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Determine            for optimal generalization

Active LearningActive Learning
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Model SelectionModel Selection

Too simple Appropriate Too complex

Target function
Learned result

Choice of models AFFECTS heavily
(Model refers to, e.g., order of polynomials)

Select a model     for optimal generalizationS
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5Simultaneous Optimization of
Sample Points and Models

Simultaneous Optimization of
Sample Points and Models

So far, active learning and model selection
have been studied thoroughly,

but INDEPENDENTLY

Simultaneously determine
sample points            and a model     

for optimal generalization
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6Active Learning / Model Selection 
Dilemma

Active Learning / Model Selection 
Dilemma

We can NOT directly optimize
sample points and models simultaneously

by simply combining existing
active learning and model selection methods

Model should be fixed
for active learning
Sample points should be fixed 
for model selection

Because…
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How to Dissolve the DilemmaHow to Dissolve the Dilemma

1. Find sample points               that are
commonly optimal for all models

2. Just perform model selection as usual
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From here on, we assume
• Least mean squares (LMS) estimate

• Generalization measure:

Is It Just Idealistic?Is It Just Idealistic?
No!  Commonly optimal sample points surely

exist for trigonometric polynomial models
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TheoremTheorem

For all trigonometric polynomial models
that include learning target function, 

equidistance sampling gives
the optimal generalization capability
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Multi-Dimensional Input CasesMulti-Dimensional Input Cases
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2-dimensional input

Sampling on regular grid is optimal



11Computer Simulations
(Artificial, Realizable)

Computer Simulations
(Artificial, Realizable)

Learning target function:

Model candidates:

Generalization measure:

Sampling schemes:
Equidistance sampling
Random sampling
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Simulation Results (Large Samples)Simulation Results (Large Samples)

Averaged over 100 trials

500=samples of Number

Horizontal: Order of models
Vertical: Generalization error

Equidistance sampling outperforms
random sampling for all models!

02.0=variance Noise 08.0=variance Noise
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Simulation Results (Small Samples)Simulation Results (Small Samples)

With small samples, equidistance sampling
performs excellently for all models!

230=samples of Number

Horizontal: Order of models
Vertical: Generalization error Averaged over 100 trials

02.0=variance Noise 08.0=variance Noise



14Computer Simulations
(Unrealizable)

Computer Simulations
(Unrealizable)

Interpolate 600 chaotic series (red)
from noisy samples (blue)

Model candidates: },,,,{ 40210 SSSSC K=
nSn  order of model polynomialric Trigonomet:
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Equidistance sampling outperforms
random sampling for all models!

Simulation Results
(Unrealizable)

Simulation Results
(Unrealizable)

Horizontal: Order of models
Vertical: Test error at all 600 points

Averaged over 100 trials

)04.0,300(),( 2  =σM )07.0,100(),( 2  =σM
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Interpolated Chaotic SeriesInterpolated Chaotic Series

After model selection with equidistance sampling,

13S : model Selected
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Compared with True SeriesCompared with True Series

We obtained good estimates from sparse data!
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ConclusionsConclusions

Active learning / model selection dilemma:
Sample points and models can not be simultaneously 
optimized by simply combining existing active learning 
and model selection methods

How to dissolve the dilemma:
Find commonly optimal sample points for all models

Is it realistic?
Commonly optimal sample points surely exist for 
trigonometric polynomial models: equidistance sampling

Is it practical?
Computer simulations showed that the proposed method 
works excellently even in unrealizable cases


