learning [14] that corresponds to the function approximation
stage of our framework. Then we go on to the second stage and review the method of
constructing NNs in a batch manner [16]. Here, the concept of pseudo orthogonal bases
plays an essential role [13, 17].

Let Im be the identity matrix on Cm and A†
m be the Moore-Penrose generalized inverse

of Am [1]. Then the following proposition holds.

Proposition 1 [14] A general form of the projection learning operator A
(P)
m is expressed

as
A(P)

m = V †
mA

∗
mU

†
m + Ym(Im − UmU

†
m), (12)

where

Qm = En

(
n(m) ⊗ n(m)

)
, (13)

Um = AmA
∗
m +Qm, (14)

Vm = A∗
mU

†
mAm, (15)

and Ym is an arbitrary operator from Cm to H.

By using Eqs.(12) and (7), we can calculate a projection learning result function
fm from m given training examples in a batch manner. This method is called batch
projection learning. Note that fm is uniquely determined in spite of the non-uniqueness
of the projection learning operator caused by Ym.

A NN that represents a projection learning result function is called a projection gener-
alizing NN (PGNN). The construction of NNs is mathematically equivalent to an expan-
sion of the learning result function fm(x) by basis functions {uj(x)}Nj=1, where N is the
number of hidden units and uj(x) is an input-output function of the j-th hidden unit (see
Fig.1). When {uj}Nj=1 is an orthonormal basis (ONB) in H , the NN construction problem
becomes an expansion of fm by ONBs. When N is larger than the dimension of H , this
problem becomes an expansion by pseudo biorthogonal bases, which is an extension of
ONBs defined as follows.

Definition 2 (Pseudo biorthogonal bases) [13, 17]
Let {uj, u

∗
j}Nj=1 be a set of 2N (N ≥ µ) elements in a µ-dimensional Hilbert space H. If

any f in H can be expressed as

f =
N∑

j=1

〈f, u∗j〉uj, (16)

then {uj, u
∗
j}Nj=1 is called a pseudo biorthogonal basis (PBOB) in H.

Incremental Construction of Projection Generalizing Neural Networks 7

A PBOB is also referred to as a frame in the wavelet literature [4, 6]. When {uj, u
∗
j}Nj=1

is a PBOB, {u∗j}Nj=1 is called a dual sequence to {uj}Nj=1. If N is equal to the dimension
of H and u∗j = uj for all j, then a PBOB is reduced to an ONB. Hence, the concept
of PBOBs is natural extension of ONBs. Indeed, PBOBs inherit many useful properties
from ONBs, including Parseval’s equalities [17]. A dual sequence {u∗j}Nj=1 can be calculated
from {uj}Nj=1 as follows.

Proposition 2 (Batch calculation of PBOBs) [13, 17] Let GN and WN be defined
as

GN =

N∑
j=1

(
e
(N)
j ⊗ uj

)
, (17)

WN = (G†
N)∗ + (IN −GNG

†
N)ZN , (18)

where ZN is an arbitrary operator from H to CN . If we let

u∗j = W ∗
Ne

(N)
j , (19)

then {uj, u
∗
j}Nj=1 forms a PBOB in H.

Based on the concept of PBOBs, we shall review a batch construction method of
PGNNs, which we refer to as BPGNN. Let w(N) be an N -dimensional vector with the
j-th element being the weight wj on the connection to the j-th hidden unit (see Fig.1).
w(N) is called a weight vector. Then BPGNN is given as follows.

Proposition 3 (BPGNN) [16] A NN that satisfies the following conditions is a PGNN,
and all PGNNs can be constructed by this method.

1. The number N of hidden units:

N ≥ rank(A∗
m). (20)

2. Basis functions {uj(x)}Nj=1 of hidden units:

L ({uj}Nj=1

) ⊃ R(A∗
m), (21)

where L ({uj}Nj=1

)
denotes the subspace spanned by {uj}Nj=1.

3. Weights {wj}Nj=1 on hidden-output connections:

w(N) = WNA
(P)
m y(m). (22)

Incremental Construction of Projection Generalizing Neural Networks 8

Eq.(21) implies that any basis functions {uj(x)}Nj=1 can be used as long as they satisfy
Eqs.(20) and (21). In the so-called back propagation algorithm [23], it is said that the
generalization capability becomes poor if the number of hidden units is too large [10]. For
this reason, pruning algorithms are often used [22, 33].

However, one of the features which distinguish NNs from other learning machines is
their robustness achieved by employing redundant hidden units. Therefore, the existence
of redundant units is the nature of NNs. From this viewpoint, developing a learning
theory for NNs with redundant hidden units is essential. This can be achieved by the
framework described in Section 2.1, i.e., the function approximation stage is independent
of the architecture of NNs. Indeed, Proposition 3 showed that the number N of hidden
units can be as large as desired in PGNNs without losing the generalization capability. By
utilizing the redundancy of PGNN, a robust construction method of PGNNs in a batch
manner was given [12] (see also [7]). NNs constructed by this method are specifically
resistant to noise on the output of hidden units and connection faults.

In the next section, we give an incremental learning method in NNs with redundant
units.

4 Incremental projection learning in NNs

So far, we formulated supervised learning, and reviewed a construction method of pro-
jection generalizing neural networks in a batch manner. In this section, we consider an
incremental setting. First, we briefly review incremental projection learning [26] that
corresponds to the first stage of our framework (see Section 2.1). Based on these prelimi-
naries, we give a method of incremental projection learning in NNs in Section 4.2, which
is our main contribution.

4.1 Incremental projection learning

Let us consider the case where a new training example (xm+1, ym+1) is added after a
PGNN has been constructed from m training examples. This case is fairly common in
practical situations. For example, when we buy a character recognition equipment, it has
been trained with general training examples. Then training examples created by each
user are added for improving the recognition property.

Let noise characteristics of the additional training example (xm+1, ym+1) be

qm+1 = En(nm+1n
(m)), (23)

σm+1 = En|nm+1|2, (24)

where nm+1 denotes the complex conjugate of nm+1.
Let N (Am) be the null space of Am and PN (Am) is the orthogonal projection onto

N (Am). Let us define the following notation.

Matrix:

Incremental Construction of Projection Generalizing Neural Networks 9

Γm+1 =
m∑

i=1

(
e
(m+1)
i ⊗ e(m)

i

)
. (25)

Vectors:

sm+1 = Amψm+1 + qm+1, (26)

tm+1 = U †
msm+1. (27)

Scalars:

αm+1 = ψm+1(xm+1) + σm+1 − 〈tm+1, sm+1〉, (28)

βm+1 = ym+1 − fm(xm+1)

− 〈y(m) −Amfm, tm+1〉. (29)

Functions:

ψ̃m+1 = PN (Am)ψm+1, (30)

ξm+1 = ψm+1 −A∗
mtm+1, (31)

ξ̃m+1 = V †
mξm+1. (32)

The additional training examples which yield ξm+1 = 0 can be rejected since they have
no effect on learning results [27]. In the following discussion, we focus on the case where
ξm+1 �= 0. Corresponding to the function approximation stage of the framework described
in Section 2.1, a method of incremental projection learning (IPL) is given as follows.

Proposition 4 (IPL) [26] When ξm+1 in Eq.(31) is not zero, a posterior projection
learning result function fm+1 can be obtained by using prior results fm, Am, U †

m, V †
m, and

y(m) as

fm+1 =

{
fm + βm+1ζ

(a)
m+1 if ψm+1 ∈ R(A∗

m),

fm + βm+1ζ
(b)
m+1 if ψm+1 �∈ R(A∗

m),
(33)

where ζ
(a)
m+1 and ζ

(b)
m+1 are defined as

ζ
(a)
m+1 =

ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
, (34)

ζ
(b)
m+1 =

ψ̃m+1

ψ̃m+1 (xm+1)
. (35)

Note that fm+1 obtained by Proposition 4 exactly coincides with the learning result
function obtained by batch projection learning with {(xi, yi)}m+1

i=1 . The condition ψm+1 ∈
R(A∗

m) means that ψm+1 belongs to the subspace spanned by {ψi}mi=1.
Let V ′

m and β ′
m+1 be defined as

V ′
m = A∗

mQ
†
mAm, (36)

β ′
m+1 = ym+1 − fm(xm+1). (37)

Then in a special case, IPL is reduced to a simpler expression as follows.

Incremental Construction of Projection Generalizing Neural Networks 10

Proposition 5 [27] If the noise correlation matrix is positive definite and diagonal, i.e.,

Qm+1 = diag(σ1, σ2, . . . , σm+1), (38)

where σi > 0 for all i, then a posterior projection learning result function fm+1 can be
obtained by using prior results fm and V ′†

m as

fm+1 =

{
fm + β ′

m+1ζ
(a)′
m+1 if ψm+1 ∈ R(A∗

m),

fm + β ′
m+1ζ

(b)′
m+1 if ψm+1 �∈ R(A∗

m),
(39)

where ζ
(a)′
m+1 is defined as

ζ
(a)′
m+1 =

V ′†
mψm+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

, (40)

and ζ
(b)′
m+1 is equal to ζ

(b)
m+1 defined by Eq.(35).

In the following discussion, βm+1, ζ
(a)
m+1, and ζ

(b)
m+1 can be replaced with β ′

m+1, ζ
(a)′
m+1,

and ζ
(b)′
m+1 if the noise correlation matrix is in the form of Eq.(38) with σi > 0 for all i.

Note that if σ1 = σ2 = · · · = σm+1 = σ, the value of σ is not required since it is canceled
out in Eq.(40).

4.2 Incremental construction of PGNN

Based on IPL, we shall give an incremental construction method of PGNN that corre-
sponds to the second stage of our framework. We refer to the incremental construction
method as IPGNN.

As mentioned in Section 3, the concept of PBOBs plays an essential role in the con-
struction of NNs. First, we give an incremental calculation method of PBOBs, which
enable us to calculate a dual sequence {u∗j}N+1

j=1 to {uj}N+1
j=1 after a PBOB {uj, u

∗
j}Nj=1 has

been obtained:

Theorem 1 (Incremental calculation of PBOBs) If uN+1 �∈ L
({uj}Nj=1

)
, then

{u∗j}N+1
j=1 can be obtained by using {uj, u

∗
j}Nj=1 as

u∗j ← u∗j − 〈uN+1, u
∗
j〉+ YNPN (G∗

N)e
(N)
j

for 1 ≤ j ≤ N, (41)

u∗N+1 ← ũN+1, (42)

where

ũN+1 =
PN (GN)uN+1

‖PN (GN)uN+1‖2 , (43)

and YN is an arbitrary operator from CN to H.

Incremental Construction of Projection Generalizing Neural Networks 11

A proof of Theorem 1 is given in A. Let us measure the computational complexity
by the number of scalar multiplications. If the batch method shown by Proposition 2
is used for obtaining {u∗j}N+1

j=1 , the computational complexity is O(N3). In contrast, the
computational complexity required for Theorem 1 is reduced to O(N2).

Combining Proposition 4 and Theorem 1, we have the following incremental construc-
tion method of PGNNs.

Theorem 2 (IPGNN) A posterior PGNN can be incrementally constructed as follows.

1. When ψm+1 ∈ R(A∗
m), the existing weights {wj}Nj=1 are modified as

w(N) ← w(N) + βm+1WNζ
(a)
m+1 + z, (44)

where z is an arbitrary vector in N (G∗
N).

2. When ψm+1 �∈ R(A∗
m) and ψm+1 ∈ L

({uj}Nj=1

)
, the existing weights {wj}Nj=1 are

modified as
w(N) ← w(N) + βm+1WNζ

(b)
m+1 + z. (45)

3. When ψm+1 �∈ R(A∗
m) and ψm+1 �∈ L

({uj}Nj=1

)
, a novel hidden unit with the input-

output function uN+1 being a function such that uN+1 ∈ R(A∗
m+1) and uN+1 �∈

R(A∗
m) is added. The weight wN+1 on the connection to the novel unit is determined

as
wN+1 = βm+1〈ζ (b)

m+1, ũN+1〉. (46)

The existing weights {wj}Nj=1 are modified as

w(N) ← w(N) + βm+1WN

×(ζ
(b)
m+1 − 〈ζ (b)

m+1, ũN+1〉uN+1) + z. (47)

A proof of Theorem 2 is given in B. PGNNs constructed by IPGNN (Theorem 2)
express exactly the same functions as those constructed by BPGNN (Proposition 3).
Theorem 2 states that a posterior learning result function fm+1 can be represented without
adding any novel units when 1. ψm+1 ∈ R(A∗

m), or 2. ψm+1 �∈ R(A∗
m) and ψm+1 ∈

L ({uj}Nj=1

)
. Otherwise, the addition of a novel unit is indispensable. Eqs.(44), (45), and

(47) imply that there exists freedom of determining the weights. By utilizing the freedom,
we will give robust construction method of NNs in our future work.

Now we investigate the computational complexity required for BPGNN and IPGNN
when (xm+1, ym+1) is added after a PGNN trained with {(xi, yi)}mi=1 has been obtained.
When we use BPGNN for obtaining a posterior PGNN, the computational complexity
is O(m3 + N3). In contrast, the computational complexity required for IPGNN to add
the (m + 1)-st training example to a prior NN is O(m2 + N2). Therefore, it is theoreti-
cally confirmed that the computational complexity required for IPGNN is less than that
required for BPGNN. Note that the memory required for BPGNN and IPGNN is both
O(m2 +N2) (Table 1). IPGNN can be calculated without the gradient descent method,

Incremental Construction of Projection Generalizing Neural Networks 12

Table 1: The computational complexity required for BPGNN and IPGNN to add the
(m + 1)-st training example. m and N denote the numbers of training examples and
hidden units, respectively.

Computational complexity Memory

BPGNN O(m3 +N3) O(m2 +N2)
IPGNN O(m2 +N2) O(m2 +N2)

which requires much computation until convergence. Hence, IPGNN is expected to be
practically efficient in computation compared with gradient-descent-based methods.

When N is equal to the dimension of R(A∗
m), i.e., equality in Eq.(20) holds, Theorem

2 is reduced to the following simpler expressions.

Corollary 1 When the number N of hidden units in the prior PGNN is equal to the
dimension of R(A∗

m), the posterior PGNN can be incrementally constructed as follows.

1. When ψm+1 ∈ R(A∗
m), the existing weights {wj}Nj=1 are modified as

w(N) ← w(N) + βm+1(G
†
N)∗ζ (a)

m+1. (48)

2. When ψm+1 �∈ R(A∗
m), the novel hidden unit with the input-output function uN+1(x)

being ψ̃m+1(x) is added, and the weight wN+1 on the connection to the novel unit is
determined as

wN+1 =
βm+1

ψ̃m+1 (xm+1)
. (49)

The existing weights are used without any modifications.

Corollary 2 When the number N of hidden units in the prior PGNN is equal to the
dimension of R(A∗

m), the posterior PGNN can be incrementally constructed as follows.

1. When ψm+1 ∈ R(A∗
m), the existing weights {wj}Nj=1 are modified as Eq.(48).

2. When ψm+1 �∈ R(A∗
m), the novel hidden unit with the input-output function uN+1(x)

being ψm+1(x) is added, and the weight wN+1 is determined by Eq.(49). The existing
weights {wj}Nj=1 are modified as

w(N) ← w(N) − βm+1(G
†
N)∗ζ (b)

m+1. (50)

Corollary 1 states that the existing weights need not to be modified when ψm+1 �∈
R(A∗

m). This property is useful because it contributes to reducing mechanical trouble.
However, Corollary 1 generally requires comparatively complicated hidden units which are
capable of representing arbitrary functions in H . In contrast, Corollary 2 requires simple
hidden units which are capable of representing only K(x, x′), the reproducing kernel in
H . When a novel unit is added to NNs, xm+1 is assigned to x′. This feature is preferable
from the engineering point of view.

Incremental Construction of Projection Generalizing Neural Networks 13

5 Discussion

In this section, we compare the proposed incremental learning method with the resource
allocating network (RAN) [21] regarding the condition of adding new hidden units.

RAN is an incremental learning algorithm in radial basis function (RBF) networks.
In RAN, the necessity of adding a novel hidden unit is judged by the following novelty
criteria:

|xm+1 − (center of nearest RBF)| > δx, (51)

|ym+1 − fm(xm+1)| > δy, (52)

where δx and δy are appropriately determined thresholds. If the additional training exam-
ple (xm+1, ym+1) satisfies both of the novelty criteria, then a new novel hidden unit with
the center and height being xm+1 and (ym+1 − fm(xm+1)), respectively, is added. Other-
wise, any new hidden units are not employed and the existing parameters are modified
by the gradient descent method so that

(ym+1 − fm(xm+1))
2 (53)

is minimized.
As mentioned in Section 3, the robustness of NNs can be achieved by employing

redundant units. On the other hand, the number of units should be kept as small as
possible in order to reduce the computational complexity. The novelty criteria work well
for balancing this trade-off. However, the novelty criteria do not always provide the
required number of hidden units for obtaining the same learning result as batch learning,
that minimizes

m+1∑
i=1

(yi − fm+1(xi))
2. (54)

In contrast, the necessity of adding novel hidden units in IPGNN is judged by the criterion
whether the prior NN is capable of expressing functions in the posterior approximation
space. Eq.(20) shows the minimum number of hidden units required for acquiring the
optimal generalization capability. Hence, the robustness in PGNN can be controlled by
the criterion “How much computational complexity we can put up with?” under the
constraint of Eq.(20).

6 Computer simulations

In this section, the proposed IPGNN is experimentally compared with the minimal re-
source allocating network (M-RAN) [33] and the back propagation (BP) algorithm [23]. In
M-RAN, radial basis functions are adopted as basis functions, while BP employs sigmoidal
activation functions.

Incremental Construction of Projection Generalizing Neural Networks 14

Let us consider the following chaotic series created by the Mackey-Glass delay-
difference equation:

g(t+ 1) =




(1− b)g(t) + a
g(t− τ)

1 + g(t− τ)10

for t ≥ τ + 1,

0.3 for 1 ≤ t ≤ τ,

(55)

where a = 0.2, b = 0.1, and τ = 17. Let {ht}199t=1 be

ht = g(t+ τ + 1). (56)

Our task is to estimate {ht}199t=1 from 50 given sample values {yi}50i=1:

yi = hp + ni : p =

⌈
199× i

50

⌉
, (57)

where �c� denotes the minimum integer larger than or equal to c and {ni}50i=1 are noises
independently subject to the same normal distribution with mean 0 and variance 0.1:

ni ∼ N(0, 0.1). (58)

Let us consider sample points {xi}50i=1 corresponding to the sample values {yi}50i=1:

xi = −1 +
1

100
×

⌈
199× i

50

⌉
. (59)

Then f0(−1 + t
100

) can be regarded as an estimate of ht for 1 ≤ t ≤ 199, where f0(x) is a
learning result function. The quality of the learning result function f0(x) is evaluated by
the sum of the squared error:

Error =
199∑
t=1

(
f0(−1 +

t

100
)− ht

)2

. (60)

Simulations are carried out in the following conditions.

(a) IPGNN: We adopt the polynomial space of order 19 as H , i.e., H is spanned by
{xn}19n=0 and the inner product in H is defined as

〈f, g〉 =

∫ 1

−1

f(x)g(x)dx. (61)

Let Pn(x) be the Legendre polynomial of order n expressed as

Pn(x) = knx
n + k′nx

n−1 + · · · . (62)

Incremental Construction of Projection Generalizing Neural Networks 15

Then the reproducing kernel of H is given as follows [28]:

K(x, x′) =




k19
k20

P20(x)P19(x
′)− P19(x)P20(x

′)
x− x′

if x �= x′,

k19
k20

(P ′
20(x)P19(x)− P ′

19(x)P20(x))

if x = x′.

(63)

We construct the PGNN following Corollary 2. That is, for m = 0, 1, . . . , 19, the
hidden unit with the input-output function being K(x, xm+1) is added, and the
weights are determined by Eqs.(49) and (50). For m = 20, 21, . . . , 49, weights are
modified by Eq.(48).

(b) M-RAN: Parameters are assigned as εmax = 0.18, εmin = 0.04, γ = 0.96, emin =
0.004, e′min = 0.006, κ = 0.8, P0=1, Pn = 0.19, M = 30, and δ = 0.000001.

(c) BP: The number of hidden units is fixed to 20 throughout the learning process.

Note that IPGNN and M-RAN are incremental learning methods where each training
example is used once and never used again, while BP is a batch learning method where
all training examples are used again and again until convergence. In the cases of IPGNN
and M-RAN, training examples are incrementally supplied from (x1, y1) to (x50, y50).

Estimation results of IPGNN and M-RAN are displayed in Fig.2 (a) and (b), respec-
tively. ‘×’ and ‘◦’ denote the original series and estimation results, respectively. ‘ ’ denotes
training examples. The errors by IPGNN and M-RAN measured by Eq.(60) are 0.98 and
8.26, respectively. These results show that IPGNN provides better estimation than M-
RAN. The estimation results of IPGNN are independent of the order of training examples,
which is easily confirmed by the fact that IPGNN gives exactly the same learning results
as those obtained by BPGNN. In contrast, old training examples tend to be forgotten in
M-RAN since the existing parameters of the NN are adjusted to fit the additional training
example if it has no novelty. Hence, M-RAN does not give good estimation around the
region [−1,−0.5] from which the old training examples were sampled.

Compared with M-RAN, IPGNN is quite easy to use in practice. In this simulation,
the number of parameters which should be determined in IPGNN in advance is only one,
the degree of the polynomial. Intuitively, this parameter determines the smoothness of
the original series. This implies that the estimation result is not so sensitive to a small
change in the parameter. Hence, it is not so difficult to tune the parameter in practice.
On the other hand, M-RAN has many parameters which should be determined in advance,
and estimation results are sensitive to small changes in any of the parameters.

The estimation result of BP is shown in Fig.2 (c). The error by BP is 2.97. This result
shows that IPGNN provides better estimation than BP. This may be explained by the
fact that there are a lot of local minima in BP.

Incremental Construction of Projection Generalizing Neural Networks 16

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) IPGNN: Error = 0.98

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) M-RAN: Error = 8.26

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(c) BP: Error = 2.97

Figure 2: Estimation results of chaotic series created by the Mackey-Glass delay-difference
equation from 50 training examples. ‘×’ and ‘◦’ denote the original series and estimation
results, respectively. ‘�’ denotes training examples.

Incremental Construction of Projection Generalizing Neural Networks 17

7 Conclusion

We proposed an incremental learning method in neural networks under the projection
learning criterion. The proposed method provides exactly the same learning result as
that obtained by batch learning, and moreover it is more efficient in computation than
batch learning. In our future work, we will give a robust construction method of NNs in
an incremental manner.

In this paper, we focused on the case where the learning target function does not
change during the learning process. However, it is practically very important to incorpo-
rate adaptability. Extending the proposed method to allow this challenging situation is
extremely important and undoubtedly promising.

Acknowledgement

The authors would like to thank anonymous reviewers for their valuable comments, which
greatly improved the readability of this paper.

A Proof of Theorem 1

It follows from Eq.(17) that

GN+1 =

N+1∑
j=1

(
e
(N+1)
j ⊗ uj

)

= ΓN+1GN + e
(N+1)
N+1 ⊗ uN+1, (64)

where ΓN+1 is defined by Eq.(25). When uN+1 �∈ L
({uj}Nj=1

)
, it follows from Theorem

4.3 in the reference [1] that Eq.(64) yields

G†
N+1 = G†

NΓ∗
N+1

+ ũN+1⊗(e
(N+1)
N+1 −ΓN+1(G

†
N)∗uN+1). (65)

Let ZN+1 be an arbitrary operator from H to CN+1. It follows from Eqs.(18) and (65)
that

WN+1 = (G†
N+1)

∗ + (IN+1 −GN+1G
†
N+1)ZN+1

= ΓN+1(G
†
N)∗

+(e
(N+1)
N+1 − ΓN+1(G

†
N)∗uN+1)⊗ ũN+1

+ΓN+1(IN −GNG
†
N)Γ∗

N+1ZN+1. (66)

The prior result WN can be represented as

WN = (G†
N)∗ + (IN −GNG

†
N)Z ′

N , (67)

Incremental Construction of Projection Generalizing Neural Networks 18

where Z ′
N is an operator from H to CN . Since ZN+1 in Eq.(66) is arbitrary, it can be

regarded as
ZN+1 = ΓN+1

(
Z ′

N(IH − uN+1 ⊗ ũN+1) + ZN

)
, (68)

where ZN is an arbitrary operator from H to CN . Then Eqs.(66)–(68) yield

WN+1 = ΓN+1WN + (e
(N+1)
N+1 −ΓN+1WNuN+1)⊗ũN+1

+ΓN+1PN (G∗
N)ZN . (69)

It follows from Proposition 2 that {u∗j}N+1
j=1 can be calculated as

u∗j = W ∗
N+1e

(N+1)
j . (70)

Substituting Eq.(69) into Eq.(70) and letting YN = Z∗
N , we have Theorem 1.

B Proof of Theorem 2

In this proof, let us denote the prior weight vector by w
(N)
m , and the posterior weight vector

by w
(N+1)
m+1 or w

(N)
m+1. When ψm+1 ∈ R(A∗

m), or ψm+1 �∈ R(A∗
m) and ψm+1 ∈ L

({uj}Nj=1

)
,

Eqs.(20) and (21) yield

N ≥ rank(A∗
m+1) (71)

L ({uj}Nj=1

) ⊃ R(A∗
m+1). (72)

Therefore, it follows from Eqs.(22) and (7) that weights are determined as

w
(N)
m+1 = WNfm+1. (73)

From Eqs.(73) and (33), we have Eq.(44) or (45). In the case where ψm+1 �∈ R(A∗
m) and

ψm+1 �∈ L
({uj}Nj=1

)
, if a novel hidden unit with the input-output function uN+1 being a

function in R(A∗
m+1) but not in R(A∗

m) is added to the prior NN, then it follows from
Eqs.(20) and (21) that the posterior NN satisfies the following conditions:

N + 1 ≥ rank(A∗
m+1), (74)

L ({uj}N+1
i=1

) ⊃ R(A∗
m+1). (75)

Therefore, it follows from Eqs.(22) and (7) that weights are determined as

w
(N+1)
m+1 = WN+1fm+1. (76)

From Eqs.(76), (69), and (33), we have

w
(N)
m+1 = ΓN+1WN(fm + βm+1ζ

(b)
m+1)

+ 〈fm + βm+1ζ
(b)
m+1, ũN+1〉

(e
(N+1)
N+1 − ΓN+1WNuN+1) + ΓN+1z, (77)

where z is an arbitrary vector in N (G∗
N). Since it follows from the reference [14] that

fm ∈ R(A∗
m), (78)

Eq.(77) yields Eqs.(46) and (47).

Incremental Construction of Projection Generalizing Neural Networks 19

References

[1] A. Albert, Regression and the Moore-Penrose Pseudoinverse, Academic Press, New
York and London, 1972.

[2] N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer. Math. Soc., vol. 68,
pp. 337–404, 1950.

[3] S. Amari, “Natural gradient works efficiently in learning,” Neural Computation, vol.
10, no. 2, pp. 251–276, 1998.

[4] R. J. Duffin and A. C. Schaeffer, “A class of non harmonic Fourier series,” Trans. on
Amer. Math. Soc., vol. 72, pp. 341–366, 1952.

[5] F. Girosi, “An equivalence between sparse approximation and support vector ma-
chines,” Neural Computation, vol. 10, no. 6, pp. 1455–1480, 1998.

[6] B. A. Heil and D. Walnut, “Continuous and discrete wavelet transforms,” SIAM
Rev., vol. 31 , pp. 628–666, 1989.

[7] H. Iwaki, H. Ogawa, and A. Hirabayashi, “Optimally generalizing neural networks
with ability to recover from stuck-at r faults,” IEICE Trans., vol. J83-D-II, no. 2,
pp. 805–813, 2000. (In Japanese)

[8] V. Kadirkamanathan and M. Niranjan, “A function estimation approach to sequential
learning with neural networks,” Neural Computation, vol. 5, no. 6, pp. 954–975, 1993.

[9] C. Molina and M. Niranjan, “Pruning with replacement on limited resource allocating
networks by F-projections,” Neural Computation, vol. 8, no. 4, pp. 855–868, 1996.

[10] N. Murata, S. Yoshizawa and S. Amari, “Network information criterion — Determin-
ing the number of hidden units for an artificial neural network model,” IEEE Trans.
Neural Networks, vol. 5, no. 6, pp. 865–872 (1994).

[11] A. Nakashima and H. Ogawa, “How to design a regularization term for improving
generalization,” Proc. ICONIP’99, the 6th Intl. Conf. Neural Information Processing,
vol. 1, pp. 222–227, Perth, Australia, 1999.

[12] S. Nakazawa and H. Ogawa, “Optimal realization of optimally generalizing neural
networks,” IEICE Technical Report, NC96-60, pp. 17–24, 1996. (In Japanese)

[13] H. Ogawa, “A theory of pseudo biorthogonal bases,” IECE Technical Report, PRL77-
60, pp. 69–78, 1978. (In Japanese)

[14] H. Ogawa, “Projection filter regularization of ill-conditioned problem,” Proc. SPIE,
vol. 808, Inverse Problems in Optics, pp. 189–196, 1987.

Incremental Construction of Projection Generalizing Neural Networks 20

[15] H. Ogawa, “Inverse problem and neural networks,” Proc. IEICE 2nd Karuizawa
Workshop on Circuits and Systems, Karuizawa, Japan, pp. 262–268, 1989. (In
Japanese)

[16] H. Ogawa, “Neural network learning, generalization and over-learning,” Proc. ICI-
IPS’92, Intl. Conf. Intelligent Information Processing & System, vol. 2, pp. 1–6,
Beijing, China, 1992.

[17] H. Ogawa, “Theory of pseudo biorthogonal bases and its application,” Research In-
stitute for Mathematical Science, RIMS Kokyuroku, No. 1067, Reproducing Kernels
and their Applications, pp. 24–38, 1998.

[18] H. Ogawa and E. Oja, “Projection filter, Wiener filter, and Karhunen-Loève sub-
spaces in digital image restoration,” J. Mathematical Analysis and Applications, vol.
114, no. 1, pp. 37–51, 1986.

[19] H. Ogawa, E. Oja and J. Lampinen, “Projection filters for image and signal restora-
tion,” Proc. IEEE Intl. Conf. Systems Engineering, pp. 93–97, Dayton, USA, 1989.

[20] E. Oja and H. Ogawa, “Parametric projection filter for image and signal restoration,”
IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-34, no. 6, pp. 1643–
1653, 1986.

[21] J. Platt, “A resource-allocating network for function interpolation,” Neural Compu-
tation, vol. 3, no. 2, pp. 213–225, 1991.

[22] R. Reed, “Pruning algorithms — A survey,” IEEE Trans. Neural Networks, vol. 4,
no. 5, pp. 740–747, 1993.

[23] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal represen-
tations by error propagation,” Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, pp. 318–362, The MIT Press, Cambridge, MA, 1986.

[24] S. Schaal and C. G. Atkeson, “Constructive incremental learning from only local
information,” Neural Computation, vol. 10, no. 8, pp. 2047–2084, 1998.

[25] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer-Verlag,
Berlin, 1970.

[26] M. Sugiyama and H. Ogawa, “Incremental projection learning for optimal general-
ization,” Neural Networks, vol. 14, no. 1, pp. 53–66, 2001.

[27] M. Sugiyama and H. Ogawa, “Properties of incremental projection learning,” Neural
Networks, vol. 14, no. 1, pp. 67–78, 2001.

[28] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence, Rhode Island,
1939.

Incremental Construction of Projection Generalizing Neural Networks 21

[29] S. Vijayakumar and S. Schaal, “Local adaptive subspace regression,” Neural Process-
ing Letters, vol. 7, no. 3, pp. 139–149, 1998.

[30] H. Wahba, Spline Model for Observational Data, Society for Industrial and Applied
Mathematics, Philadelphia and Pennsylvania, 1990.

[31] Y. Yamashita and H. Ogawa, “Optimum image restoration and topological invari-
ance,” IEICE Trans., vol. J75-D-II, no. 2, pp. 306–313, 1992.

[32] K. Yamauchi and N. Ishii, “An incremental learning method with recalling interfered
patterns,” Proc. IEEE Intl. Conf. Neural Networks, vol. 6, pp. 3159–3164, 1995.

[33] L. Yingwei, N. Sundararajan and P. Saratchandran, “A sequential learning scheme
for function approximation using minimal radial basis function neural networks,”
Neural Computation, vol. 9, no. 2, pp. 461–478, 1997.

