IJCNN2002 May 12-17, 2002

Release from Active Learning /
Model Selection Dilemma:
Optimizing Sample Points and
Models at the Same Time

Department of Computer Science,
Tokyo Institute of Technology, Tokyo, Japan

Masashi Sugiyama
Hidemitsu Ogawa I m I




Supervised Learning:
Function Approximation

f (x):Learning target
f (X) :Learned result

X\ Yo o, - Samples
Y = T(Xn) +&;

From {X,, Y, o, ,find f(x)
so that it Is as close to f(x) as possible




Active Learning >

= Target function
— | carned result

X1 X X1 X

Location of sample points AFFECTS heavily

Determine {x_} " for optimal generalization

min J
{x,} ©

J. :Generalization error
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Model Selection __ ..o

= | carned result

Too simple Appropriate Too comple

Choice of models AFFECTS heavily

(Model refers to, e.g., order of polynomials)

Select a model S for optimal generalization

min J
SeC G

C : Set of model candidates J. :Generalization error



Simultaneous Optimization of
Sample Points and Models

So far, active learning and model selection
have been studied thoroughly,
but INDEPENDENTLY

-

Simultaneously determine
sample points {x. | and a model S
for optimal generalization

min J.
{x,}, SeC

C : Set of model candidates J. :Generalization error
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Active Learning / Model Selection
Dilemma

We can NOT directly optimize
sample points and models simultaneously
by simply combining existing
active learning and model selection methods

Because...

E Model should be fixed
for active learning

B Sample points should be fixed
for model selection




@ How to Dissolve the Dilemma '

Model candidates :C ={S,,S,, S.}
A set of sample points {x_}

ar%rr}lin Jg for s, argmin J for S,
’ \ o y

~
{x*FDY=argmin J —
{xn} -
forall SeC ar?xg"” Jo fors,

1. Find sample points {x©"}" that are

m

commonly optimal for all models
2. Just perform model selection as usual




Is It Just Idealistic?

No! Commonly optimal sample points surely
exist for trigonometric polynomial models

Trigonometric polynomial model of order n
f(x) =0, + Z(Hzp sin px+ 6, ,,, COS px)
p=1

From here on, we assume
e |Least mean squares (LMS) estimate

» Generalization measure: J = Ef f(X) - f(x)‘dx

E . Expectation over noise



L \k‘:’

Theorem

For all trigonometric polynomial models
that include learning target function,
equidistance sampling gives
the optimal generalization capability

1-dimensional input

X, X, Xy e Xy,

Ly

_ ——’

JC JC
27/M

M :Number of samples




Multi-Dimensional Input Cases N

2-dimensional input

Sampling on regular grid is optimal
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@) Computer Simulations

T

= (Artificial, Realizable)

Learning target function: f €S,
S, : Trigonometric polynomial model of order n

Model candidates: C={S,,S,,S,,...,S,,,}

/

Generalization measure:
Jg :ij‘

Sampling schemes:
I Equidistance sampling
I Random sampling

f(x)— f (x)‘dx



Simulation Results (Large Samples}2

Number of samples =500
Noise variance =0.02 Noise variance =0.08

1 2| — Optilmal Samplihg | | | — Optilmal Samplihg
Random sampling 12t Random sampling

Error
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0 20 40 60 80 100 0 20 40 60 80 100
n n

Horizontal: Order of models
Vertical: Generalization error  Averaged over 100 trials

Equidistance sampling outperforms
random sampling for all models!




Simulation Results (Small Samples}3

Number of samples =230

Noise variance =0.02 Noise variance =0.08
2.5 . . . . 3.5 . . : .
= (Optimal sampling = (Optimal sampling
Random sampling 3l Random sampling
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Horizontal: Order of models
Vertical: Generalization error  Averaged over 100 trials

With small samples, equidistance sampling
performs excellently for all models!




Computer Simulations @
(Unrealizable) =

Interpolate 600 chaotic series (red)
from noisy samples (blue)

Model candidates: C ={S,,S,,S,,...,S,,}
S, :Trigonometric polynomial model of order n

x Chaotlc series
1.5 e Sample value

A”W’\f VfW g,“'W&




Simulation Results 15

(Unrealizable)
(M, o?) = (300, 0.04) (M, o?) = (100, 0.07)

=== QOptimal sampling === (Optimal sampling
Random sampling || Random sampling

0.05--—_—\_/

0 10 20 30 40 0 10 20 30 40

Horizontal: Order of models Averaged over 100 trials
Vertical: Test error at all 600 points

Equidistance sampling outperforms
random sampling for all models!




Interpolated Chaotic Series N

After model selectlon W|th eqwdlstance sampling,

| « Sample value e H
Selected model : S,
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Compared with True Series
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We obtalned good estlmates from sparse data!

| Sample value e H

-Smpl value H
» SIC estimate

" Ghaollc series
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Conclusions

Active learning / model selection dilemma:
Sample points and models can not be simultaneously
optimized by simply combining existing active learning
and model selection methods

How to dissolve the dilemma:
Find commonly optimal sample points for all models

IS It realistic?

Commonly optimal sample points surely exist for
trigonometric polynomial models: equidistance sampling

Is It practical?

Computer simulations showed that the proposed method
works excellently even in unrealizable cases



