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Abstract

The problem of model selection is considerably important for acquiring higher levels
of generalization capability in supervised learning. In this paper, we propose a new
criterion for model selection called the subspace information criterion (SIC), which
is a generalization of Mallows’ CL. It is assumed that the learning target function
belongs to a specified functional Hilbert space and the generalization error is defined
as the Hilbert space squared norm of the difference between the learning result
function and target function. SIC gives an unbiased estimate of the generalization
error so defined. SIC assumes the availability of an unbiased estimate of the target
function and the noise covariance matrix, which are generally unknown. A practical
calculation method of SIC for least mean squares learning is provided under the
assumption that the dimension of the Hilbert space is less than the number of
training examples. Finally, computer simulations in two examples show that SIC
works well even when the number of training examples is small.

Keywords

Supervised learning, generalization capability, model selection, CL, Akaike’s infor-
mation criterion (AIC).



Subspace Information Criterion for Model Selection 2

1 Introduction

Supervised learning is obtaining an underlying rule from training examples made up of
sample points and corresponding sample values. If the rule is successfully acquired, then
appropriate output values corresponding to unknown input points can be estimated. This
ability is called the generalization capability.

So far, many supervised learning methods have been developed, including the stochas-
tic gradient descent method (Amari, 1967), the back-propagation algorithm (Rumelhart et
al., 1986a, 1986b), regularization learning (Tikhonov & Arsenin, 1977; Poggio & Girosi,
1990), Bayesian inference (Savage, 1954; MacKay, 1992), projection learning (Ogawa,
1987), and support vector machines (Vapnik, 1995; Schölkopf et al., 1998). In these learn-
ing methods, the quality of the learning results depends heavily on the choice of models.
Here, models refer to, for example, Hilbert spaces to which the learning target function
belongs in the projection learning and support vector regression cases, multi-layer percep-
trons (MLPs) with different numbers of hidden units in the back-propagation case, pairs of
the regularization term and regularization parameter in the regularization learning case,
and families of probabilistic distributions in the Bayesian inference case.

If the model is too complicated, then learning results tend to over-fit noisy training
examples. In contrast, if the model is too simple, then it is not capable of fitting training
examples causing learning results become under-fitted. In general, both over- and under-
fitted learning results have lower levels of generalization capability. Therefore, the problem
of finding an appropriate model, referred to as model selection, is considerably important
for acquiring higher levels of generalization capability.

The problem of model selection has been studied mainly in the field of statistics. Mal-
lows (1964) proposed CP for the selection of subset-regression models (see also Gorman
& Toman, 1966; Mallows, 1973). CP gives an unbiased estimate of the predictive training
error, i.e., the error between estimated and true values at sample points contained in the
training set. Mallows (1973) extended the range of application of CP to the selection of
arbitrary linear regression models. It is called CL or the unbiased risk estimate (Wahba,
1990). CL may require a good estimate of the noise variance. In contrast, the generalized
cross-validation (Craven & Wahba, 1979; Wahba, 1990), which is an extension of the
traditional cross-validation (Mosteller & Wallace, 1963; Allen, 1974; Stone, 1974; Wahba,
1990), is the criterion for finding the model minimizing the predictive training error with-
out the knowledge of noise variance. Li (1986) showed the asymptotic optimality of CL

and the generalized cross-validation, i.e., they asymptotically select the model minimiz-
ing the predictive training error (see also Wahba, 1990). However, these methods do not
explicitly evaluate the error for unknown input points.

In contrast, model selection methods explicitly evaluating the generalization error have
been studied from various standpoints: information statistics (Akaike, 1974; Takeuchi,
1976; Konishi & Kitagawa, 1996), Bayesian statistics (Schwarz, 1978; Akaike, 1980;
MacKay, 1992), stochastic complexity (Rissanen, 1978, 1987, 1996; Yamanishi, 1998),
and structural risk minimization (Vapnik, 1995; Cherkassky et al., 1999). Particularly,
information-statistics-based methods have been extensively studied. Akaike’s information
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criterion (AIC) (Akaike, 1974) is one of the most eminent methods of this type. Many
successful applications of AIC to real world problems have been reported (e.g. Bozdo-
gan, 1994; Akaike & Kitagawa, 1994, 1995; Kitagawa & Gersch, 1996). AIC assumes
that models are faithful1. Takeuchi (1976) extended AIC to be applicable to unfaithful
models. This criterion is called Takeuchi’s modification of AIC (TIC) (see also Stone,
1977; Shibata, 1989). The learning method with which TIC can deal is restricted to the
maximum likelihood estimation. Konishi and Kitagawa (1996) relaxed the restriction and
derived the generalized information criterion for a class of learning methods represented
by statistical functionals.

The common characteristic of AIC and its derivatives described above is to give an
asymptotic unbiased estimate of the expected log-likelihood. This implies that when the
number of training examples is small, these criteria are no longer valid. To overcome
this weakness, two approaches have been taken. One is to calculate an exact unbiased
estimate of the expected log-likelihood for each model. This type of modification can be
found in many articles (e.g. Sugiura, 1978; Hurvich & Tsai, 1989, 1991, 1993; Noda et al.,
1996; Fujikoshi & Satoh, 1997; Satoh et al., 1997; Hurvich et al., 1998; Simonoff, 1998;
McQuarrie & Tsai, 1998). The other approach is to use the bootstrap method (Efron,
1979; Efron & Tibshirani, 1993) for numerically evaluating the bias when the expected
log-likelihood is estimated by the log-likelihood. The idea of the bootstrap bias correction
is first introduced by Wong (1983) and Efron (1986), and then it is formalized as a model
selection criterion by Ishiguro et al. (1997) (see also Davison & Hinkley, 1992; Cavanaugh
& Shumway, 1997; Shibata, 1997).

In the neural network community, AIC has been extended to a different direction.
Murata et al. (1994) generalized the loss function of TIC, and proposed the network
information criterion (NIC). NIC assumes that the quasi-optimal estimator minimizing
the empirical error, say the maximum likelihood estimator when the log loss is adopted
as the loss function, has been exactly obtained. However, when we are concerned with
MLP learning, it is difficult to obtain the quasi-optimal estimator in real time since
MLP learning is generally performed by iterative methods such as the stochastic gradient
descent method (Amari, 1967) and the back-propagation algorithm (Rumelhart et al.,
1986a, 1986b). To cope with this problem, information criteria taking the discrepancy
between the quasi-optimal estimator and the obtained estimator into account have been
devised (Wada & Kawato, 1991; Onoda, 1995).

In this paper, we propose a new criterion for model selection from the functional an-
alytic viewpoint. We call this criterion the subspace information criterion (SIC). SIC
is mainly different from AIC-type criteria in three respects. The first is the generaliza-
tion measure. In AIC-type criteria, the averaged generalization error over all training
sets is adopted as the generalization measure, and the averaged terms are replaced with
particular values calculated by one given training set. In contrast, the generalization
measure adopted in SIC is not averaged over training sets. The fact that the replace-
ment of the averaged terms is unnecessary for SIC is expected to result in better selection

1A model is said to be faithful if the learning target can be expressed by the model (Murata et al.,
1994).
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than AIC-type methods. The second is the approximation method. AIC-type criteria use
asymptotic approximation and give an asymptotic unbiased estimate of the generalization
error. In contrast, SIC uses the noise characteristics and gives an exact unbiased estimate
of the generalization error. Our computer simulations show that SIC works well even
when the number of training examples is small. The third is the restriction of models.
Takeuchi (1983) pointed out that AIC-type criteria are effective only in the selection of
nested models (see also Murata et al., 1994). In SIC, no restriction is imposed on models.

This paper is organized as follows. Section 2 formulates the problem of model selection.
In Section 3, our main result, SIC is derived. In Section 4, SIC is compared with Mallows’
CL and AIC-type criteria. In Section 5, SIC is applied to the selection of least mean
squares learning models and a complete algorithm of SIC is described. Finally, Section 6
is devoted to computer simulations demonstrating the effectiveness of SIC.

2 Mathematical foundation of model selection

Let us consider the supervised learning problem of obtaining an approximation to a target
function from a set of training examples. Let the learning target function be f(x) of L
variables defined on a subset D of the L-dimensional Euclidean space RL. The training
examples are made up of sample points xm in D and corresponding sample values ym in
C:

{(xm, ym) | ym = f(xm) + εm}Mm=1, (1)

where ym is degraded by additive noise εm. Let θ be a set of factors determining learning
results, e.g., the type and number of basis functions, and parameters in learning algo-
rithms. We call θ a model. Let f̂θ be a learning result obtained with a model θ. Assuming
that f and f̂θ belong to a Hilbert space H, the problem of model selection is described as
follows.

Definition 1 (Model selection) From a given set of models, find the model minimizing
the generalization error defined as

Eε‖f̂θ − f‖2, (2)

where Eε denotes the ensemble average over the noise, and ‖ · ‖ denotes the norm.

3 Subspace information criterion

In this section, we derive a model selection criterion named the subspace information
criterion (SIC). SIC gives an unbiased estimate of the generalization error.

Let y, z, and ε be M -dimensional vectors whose m-th elements are ym, f(xm), and
εm, respectively:

y = z + ε. (3)
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y and z are called a sample value vector and an ideal sample value vector, respectively.
Let Xθ be a mapping from y to f̂θ:

f̂θ = Xθy. (4)

Xθ is called a learning operator.
In the derivation of SIC, we assume the following conditions.

1. The learning operator Xθ is linear.

2. The mean noise is zero:
Eεε = 0. (5)

3. A linear operator Xu which gives an unbiased learning result f̂u is available:

Eεf̂u = f, (6)

where
f̂u = Xuy. (7)

Assumption 1 implies that the range of Xθ becomes a subspace of H. Linear learning
operators include various learning methods such as least mean squares learning (Ogawa,
1992), regularization learning (Nakashima & Ogawa, 1999), projection learning (Ogawa,
1987), and parametric projection learning (Oja & Ogawa, 1986). It follows from Eqs.(7),
(3), and (5) that

Eεf̂u = EεXuy = Xuz + EεXuε = Xuz. (8)

Hence, Assumption 3 yields
Xuz = f. (9)

Note that as discussed in Section 5, Assumption 3 holds if the dimension of the Hilbert
space H is not larger than the number M of training examples.

Based on the above setting, we shall first give an estimation method of the generaliza-
tion error of f̂θ. The unbiased learning result f̂u and the learning operator Xu are used
for this purpose.

The generalization error of f̂θ is decomposed into the bias and variance (see e.g.
Takemura, 1991; Geman et al., 1992; Efron & Tibshirani, 1993):

Eε‖f̂θ − f‖2 = ‖Eεf̂θ − f‖2 + Eε‖f̂θ − Eεf̂θ‖2. (10)

It follows from Eqs.(4) and (3) that Eq.(10) yields

Eε‖f̂θ − f‖2 = ‖Xθz − f‖2 + Eε‖Xθε‖2
= ‖Xθz − f‖2 + tr (XθQX∗

θ ) , (11)

where tr (·) denotes the trace of an operator, Q is the noise covariance matrix, and X ∗
θ

denotes the adjoint operator of Xθ. Let X0 be an operator defined as

X0 = Xθ −Xu. (12)
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Then the bias of f̂θ can be expressed by using f̂u as

‖Xθz − f‖2 = ‖f̂θ − f̂u‖2 − ‖f̂θ − f̂u‖2 + ‖Xθz − f‖2
= ‖f̂θ − f̂u‖2 − ‖Xθz + Xθε− (Xuz + Xuε)‖2 + ‖Xθz −Xuz‖2
= ‖f̂θ − f̂u‖2 − ‖X0z + X0ε‖2 + ‖X0z‖2
= ‖f̂θ − f̂u‖2 − ‖X0z‖2 − 2Re〈X0z,X0ε〉 − ‖X0ε‖2 + ‖X0z‖2
= ‖f̂θ − f̂u‖2 − 2Re〈X0z,X0ε〉 − ‖X0ε‖2, (13)

where ‘Re’ stands for the real part of a complex number and 〈·, ·〉 denotes the inner
product. The second and third terms of the right-hand side of Eq.(13) can not be directly
calculated since z and ε are unknown. Here, we shall replace them with the averages of
them over the noise. Then the second term vanishes because of Eq.(5), and the third term
yields

Eε‖X0ε‖2 = tr (X0QX∗
0) . (14)

This approximation immediately gives the following criterion.

Definition 2 (Subspace information criterion) The following functional is called
the subspace information criterion.

SIC = ‖f̂θ − f̂u‖2 − tr (X0QX∗
0 ) + tr (XθQX∗

θ ) . (15)

The model minimizing SIC is called the minimum SIC model (MSIC model) and
the learning result obtained by the MSIC model is called the MSIC learning result. The
generalization capability of the MSIC learning result measured by Eq.(2) is expected to be
the best, the expectation is theoretically supported by the fact that SIC gives an unbiased
estimate of the generalization error since it follows from Eqs.(15), (13), (5), (14), and (11)
that

Eε SIC = Eε

(
‖f̂θ − f̂u‖2 − tr (X0QX∗

0 ) + tr (XθQX∗
θ )
)

= Eε

(
‖Xθz − f‖2 + 2Re〈X0z,X0ε〉+ ‖X0ε‖2 − tr (X0QX∗

0) + tr (XθQX∗
θ )
)

= ‖Xθz − f‖2 + tr (XθQX∗
θ )

= Eε‖f̂θ − f‖2. (16)

Since the bias is always non-negative from the definition, we can also consider the
following corrected SIC (cSIC):

cSIC =
[
‖f̂θ − f̂u‖2 − tr (X0QX∗

0 )
]
+

+ tr (XθQX∗
θ ) . (17)

where [·]+ is defined as
[t]+ = max(0, t). (18)

4 Discussion

In this section, SIC is compared with CL and AIC-type criteria.
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4.1 Comparison with CL

1. The idea of estimation used in SIC generalizes CL by Mallows (1973). The problem
considered in Mallows’ paper is to estimate the ideal sample value vector z from
training examples {(xm, ym)}Mm=1. The predictive training error is adopted as the
error measure:

Eε

M∑
m=1

∣∣∣f̂θ(xm)− f(xm)
∣∣∣2 = Eε‖Bθy − z‖2, (19)

where Bθ is a mapping from y to an M -dimensional vector whose m-th element
is f̂θ(xm). Analogous to Eqs.(10) and (11), the predictive training error can be
decomposed into the bias and variance:

Eε‖Bθy − z‖2 = ‖EεBθy − z‖2 + Eε‖Bθy − EεBθy‖2
= ‖Bθz − z‖2 + tr (BθQB∗

θ) . (20)

Then CL is given as

CL = ‖Bθy − y‖2 − tr ((Bθ − I)Q(Bθ − I)∗) + tr (BθQB∗
θ) . (21)

2. Although the problem considered in Mallows’ paper was to estimate z, acquiring a
higher level of generalization capability is implicitly expected. However, minimizing
the predictive training error does not generally mean to minimize the generalization
error defined by Eq.(2). In contrast, we consider the problem of minimizing the
generalization error and SIC directly gives an unbiased estimate of the generalization
error.

3. Mallows employed the sample value vector y as an unbiased estimate of the target
z. In contrast, we assumed the availability of the unbiased learning result f̂u of the
target function f . f̂u plays a similar role to y in Mallows’ case.

4.2 Comparison with AIC-type methods

1. In AIC-type criteria, the relation between the generalization error and the empirical
error is first evaluated in the sense of the average over all training sets {xm}Mm=1.
Then the averaged terms are replaced with particular values calculated by one given
training set. In contrast, the generalization measure adopted in SIC (see Eq.(2))
is not averaged over training sets. The fact that the replacement of the averaged
terms is unnecessary for SIC is expected to result in better selection than AIC-type
methods.

2. AIC-type criteria give an asymptotic unbiased estimate of the generalization error.
In contrast, SIC gives an exact unbiased estimate of the generalization error (see
Eq.(16)). Therefore, SIC is expected to work well even when the number of training
examples is small. Indeed, computer simulations performed in Section 6 support
this claim.
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3. Takeuchi (1983) pointed out that AIC-type criteria are effective only in the selection
of nested models (see also Murata et al., 1994):

S1 ⊂ S2 ⊂ · · · . (22)

In SIC, no restriction is imposed on models except that the range of Xθ is included
in H.

4. AIC-type methods compare models under the learning method minimizing the em-
pirical error. In contrast, SIC can consistently compare models with different learn-
ing methods, e.g., least mean squares learning (Ogawa, 1992), regularization learn-
ing (Nakashima & Ogawa, 1999), projection learning (Ogawa, 1987), and parametric
projection learning (Oja & Ogawa, 1986). Namely, the type of learning methods is
also included in the model.

5. AIC-type criteria do not explicitly require a priori information on the class to which
the target function belongs. In contrast, SIC requires a priori information on the
Hilbert space H to which the target function f and a learning result f̂θ belong. If
H is unknown, then a Hilbert space including all models is practically adopted as
H (see the experiments in Section 6.2).

6. SIC requires the noise covariance matrix Q while AIC-type criteria do not. However,
as shown in Section 5, we can cope with the case where Q is not available.

7. In the derivation of AIC-type methods, terms which are not dominant for model
selection are neglected (see e.g. Murata et al., 1994). This implies that the value
of the AIC-type criteria is not an estimate of the generalization error itself. In
contrast, SIC gives an estimate of the generalization error. This difference can be
clearly seen in the top graph in Fig.4 (see Section 6.1).

8. AIC-type methods assume that training examples are independently and identically
distributed (i.i.d.). In contrast, SIC can deal with the correlated noise if the noise
covariance matrix Q is available.

5 SIC for least mean squares learning

In this section, SIC is applied to the selection of least mean squares (LMS) learning
models.

LMS learning is to obtain a learning result f̂θ(x) in a subspace S of H minimizing the
training error

M∑
m=1

∣∣∣f̂θ(xm)− ym

∣∣∣2 (23)

from training examples {(xm, ym)}Mm=1. In the LMS learning case, a model θ refers to a
subspace S of H. Here, we assume that S has the reproducing kernel (see Aronszajn,
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1950; Bergman, 1970; Wahba, 1990; Saitoh, 1988, 1997). Let KS(x, x′) be the reproducing
kernel of S, and D be the domain of functions in S. Then KS(x, x′) satisfies the following
conditions.

• For any fixed x′ in D, KS(x, x′) is a function of x in S.

• For any function f in S and for any x′ in D, it holds that

〈f(·),KS(·, x′)〉 = f(x′). (24)

Note that the reproducing kernel is unique if it exists. Let µ be the dimension of S. Then,
for any orthonormal basis {ϕj}µj=1 in S, KS(x, x′) is expressed as

KS(x, x′) =
µ∑

j=1

ϕj(x)ϕj(x′). (25)

Let AS be an operator from H to the M -dimensional unitary space CM defined as

AS =
M∑

m=1

(
em ⊗KS(x, xm)

)
, (26)

where (· ⊗ ·) denotes the Neumann-Schatten product2, and em is the m-th vector of the
so-called standard basis in CM . AS is called a sampling operator since it follows from
Eq.(24) that

ASf = z (27)

for any f in S. Then LMS learning is rigorously defined as follows.

Definition 3 (Least mean squares learning) (Ogawa, 1992) An operator X is called
the LMS learning operator for the model θ if X minimizes the functional

J [X] =
M∑

m=1

∣∣∣f̂θ(xm)− ym

∣∣∣2 = ‖ASXy − y‖2. (28)

Let A† be the Moore-Penrose generalized inverse3 of A. Then the following proposition
holds.

2For any fixed g in a Hilbert space H1 and any fixed f in a Hilbert space H2, the Neumann-Schatten
product (f ⊗ g) is an operator from H1 to H2 defined by using any h ∈ H1 as (Schatten, 1970)

(f ⊗ g) h = 〈h, g〉f.

3An operator X is called the Moore-Penrose generalized inverse of an operator A if X satisfies the
following four conditions (see Albert, 1972; Ben-Israel & Greville, 1974).

AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA.

The Moore-Penrose generalized inverse is unique and denoted as A†.



Subspace Information Criterion for Model Selection 10

Proposition 1 (Ogawa, 1992) The LMS learning operator for the model θ is given by

Xθ = A†
S. (29)

SIC requires an unbiased learning result f̂u and an operator Xu providing f̂u. Here,
we show a method of obtaining f̂u and Xu by LMS learning. Let us assume that H is
also a reproducing kernel Hilbert space and regard H as a model. Let AH be a sampling
operator defined with the reproducing kernel of H:

AH =
M∑

m=1

(
em ⊗KH(x, xm)

)
. (30)

Since f belongs to H, it follows from Eq.(24) that the ideal sample value vector z is
expressed as

z = AHf. (31)

Let f̂H be a learning result obtained with the model H:

f̂H = XHy, (32)

where XH is the LMS learning operator with the model H:

XH = A†
H. (33)

Now let us assume that the range of A∗
H agrees with H4. This holds only if the number

M of training examples is larger than or equal to the dimension of H. Then it follows
from Eqs.(32), (3), (5), (31), and (33) that

Eεf̂H = EεXHy = XHz + EεXHε = XHz = XHAHf = A†
HAHf = f, (34)

which implies that f̂H is unbiased. Hence, we can put

f̂u = f̂H , (35)

Xu = XH . (36)

For evaluating SIC, the noise covariance matrix Q is required (see Eq.(15)). One of
the measures is to use

Q̂ = σ̂2I (37)

as an estimate of the noise covariance matrix, and σ̂2 is estimated from training examples
{(xm, ym)}Mm=1 as

σ̂2 =

∑M
m=1

∣∣∣f̂u(xm)− ym

∣∣∣2
M − dim(H)

, (38)

4This condition is sufficient for f̂H to be unbiased, not necessary.
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where M > dim(H) is implicitly assumed. When Q is really in the form Q = σ 2I and σ2

is estimated by Eq.(38), SIC still gives an unbiased estimate of the generalization error
since Eq.(38) is an unbiased estimate of σ2 (see Theorem 1.5.1 in Fedorov (1972)).

Based on the above discussions, we shall show a calculation method of LMS learning
results and the value of SIC by matrix operations. Let TS and TH be M -dimensional
matrices whose (m,m′)-th elements are KS(xm, xm′) and KH(xm, xm′), respectively. Then
the following theorem holds.

Theorem 1 (Calculation of LMS learning results) LMS learning results f̂θ(x) and
f̂u(x) can be calculated as

f̂θ(x) =
M∑

m=1

〈T †
Sy, em〉KS(x, xm), (39)

f̂u(x) =
M∑

m=1

〈T †
Hy, em〉KH(x, xm). (40)

A proof of Theorem 1 is provided in Appendix A. Let T be an M -dimensional matrix
defined as

T = T †
S − T †

HTST †
S − T †

STST †
H + T †

H. (41)

Then the following theorem holds.

Theorem 2 (Calculation of SIC for LMS learning) When the noise covariance
matrix Q is estimated by Eqs.(37) and (38), SIC for LMS learning is given as

SIC = 〈Ty, y〉 − σ̂2tr (T ) + σ̂2tr
(
T †

S

)
, (42)

where σ̂2 is given as

σ̂2 =
‖y‖2 − 〈THT †

Hy, y〉
M − dim(H)

. (43)

A proof of Theorem 2 is given in Appendix B. In practice, the calculation of the
Moore-Penrose generalized inverse is sometimes unstable. To overcome the unstableness,
we recommend using Tikhonov’s regularization (Tikhonov & Arsenin, 1977):

T †
S ←− TS(T 2

S + αI)−1, (44)

where α is a small constant, say α = 10−3. Then a complete algorithm of the MSIC
procedure, i.e., finding the best model from {Sn}n, is described in a pseudo code in Fig.1.

It is said that the dimension of the subspace S required for obtaining an approximation
in a certain level of precision grows exponentially with the dimension L of the input space
D, a concept referred to as the curse of dimensionality (Bishop, 1995). This phenomenon
generally results in large computational complexity, so that learning procedures are in-
feasible to compute in real time. However, thanks to good properties of the reproducing
kernel, the computational complexity does not exponentially increase with the dimension
of the input space if the reproducing kernel can be expressed in a closed form. Examples
of such nice reproducing kernels are described in Girosi (1998), including polynomials,
trigonometric polynomials, multi-layer perceptrons, radial basis function networks with
fixed width, and B-splines.
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input {(xm, ym)}Mm=1, KH(x, x′), and {KSn
(x, x′)}n;

α ←− 10−3;

TH ←− [KH(xm, xm′)]mm′ ;

if (M ≤ dim(H)) or (rank (TH) < dim(H))

print(’H is too complicated.’);
exit;

end

T †H ←− TH(T 2
H + αI)−1;

σ̂2 ←− (‖y‖2 − 〈THT †Hy, y〉)/ (M − dim(H));

for all n
TSn
←− [KSn

(xm, xm′)]mm′ ;

T †Sn
←− TSn

(T 2
Sn

+ αI)−1;

T ←− T †Sn
− T †HTSn

T †Sn
− T †Sn

TSn
T †H + T †H ;

SICn ←− 〈Ty, y〉 − σ̂2tr (T ) + σ̂2tr
(
T †Sn

)
;

end

n̂←− argminn{SICn};
f̂ (x)←− ∑M

m=1〈T †Sn̂
y, em〉KSn̂

(x, xm);

Figure 1: MSIC procedure in a pseudo code — Find the best model from {Sn}n.

6 Computer simulations

In this section, computer simulations are performed to demonstrate the effectiveness of
SIC compared with the network information criterion (NIC) (Murata et al., 1994), which
is a generalized AIC.

6.1 Illustrative example

Let the target function f(x) be

f(x) =
√

2 sinx + 2
√

2 cosx−
√

2 sin 2x− 2
√

2 cos 2x +
√

2 sin 3x−
√

2 cos 3x

+ 2
√

2 sin 4x−
√

2 cos 4x +
√

2 sin 5x−
√

2 cos 5x, (45)
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and training examples {(xm, ym)}Mm=1 be

xm = −π − π

M
+

2πm

M
, (46)

ym = f(xm) + εm, (47)

where the noise εm is independently subject to the normal distribution with mean 0 and
variance 3:

εm ∼ N(0, 3). (48)

Let us consider the following models:

{Sn}20
n=1 (49)

where Sn is a trigonometric polynomial space of order n, i.e., a Hilbert space spanned by

{1, sin px, cos px}np=1, (50)

and the inner product is defined as

〈f, g〉Sn =
1

2π

∫ π

−π
f(x)g(x)dx. (51)

The reproducing kernel of Sn is expressed as

KSn(x, x′) =




sin
(2n + 1)(x− x′)

2

/
sin

x− x′

2
if x �= x′,

2n + 1 if x = x′.
(52)

Our task is to find the best model Sn minimizing

Error =
1

2π

∫ π

−π

∣∣∣f̂Sn(x)− f(x)
∣∣∣2 dx, (53)

where f̂Sn(x) is the learning result obtained with the model Sn. Let us consider the
following two model selection methods.

(A) SIC: We use cSIC given by Eq.(17). LMS learning is adopted. The largest model
S20 including all models is employed as H. The unbiased learning result f̂u and the
estimate σ̂2 of the noise variance are obtained by Eqs.(35) and (38), respectively.

(B) NIC: The squared loss is adopted as the loss function. In this case, learning results
obtained by the stochastic gradient descent method (Amari, 1967) converge to the
LMS estimator. The distribution of sample points given by Eq.(46) is regarded as
a uniform distribution.
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Figure 2: Simulation results when the number M of training examples is 50. The top
graph shows the values of the error measured by Eq.(53), SIC, and NIC in each model,
denoted by the solid, dashed, and dash-dotted lines, respectively. The horizontal axis
denotes the highest order n of trigonometric polynomials in the model Sn. The bottom-
left graph shows the target function f(x), training examples, and the MSIC learning
result, denoted by the solid line, ’◦’, and the dashed line, respectively. The bottom-right
graph shows the target function f(x), training examples, and the MNIC learning result,
denoted by the solid line, ’◦’, and the dash-dotted line, respectively. The minimum value
of the error is 0.98 attained by the model S5. The MSIC model is S5 and the error is 0.98.
The MNIC model is S20 and the error is 3.36.
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Figure 3: Simulation results when the number M of training examples is 100. The
minimum value of the error is 0.37 attained by the model S5. The MSIC model is S5 and
the error is 0.37. The MNIC model is S9 and the error is 0.75.
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Figure 4: Simulation results when the number M of training examples is 200. The
minimum value of the error is 0.11 attained by the model S5. The MSIC model is S5 and
the error is 0.11. The MNIC model is S6 and the error is 0.17.
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In both (A) and (B), no a priori information is used and the LMS estimator is com-
monly adopted. Hence, the efficiency of SIC and NIC can be fairly compared by this
simulation.

Figs.2, 3, and 4 show the simulation results when the numbers of training examples
are 50, 100, and 200, respectively. The top graphs show the values of the error measured
by Eq.(53), SIC, and NIC by each model. They are shown by the solid, dashed, and dash-
dotted lines, respectively. The horizontal axis denotes the highest order n of trigonometric
polynomials in the model Sn. The bottom-left graphs show the target function f(x),
training examples, and the MSIC learning result, denoted by the solid line, ’◦’, and the
dashed line, respectively. The bottom-right graphs show the target function f(x), training
examples, and the minimum NIC (MNIC) learning result, denoted by the solid line, ’◦’,
and the dash-dotted line, respectively.

When M = 50, the minimum value of the error measured by Eq.(53) is 0.98 attained
by the model S5. The MSIC model is S5 and the error of the MSIC learning result is
0.98. The MNIC model is S20 and the error of the MNIC learning result is 3.36. When
M = 100, the minimum value of the error is 0.37 attained by the model S5. The MSIC
model is S5 and the error is 0.37, while the MNIC model is S9 and the error is 0.75. When
M = 200, the minimum value of the error is 0.11 attained by the model S5. The MSIC
model is S5 and the error is 0.11, while the MNIC model is S6 and the error is 0.17.

These results show that when M is large, both SIC and NIC give reasonable learning
results (see Figs.3 and 4). However, when it comes to the case where M = 50, SIC
outperforms NIC (see Fig.2). This implies that SIC works well even when the number of
training examples is small.

As mentioned in Section 4.2.7, NIC neglects terms which are not dominant for model
selection while SIC gives an unbiased estimate of the generalization error. The top graph
in Fig.4 clearly shows this difference. SIC well approximates the true error while the value
of NIC is larger than the true error. Generally speaking, neglecting non-dominant terms
does not affect the performance of model selection. However, this graph shows that, for
5 ≤ n ≤ 20, the slope of NIC is gentler than the true error while that of SIC is in good
agreement with it. This implies that SIC is expected to be resistant to the noise since the
discrimination of models by SIC is clearer than NIC.

6.2 Interpolation of chaotic series

Let us consider the problem of interpolating the following chaotic series created by the
Mackey-Glass delay-difference equation (see e.g. Platt, 1991):

g(t + 1) =




(1− b)g(t) +
a g(t− τ )

1 + g(t− τ )10 for t ≥ τ + 1,

0.3 for 1 ≤ t ≤ τ,
(54)

where a = 0.2, b = 0.1, and τ = 17. Let {ht}200
t=1 be

ht = g(t + τ + 1). (55)
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Figure 5: Chaotic series created by the Mackey-Glass delay-difference equation and 100
sample values.

Our task is to estimate {ht}200
t=1 from M sample values {ym}Mm=1:

ym = hp + εm : p =
⌈
200 × m

M

⌉
, (56)

where �c� denotes the minimum integer larger than or equal to c and {εm}Mm=1 are noises
independently subject to the normal distribution:

εm ∼ N

(
0,

1

100
exp

{
−
(

p− 100.5

500

)2
})

. (57)

True values {ht}200
t=1 and an example of sample values {ym}Mm=1 are shown in Fig.5.

Let us consider sample points {xm}Mm=1 corresponding to sample values {ym}Mm=1:

xm = −0.995 +
2

200
(p − 1) : p =

⌈
200 × m

M

⌉
. (58)

Then f̂(−0.995 + 2
200

(t− 1)) can be regarded as an estimate of ht for 1 ≤ t ≤ 200, where

f̂(x) is a learning result from {(xm, ym)}Mm=1. Let us consider the following models:

{S15, S20, S25, S30, S35, S40}, (59)

where Sn is a polynomial space of order n, i.e., a Hilbert space spanned by

{xp}np=0, (60)

and the inner product is defined by

〈f, g〉Sn =
∫ 1

−1
f(x)g(x)dx. (61)
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The reproducing kernel of Sn is expressed by using the Christoffel-Darboux formula (see
e.g. Szegö, 1939; Abramowitz & Segun, 1964; Freud, 1966) as

KSn(x, x′) =




n + 1
2(x− x′)

[Pn+1(x)Pn(x
′)− Pn(x)Pn+1(x

′)] if x �= x′,

(n + 1)2

2(1 − x2)
[Pn(x)2 − 2xPn(x)Pn+1(x) + Pn+1(x)2] if x = x′,

(62)

where Pn(x) is the Legendre polynomial of order n defined as

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (63)

We again compare SIC and NIC. S40 is adopted as H in SIC. The error is measured by

Error =
1

200

200∑
t=1

∣∣∣∣f̂
(
−0.995 +

2

200
(t− 1)

)
− ht

∣∣∣∣
2

. (64)

The distributions of errors by 1000 trials are shown in Figs.6, 7, and 8, where the
numbers of training examples are 50, 150, and 250, respectively. The horizontal axis
denotes the error measured by Eq.(64), while the vertical axis denotes the number of
trials in which the corresponding generalization error is given. The distributions of the
errors by SIC and NIC are almost the same when the number M of training examples is
250 (see Fig.8). However, when it comes to the case where M = 50 and M = 150, SIC
tends to outperform NIC (see Figs.6 and 7). This simulation again shows that SIC works
well even when the number of training examples is small.

7 Conclusion

In this paper, we proposed a new model selection criterion called the subspace information
criterion (SIC). It is assumed that the learning target function belongs to a specified func-
tional Hilbert space and the generalization error is defined as the Hilbert space squared
norm of the difference between the learning result function and target function. SIC
gives an unbiased estimate of the generalization error. SIC assumed the availability of
an unbiased estimate of the target function and the noise covariance matrix, which are
generally unknown. A practical calculation method of SIC for least mean squares learning
was provided under the assumption that the dimension of the Hilbert space is less than
the number of training examples. The range of application of SIC for LMS learning is
limited to the finite dimensional Hilbert space case. A practical estimation methods of
an unbiased learning result and the noise covariance matrix for the infinite dimensional
Hilbert space case is our important future work.
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A Proof of Theorem 1

It follows from Eq.(24) that

〈K(·, xm′),K(·, xm)〉 = K(xm, xm′). (65)

Hence, Eqs.(26) and (30) yield

ASA∗
S =

M∑
m=1

M∑
m′=1

KS(xm, xm′) (em ⊗ em′) = TS, (66)

AHA∗
H =

M∑
m=1

M∑
m′=1

KH(xm, xm′) (em ⊗ em′) = TH. (67)

From Eqs.(4), (29), (7), (36), and (33), we have

f̂θ = Xθy = A†
Sy = A∗

S(ASA∗
S)†y = A∗

ST †
Sy, (68)

f̂u = Xuy = A†
Hy = A∗

H(AHA∗
H)†y = A∗

HT †
Hy, (69)

which imply Eqs.(39) and (40) because of Eqs.(26) and (30).

B Proof of Theorem 2

Since S is a subspace of H, it follows from Eqs.(30), (26), (65), and (66) that

AHA∗
S =

M∑
m=1

M∑
m′=1

〈KS(·, xm′),KH(·, xm)〉 (em ⊗ em′)

=
M∑

m=1

M∑
m′=1

KS(xm, xm′) (em ⊗ em′)

= TS. (70)

It follows from Eqs.(68), (69), (70), and (41) that

‖f̂θ − f̂u‖2 = ‖A∗
ST †

Sy − A∗
HT †

Hy‖2
= 〈(A∗

ST †
S − A∗

HT †
H)∗(A∗

ST †
S − A∗

HT †
H)y, y〉

= 〈Ty, y〉. (71)

It follows from Eqs.(12), (29), (36), (33), (37), (66), (67), (70), and (41) that

tr (X0QX∗
0 ) = σ̂2tr

(
(A†

S −A†
H)(A†

S −A†
H)∗

)
= σ̂2tr

(
(A†

S −A†
H)∗(A†

S − A†
H)
)

= σ̂2tr (T ) . (72)
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It follows from Eqs.(29), (37), and (66) that

tr (XθQX∗
θ ) = σ̂2tr

(
A†

S(A†
S)∗
)

= σ̂2tr
(
(A†

S)∗A†
S

)
= σ̂2tr

(
(ASA∗

S)†
)

= σ̂2tr
(
T †

S

)
. (73)

From Eqs.(38), (24), (69), and (67), we have

σ̂2 =
‖AH f̂u − y‖2
M − dim(H)

=
‖AHA∗

HT †
Hy − y‖2

M − dim(H)
=
‖y‖2 − 〈THT †

Hy, y〉
M − dim(H)

. (74)

Substituting Eqs.(71), (72), (73), and (74) into Eq.(15), we have Eqs.(42) and (43).
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