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Abstract— In supervised learning, the selection of
sample points and models is crucial for acquiring a
higher level of the generalization capability. So far, the
problems of active learning and model selection have
been independently studied. If sample points and mod-
els are simultaneously optimized, then a higher level of
the generalization capability is expected. We call this
problem active learning with model selection. How-
ever, this problem can not be generally solved by simply
combining existing active learning and model selection
techniques because of the active learning/model selec-
tion dilemma: the model should be fixed for selecting
sample points and conversely the sample points should
be fixed for selecting models. In spite of the dilemma,
we show that the problem of active learning with model
selection can be straightforwardly solved if there is a set
of sample points that is optimal for all models in con-
sideration. Based on the idea, we give a procedure for
active learning with model selection in trigonometric
polynomial models.

I. Supervised Learning and Active
Learning/Model Selection Dilemma

Let us consider the supervised learning problem of ob-
taining, from a set of M training examples, an approxi-
mation to a target function f(x) of L variables defined
on D, where D is a subset of the L-dimensional Eu-
clidean space RL. The training examples are made up
of sample points xm in D and corresponding sample
values ym in C:

{(xm, ym) | ym = f(xm) + εm}M
m=1, (1)

where ym is degraded by additive noise εm. The pur-
pose of supervised learning is to find a learning result
function f̂ (x) that minimizes a certain generalization
error JG.

In supervised learning, there are two factors we can
control for optimal generalization: sample points and a
model. The model refers to, for example, the type and
number of basis functions used for learning. The prob-
lem of designing sample points is called active learn-
ing, and the problem of determining the model is called

model selection. Let us denote a set of M sample points
{xm}M

m=1 by X , amodel by S, and a set of models from
which the model is selected by M.
So far, the problems of active learning and model

selection have been independently studied. If sample
points and models are simultaneously optimized, then a
higher level of the generalization capability is expected.
We call this problem active learning with model selec-
tion.
Definition 1: (Active learning with model selection)
Determine sample points X and select a model from a
set M so that the generalization error JG is minimized:

min
X , S∈M

JG[X , S]. (2)

In general, the model should be fixed for active learn-
ing [4, 7, 3, 6, 5, 14, 15, 18] 1, and conversely the training
examples gathered at fixed sample points are required
for model selection [8, 1, 13, 12, 11, 2, 16, 17]. This
implies that the problem of active learning with model
selection can not be generally solved by simply combin-
ing existing active learning and model selection tech-
niques. We call this the active learning/model selection
dilemma. In this paper, we suggest a basic strategy for
solving this dilemma, and give a practical procedure
for active learning with model selection in trigonomet-
ric polynomial models.

II. Basic Strategy

As we pointed out in Section I, the problem of ac-
tive learning with model selection can not be generally
solved by simply combining existing active learning and
model selection techniques because of the active learn-
ing/model selection dilemma: the model should be
fixed for active learning and conversely sample points
should be fixed for model selection.
However, if there is a set X of sample points that

is optimal for all models in the set M, the problem of

1Some of the methods are incremental active learning methods
so it is possible to change the model through the incremental
learning process. However, such active learning methods essen-
tially work for a fixed model, i.e., the sample points are designed
to be optimal for the current model.
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Fig. 1. Basic strategy for active learning with model
selection. Let the set M of models be {S1, S2, S3}. The
top-left circle denotes a set C1 of optimal X for the
model S1, i.e., an element in C1 is a set X of sample
points {xm}M

m=1 that minimizes JG[X , S1]. Similarly,
the top-right and bottom circles denote sets of optimal
X for S2 and S3, respectively. If there exists X that is
commonly optimal for all models in M, i.e., CM is not
empty, then the problem of active learning with model
selection can be straightforwardly solved by using the
commonly optimal sample points.

active learning with model selection can be straight-
forwardly solved as follows. First, X is determined so
that it is optimal for all models in the set M, and sam-
ple values {ym}M

m=1 are gathered at the optimal points
{xm}M

m=1. Then model selection is carried out with
the optimal training examples {(xm, ym)}M

m=1. Con-
sequently, we obtain the optimal model with optimal
sample points because the sample points are optimal
for any selected model. This basic strategy is summa-
rized in Figure 1.

In the following sections, we give a procedure for
active learning with model selection based on the above
strategy.

III. Setting

In this section, the setting is described. From here on,
we focus on the case where the dimension L of the input
vector x is 1 for simplicity. All the theoretical results
hold true for L ≥ 1. However, note that the proposed
method may be practically applicable only for a small
L, say at most 3 (see Section III-D for detail).

A. Trigonometric Polynomial Space

We assume that the learning target function f(x) be-
longs SN , that is a trigonometric polynomial space of
order N .

A trigonometric polynomial space of order n is a
function space spanned by{

exp(ipx)
∣∣∣ p = −n,−n+ 1, . . . , n

}
(3)

defined on D = [−π, π], and the inner product is de-
fined by

〈f, g〉 = 1
2π

∫ π

−π

f(x)g(x)dx. (4)

The dimension of a trigonometric polynomial space of
order n is

dimSn = 2n+ 1, (5)

and the reproducing kernel2 of this space is expressed
as

Kn(x, x′) =

{
sin (2n+1)(x−x′)

2

/
sin x−x′

2 if x �= x′,

2n+ 1 if x = x′.
(6)

B. Least Mean Squares Learning

We adopt the usual least mean squares (LMS) learning
as the learning criterion. LMS learning is aimed at
finding a learning result function f̂ (x) in a subspace S
of SN that minimizes the training error JTE :

JTE =
1
M

M∑
m=1

∣∣∣f̂ (xm) − ym

∣∣∣2 . (7)

In the LMS learning case, a subspace S is the model.
Since SN has the reproducing kernel (see Section III-
A), a subspace S also has the reproducing kernel. Let
K(x, x′) be the reproducing kernel of S and A be a
linear operator defined by

A =
M∑

m=1

(
em ⊗ K(·, xm)

)
, (8)

where (· ⊗ ·) denotes the Neumann-Schatten product3,
and em is the m-th vector of the so-called standard ba-
sis in C

M . Note that the operator A is called the sam-
pling operator since it holds for any function f in S that
Af = (f(x1), f(x2), . . . , f(xM ))�, where � denotes the
transpose of a vector. Let A† be the Moore-Penrose
generalized inverse of A and y be an M -dimensional
vector whose m-th element is the sample value ym:

y = (y1, y2, . . . , yM )�. (9)

Then, the LMS learning result function f̂ (x) is given
by

f̂ = A†y. (10)

2The reproducing kernel, denoted by K(x,x ′), is a bivariate
function defined on D×D that satisfies the following conditions

• For any fixed x ′ in D, K(x,x′) is a function of x in S.
• For any function f in S and for any x ′ in D, it holds that

〈f(·),K(·, x′)〉 = f(x′).
Note that the reproducing kernel is unique if it exists.

3For any fixed g in a Hilbert space S and any fixed f in a
Hilbert space S ′, the Neumann-Schatten product (f ⊗ g) is an
operator from S to S ′ defined by using any h in S as (f ⊗ g)h =
〈h, g〉f .



C. Generalization Measure

We define the generalization error JG by the expected
squared norm in SN :

JG = Eε‖f̂ − f‖2

= Eε
1
2π

∫
D
|f̂(x)− f(x)|2dx, (11)

where ‖ ·‖ denotes the norm and Eε denotes the expec-
tation over the noise.

D. The Number of Training Examples

We assume that the number M of training examples
satisfies

M ≥ 2N + 1. (12)

This assumption implies that the required number M
exponentially increases as the dimension L of the input
x increases. This is the reason why we practically focus
on a small L, say at most 3.

E. Noise Characteristics

We assume that the noise is independently drawn from
a distribution with mean zero and variance σ2. σ2 does
not have to be known.

F. Model Candidates

In the LMS learning case, a subset is the model (see
Section III-B). Let M, the set of models from which the
model is selected, be a set of all trigonometric polyno-
mial spaces included in SN :

M = {Sn | n = 0, 1, . . . , N}. (13)

IV. Active Learning with Model Selection for
Trigonometric Polynomial Models

In this section, we give a procedure for active learn-
ing with model selection under the setting described in
Section III.

Let f̂n(x) be a learning result function obtained with
the model Sn. f̂n is given by

f̂n = A†
ny, (14)

where An is defined with the reproducing kernel
Kn(x, x′) of Sn by

An =
M∑

m=1

(
em ⊗ Kn(·, xm)

)
. (15)

It is known that the generalization error of f̂n defined
by Eq.(11) is decomposed into the bias and variance:

JG = Eε‖f̂n − f‖2

= ‖Eεf̂n − f‖2 + Eε‖f̂n − Eεf̂n‖2. (16)

π−π

x1 x2 x3 xM

c
2π/M

· · ·

Fig. 2. Example of sample points such that Condition
(20) holds.

Note that the bias of f̂n can not be zero unless the
learning target function f belongs to Sn. First, we
show a necessary and sufficient condition for a set X of
sample points {xm}M

m=1 that minimize the generaliza-
tion error JG for a fixed model Sn .
Proposition 1: [15] For a model Sn to which the
learning target function f belongs, the generalization
error of f̂n is minimized with respect to sample points
X under the constraint of the bias being zero if and only
if sample points X satisfy

1
M

A∗
nAn = ISn , (17)

where A∗
n is the adjoint operator of An and ISn denotes

the identity operator on Sn.
There are infinitely many sets of sample points such

that Condition (17) holds for a fixed model Sn [15].
Here, we give a design method of sample points that
satisfy Condition (17) for all models in the set M.
Theorem 1: 4 Let M ≥ 2N + 1 and c be an arbitrary
constant such that

−π ≤ c ≤ −π +
2π
M

. (18)

If a set {xm}M
m=1 of sample points is let

xm = c+
2π
M

(m− 1), (19)

then
1
M

A∗
nAn = ISn for all Sn ∈ M. (20)

Eq.(19) means that M sample points are fixed to reg-
ular intervals in the domain D. An example of sample
points designed by Eq.(19) is illustrated in Figure 2.
When L > 1, sample points on the regular lattice sat-
isfy Eq.(20).
Theorem 1 and Proposition 1 assert that the sample

points designed by Eq.(19) are optimal for all models
to which the learning target function f belongs. For a
model Sn to which the learning target function f does
not belong, the sample points designed by Eq.(19) min-
imize the variance under the constraint that the range
of A∗

n agrees with Sn [15]. Computer simulations in
Section V experimentally show that the sample points

4A proof of this theorem is given in the article available from
ftp://ftp.cs.titech.ac.jp/pub/TR/01/TR01-0012.pdf.



designed by Eq.(19) do not only give the optimal gen-
eralization capability for models to which the learning
target function f belongs, but also give a higher level
of the generalization capability for models to which the
learning target function f does not belong. Therefore,
the sample points designed by Eq.(19) can be practi-
cally regarded as a good design for all models in the
set M.

With training examples {(xm, ym)}M
m=1 gathered

at the optimal sample points {xm}M
m=1 designed by

Eq.(19), model selection is carried out. Then we may
obtain a learning result function that has a higher level
of the generalization capability.

Another advantage of using Eq.(19) is that LMS
learning result functions can be computed efficiently
since A†

n is given by 1
M

A∗
n [15].

V. Computer Simulations

In this section, the effectiveness of active learning with
model selection is investigated through computer sim-
ulations.

A. Illustrative Example

Let the order N of the largest trigonometric polynomial
space be 100. Let the learning target function f(x) be

f(x) =
1
10

50∑
n=1

(sinnx+ cosnx). (21)

Note that f belongs to Sn for n ≥ 50. The noise εm

is drawn from the normal distribution with mean zero
and variance σ2. Let the set M of model candidates
be

M = {S0, S1, S2, . . . , S100}. (22)

We measure the error of a learning result function f̂ (x)
by

Error = ‖f̂ − f‖2 =
1
2π

∫ π

−π

|f̂(x)− f(x)|2dx. (23)

We compare the performance of the following two
sampling schemes.

(i) Optimal sampling: Sample points {xm}M
m=1 are

designed by Eq.(19).
(ii) Random sampling: Sample points are randomly
created in the domain [−π, π].

Figure 3 shows the simulation results for (M,σ2) =
(500, 0.2), (230,0.2), (500, 0.8), and (230, 0.8). The hor-
izontal axis denotes the order n of the model and the
vertical axis denotes the error measured by Eq.(23).
The solid and dashed lines show the mean errors over
100 trials by (i) Optimal sampling and (ii) Random
sampling, respectively. These graphs show that the
proposed sampling method provides better generaliza-
tion capability than random sampling irrespective of
the number M of training examples, noise variance σ2,
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Fig. 3. Results of illustrative simulation.

and order n of the model. Especially, when M is small
and σ2 is large, its effectiveness is remarkable.

B. Unrealizable Case

In the previous experiment, the learning target func-
tion f belongs to SN . Here, we perform a simulation
for an unrealizable case that f does not belong to SN .
Let us consider the chaotic series created by the

Mackey-Glass delay-difference equation [10]:

g(t+1) =


(1− b)g(t) + a g(t− τ )

1 + g(t − τ )10
for t ≥ τ + 1,

0.3 for 0 ≤ t ≤ τ,

(24)
where a = 0.2, b = 0.1, and τ = 17. Let {ht}600

t=1 be

ht = g(t + τ + 1). (25)

We are given M degraded sample values {ym}M
m=1:

ym = hr(m) + εm, (26)

where r(m) is an integer such that 1 ≤ r(m) ≤ 600.
r(m) indicates the sampling location. εm is indepen-
dently drawn from the normal distribution with mean
0 and variance σ2.
The task is to obtain the best estimates {ĥt}600

t=1 of
{ht}600

t=1 that minimize the error:

Error =
1

600

600∑
t=1

∣∣∣ĥt − ht

∣∣∣2 . (27)

In this simulation, we consider the cases that

(M,σ2) = (300, 0.04), (100,0.07). (28)

Figure 4 depicts the original chaotic series {ht}600
t=1

(shown by ‘•’) and an example of 100 sample val-
ues {ym}100

m=1 (shown by ‘✷’) with the noise variance
σ2 = 0.07.
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Fig. 4. Mackey-Glass chaotic series of 600 points and
100 sample values (p(m) = 6m and σ2 = 0.07).

We shall obtain the estimates {ĥt}600
t=1 as follows. Let

us consider sample points {xm}M
m=1 corresponding to

the sample values {ym}M
m=1:

xm = −π +
2π
600

(r(m) − 1). (29)

By using the training examples {(xm, ym)}M
m=1, LMS

learning is carried out. Then the estimates {ĥt}600
t=1 are

given by

ĥt = f̂

(
−π +

2π
600

(t − 1)
)

. (30)

We adopt S40 as the largest model, i.e., N = 40.
Note that the 600 chaotic series can not be expressed
by the functions in S40. This means that we consider
the learning target function which is not included in
S40. Let the set M of model candidates be

M = {S0, S1, S2, . . . , S40}. (31)

Similar to the previous experiment, we compare the
performance of the following two sampling schemes.

(i) Optimal sampling: Sample points are fixed to
regular intervals, i.e.,

r(m) = 600m/M. (32)

(ii) Random sampling: Sample points are randomly
created in the domain, i.e., r(m) randomly gives
an integer such that 1 ≤ r(m) ≤ 600.

Figure 5 depicts the results of the active learning
simulation. The horizontal axis denotes the order n
of the model and the vertical axis denotes the error
measured by Eq.(27). The solid and dashed lines show
the mean errors over 100 trials by (i) Optimal sam-
pling and (ii) Random sampling, respectively. These
graphs show that (i) Optimal sampling outperforms
(ii) Random sampling even when the learning target
function does not belong to SN . Especially, when
(M,σ2) = (100, 0.07), its effectiveness is remarkable.

By using the optimal sample points {xm}M
m=1 de-

signed by Eqs.(29) and (32), we perform a model se-
lection simulation. Here we use the following model
selection criteria:

• Subspace information criterion (SIC) [16],
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Fig. 5. Results of active learning simulation with
Mackey-Glass data.

• Leave-one-out cross-validation (CV) [9],
• Akaike’s information criterion (AIC) [1],
• Corrected AIC (cAIC) [13],
• Bayesian information criterion (BIC) [12],
• Vapnik’s measure (VM) [2].

Note that for optimal sampling with 1
M

A∗
nAn = ISn ,

SIC essentially agrees with Mallows’s CL [8].
Figure 6 depicts the simulation results. The left col-

umn corresponds to (M,σ2) = (300, 0.04) and the right
column corresponds to (M,σ2) = (100, 0.07). The top
seven graphs show the values of the error and model
selection criteria corresponding to the order n of the
model Sn (see Eq.(31)). The box plot notation speci-
fies marks at 95, 75, 50, 25, and 5 percentiles of values.
The solid line denotes the mean values. The middle
seven graphs show the distributions of the selected or-
der n of models. ‘OPT’ indicates the optimal model
that minimizes the error defined by Eq.(27). The bot-
tom seven graphs show the distributions of the error
obtained by the model that each model selection crite-
rion selects.
When (M,σ2) = (300, 0.04), all model selection cri-

teria work well. When (M,σ2) = (100, 0.07), SIC and
CV almost always select reasonable models, so they
provide small errors. In contrast, AIC tends to select
larger models, and cAIC, BIC, and VM tend to select
smaller models. As a result, they give large errors.
The simulation results show that the proposed sam-

pling method with SIC (CL) or CV works excellently.

VI. Conclusions

We discussed the problem of optimizing sample points
and models at the same time. We first pointed out
that the problem can not be generally solved by simply
combining existing active learning and model selection
methods because of the active learning/model selection
dilemma: the model should be fixed for selecting sam-
ple points and conversely the sample points should be
fixed for selecting models. In this paper, we gave a
basic strategy for avoiding the dilemma, and devised a
practical procedure for active learning with model se-
lection in trigonometric polynomial models. Computer
simulations demonstrated that the proposed procedure



shows exceedingly good performance irrespective of the
the number of training examples and the noise variance,
and whether the learning target function is realizable
or unrealizable.

The range of application of the proposed procedure is
restricted to trigonometric polynomial models, but the
basic strategy can be applied to any models. Devis-
ing a general procedure for active learning with model
selection is our important and prospective future work.

The authors would like to thank anonymous review-
ers for their valuable comments.
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Fig. 6. Results of model selection simulation with
Mackey-Glass data.


