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Abstract. Previously, an unbiased estimator of the generalization error
called the subspace information criterion (SIC) was proposed for a finite
dimensional reproducing kernel Hilbert space (RKHS). In this paper, we
extend SIC so that it can be applied to any RKHSs including infinite
dimensional ones. Computer simulations show that the extended SIC
works well in ridge parameter selection.

1 Introduction

Estimating the generalization capability is one of the central issues in supervised
learning. So far, a large number of generalization error estimation methods have
been proposed (e.g. [1, 9, 4, 8, 5]).

Typically an asymptotic limit in the number of training samples is considered
[1, 9, 4]. However, in supervised learning, the small sample case is of high practical
importance. Hence methods that work in the finite sample case as e.g. the VC-
bound [8], which gives a probabilistic upper bound of the generalization error,
are becoming increasingly popular.

Another generalization error estimation method that works effectively with
finite samples is the subspace information criterion (SIC) [5]. Among several in-
teresting theoretical properties, SIC is proved to be an unbiased estimator of the
generalization error. The original SIC has been successfully applied to the selec-
tion of subspace models in linear regression. However, its range of applicability
is limited to the case where the learning target function belongs to a specified
finite dimensional reproducing kernel Hilbert space (RKHS).

In this paper, we therefore extend SIC so that it can be applied to any RKHSs
including infinite dimensional ones. We further show that when the kernel matrix
is invertible, SIC can be expressed in a much simpler form, making its compu-
tation highly efficient. Computer simulations underline that the extended SIC
works well in ridge parameter selection.

2 Supervised learning and kernel ridge regression

Let us discuss the regression problem of approximating a target function from a
set of M training examples. Let f(x) be a learning target function of L variables
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Fig. 1. Original SIC and extension carried out in this paper. H is a reproducing kernel
Hilbert space that includes the learning target function f . S is the subspace spanned by
{k(�,�m)}M

m=1. g is the orthogonal projection of f onto S. (a) Setting of the original
SIC [5]. It was shown that when S = H, SIC is an unbiased estimator of the generaliza-
tion error between f̂ and f with finite samples. S = H implies that the RKHS H whose
dimension is at most M (< ∞) is considered. (b) Setting of this paper. We consider
the case that S ⊂ H, which allows any RKHS H including infinite dimensional ones.
We show that the extended SIC is an unbiased estimator of the generalization error
between f̂ and g.

defined on a subset D of the L-dimensional Euclidean space R
L. The training

examples consist of sample points xm in D and corresponding sample values ym

in R: {(xm, ym) | ym = f(xm) + εm}M
m=1, where ym is degraded by unknown

additive noise εm. We assume that εm is independently drawn from a distribution
with mean zero and variance σ2. The purpose of regression is to obtain the
optimal approximation f̂ (x) to the learning target function f(x) that minimizes
a generalization error.

In this paper, we assume that the unknown learning target function f(x)
belongs to a specified reproducing kernel Hilbert space (RKHS) H [9, 8]. We
denote the reproducing kernel of H by k(x, x′). In previous work [5], it was
assumed that {k(x, xm)}M

m=1 span the whole RKHS H (Figure 1 (a)). This
holds only if dimH ≤ M (< ∞). In contrast, we do not impose any restriction
on the dimension of the RKHS H in this work. Possibly the dimension is infinity,
so we can treat a rich class of function spaces such as e.g. a Gaussian RKHS
(Figure 1 (b)). We measure the generalization error of f̂ (x) by

JG = Eε‖f̂ − f‖2 , (1)

where Eε denotes the expectation over the noise and ‖ · ‖ is the norm in the
RKHS H. This generalization measure is commonly used in the field of func-
tion approximation (e.g. [3]). Since Eq.(1) includes the unknown learning target
function f(x), it cannot be directly calculated. The aim of this paper is to give
an estimator of Eq.(1) that can be calculated without using f(x).

We will employ the following kernel regression model f̂ (x):

f̂ (x) =
∑M

p=1 θpk(x, xp), (2)

where {θp}M
p=1 are parameters to be estimated from training examples. We con-

sider the case that the parameter vector θ = (θ1, θ2, . . . , θM )� is determined so



that the regularized training error is minimized4:

θ̂α = argminθ(
∑M

m=1(
∑M

p=1 θpk(xm, xp) − ym)2 + α
∑M

p=1 θ2
p), (3)

where α is a positive scalar called the ridge parameter. Let y = (y1, y2, . . . , yM )�,
I denote the identity matrix, and K be the M -dimensional matrix with the
(m, p)-th element k(xm, xp). Then θ̂α is given by

θ̂α = (θ̂1, θ̂2, . . . , θ̂M)� = Xαy, where Xα = (K2 + αI)−1K. (4)

3 SIC for infinite dimensional RKHSs

First, we will briefly review the original SIC [5] that is applicable when
{k(x, xm)}M

m=1 span the whole RKHS H.
When the functions {k(x, xm)}M

m=1 span the whole space H, the learning
target function f(x) is expressed as f(x) =

∑M
p=1 θ∗pk(x, xp), where the true

parameter vector θ∗ = (θ∗1 , θ∗2 , . . . , θ∗
M )� is unknown5. Letting ‖θ‖2

K = 〈Kθ, θ〉,
the generalization error JG is expressed as JG = Eε‖θ̂α − θ∗‖2

K .
The key idea of SIC is to assume that a learning matrix Xu that gives an

unbiased estimator θ̂u of the unknown θ∗ is available:

Eεθ̂u = θ∗, where θ̂u = Xuy. (5)

Using θ̂u, the generalization error JG is roughly estimated by ‖θ̂α − θ̂u‖2
K . Per-

forming some approximations based on this idea, the subspace information cri-
terion (SIC) is given as follows [5]:

SIC = ‖θ̂α − θ̂u‖2
K − σ2tr

(
K(Xα − Xu)(Xα − Xu)�

)
+ σ2tr

(
KXαX�

α

)
, (6)

where tr (·) denotes the trace of a matrix. The name subspace information cri-
terion (SIC) was first introduced for selecting subspace models. It was shown
in [5] that Eq.(6) is an unbiased estimator of the generalization error JG, i.e.,
EεSIC = JG. When the noise variance σ2 in Eq.(6) is unknown, one of the practi-
cal methods for estimating σ2 is given by σ̂2 = ‖KXαy−y‖2/(M−tr (KXα)) [9].

SIC requires a learning matrix Xu that gives an unbiased estimate θ̂u of the
true parameter θ∗. When {k(x, xm)}M

m=1 span the whole RKHS H, such Xu

surely exists and is given by
Xu = K†, (7)

where † denotes the Moore-Penrose generalized inverse. However, obtaining Xu

when {k(x, xm)}M
m=1 do not span the whole RKHS H is an open problem that

we aim to solve in the following.
4 Note that the discussion in this article is valid for any linear estimators.
5 When {k(�,�m)}M

m=1 are over-complete, {θ∗p}M
p=1 are not determined uniquely. In

this case, we assume that �
∗ is given by K†(f(x1), f(x2), . . . , f(xM))�, where †

denotes the Moore-Penrose generalized inverse.



Now, we consider the case when {k(x, xm)}M
m=1 do not span the whole RKHS

H, possibly dimH is infinity. Let S be a subspace spanned by {k(x, xm)}M
m=1.

Since the learning target function f(x) does not generally lie in the subspace
S, f(x) can be decomposed as f(x) = g(x) + h(x), where g(x) belongs to the
subspace S and h(x) is orthogonal to S. Then the generalization error can be
expressed as Eε‖f̂ − f‖2 = Eε‖f̂ − g‖2 + ‖h‖2. Since the second term ‖h‖2
is irrelevant to f̂ , we ignore it and focus on the first term Eε‖f̂ − g‖2 (see
Figure 1(b)). Let us denote the first term by J′

G:

J ′
G = Eε‖f̂ − g‖2. (8)

If we regard g(x) as the learning target function, then the setting is exactly
the same as the original SIC. Therefore, we can apply the idea of SIC and obtain
an unbiased estimator of J ′

G. However, the problem is that we need a learning
matrix Xu that gives an unbiased estimate θ̂u of the true parameter6 θ∗. The
following theorem solves this problem.

Theorem 1 7 For an arbitrarily chosen RKHS H and the kernel regression
model given by Eq.(2), a learning matrix Xu that gives an unbiased estimate θ̂u

of the true parameter θ∗ is given by

Xu = K†. (9)

Eq.(9) is equivalent to Eq.(7). Therefore, the above theorem shows that SIC
is applicable irrespective of the choice of the RKHS H. If {k(x, xm)}M

m=1 span
the whole RKHS H, SIC is an unbiased estimator of the generalization error JG.
Otherwise SIC is an unbiased estimator of J′

G, which is an essential part of the
generalization error JG (see Figure 1 again):

EεSIC = J ′
G. (10)

Now we show that when the kernel matrix K is invertible, SIC can be com-
puted much simpler. Substituting Eq.(9) into Eq.(6), SIC is expressed as

SIC = ‖θ̂α‖2
K − 2〈Kθ̂α, K†y〉+ ‖K†y‖2

K + 2σ2tr
(
KXαK†)−σ2tr

(
K†) . (11)

Since the third and fifth terms are irrelevant to α, they can be safely ignored.
When K−1 exists, a practical expression of SIC for kernel regression is given by

SICpractical = ‖θ̂α‖2
K − 2〈Kθ̂α, K−1y〉 + 2σ2tr

(
KXαK−1

)

= y�X�
α KXαy − 2y�Xαy + 2σ2tr (Xα) . (12)

It is easy to confirm that EεSICpractical + (constant) = J′
G, which implies that

SICpractical is essentially equivalent to SIC. However, Eq.(12) has the excellent
property that K−1 is no longer needed. This will highly contribute to the numer-
ical stability of the computations since the matrix inversion can become unstable
if the matrix K is ill-conditioned.
6 When the true function f(�) is not included in the model, the term ‘true parameter’

is used for indicating the parameter in g(�), i.e., g(�) =
�M

p=1 θ∗
pk(�,�p).

7 Proof is available from ‘ftp://ftp.cs.titech.ac.jp/pub/TR/01/TR01-0016.pdf’.
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Fig. 2. Simulation results with DELVE data sets (Gaussian kernel).

4 Computer simulations

We use 10 data sets provided by DELVE (http://www.cs.toronto.edu/
~delve/): Abalone, Boston, Bank-8fm, Bank-8nm, Bank-8fh, Bank-8nh, Kin-
8fm, Kin-8nm, Kin-8fh, and Kin-8nh, where ‘f ’ or ‘n’ signifies ‘fairly linear’ or
‘non-linear’, respectively, and ‘m’ or ‘h’ signifies ‘medium unpredictability/noise’
or ‘high unpredictability/noise’, respectively. Each dataset consists of several
attributes, and the task is to estimate the last one from the rest. For conve-
nience, every attribute is normalized in [0, 1]. 100 randomly selected samples are
used for training, and the rest is used for testing. We use the Gaussian kernel
with variance 1, i.e., k(x, x′) = exp

(−‖x − x′‖2/2
)
. The ridge parameter α is

selected from {10−3, 10−2, 10−1, . . . , 103}. We compare SIC with Leave-one-out
cross-validation (CV) [9] and Akaike’s Bayesian information criterion (ABIC) [2].
ABIC is a so-called empirical Bayesian method. The simulation is repeated 100
times for each dataset, changing the training set in each trial.

The left 10 graphs in Figure 2 depict the test error by each method with
standard box plot, which specifies marks at 95, 75, 50, 25, and 5 percentiles of
values. ‘OPT’ indicates the test error obtained by the optimal ridge parameter.
The right 2 scatter plots show the test error in every trial. These graphs show
that SIC works well on the whole. Especially, for Boston, Bank-8fm, Kin-8fm,
and Kin-8nm, SIC exceedingly outperforms CV and ABIC. However, SIC is
rather unstable for Bank-8nh and Kin-8nh, which are the datasets with high
unpredictability/noise. This may be caused by the fact that SIC is derived so
that it becomes an exact unbiased estimator of the generalization error, but the



variance of the estimator is not taken into account. Therefore, in very high noise
cases, the variance of SIC can be large and the SIC estimates may be unstable.

5 Conclusions and discussion

This paper studied an extension of SIC, which allows an efficient model selection
even in infinite dimensional RKHSs. In a series of simulations, SIC is shown to
work well for most of the data sets.

We found that this good performance can degrade for very high noise levels.
This may occur since SIC is an exact unbiased estimator of (an essential part
of) the generalization error, however, without taking the variance of SIC into ac-
count. A future line of research is therefore to investigate the role of the variance
of SIC, a path that we have partially explored for the original SIC by adding a
small stabilizing bias to SIC (cf. [7]). It remains to be seen whether this or some
alternative strategy will also be successful for infinite dimensional RKHSs.

Throughout this paper, we assumed that the target function belongs to a
specified RKHS. In extensive experiments that are omitted in this paper, we
observed that SIC works properly even when the target function does not exactly
lie in the specified RKHS (i.e., unrealizable cases). Although this is surely a useful
property in practice, it still remains open how to find an appropriate RKHS.
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