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Abstract

Most of the image restoration filters proposed so far include parameters that control
the restoration properties. For bringing out the optimal restoration performance,
these parameters should be determined so as to minimize a certain error measure
such as the mean squared error (MSE) between the restored image and original
image. However, this is not generally possible since the unknown original image itself
is required for evaluating MSE. In this paper, we derive an estimator of MSE called
the subspace information criterion (SIC), and propose determining the parameter
values so that SIC is minimized. For any linear filter, SIC gives an unbiased estimate
of the expected MSE over the noise. Therefore, the proposed method is valid for any
linear filter. Computer simulations with the moving-average filter demonstrate that
SIC gives a very accurate estimate of MSE in various situations, and the proposed
procedure actually gives the optimal parameter values that minimize MSE.
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1 Introduction

Image restoration from observed images is one of the most basic and important subjects
in the fields of image processing, pattern recognition, and computer vision. So far, various
image restoration filters have been proposed. Most of the filters include parameters that
control the restoration properties, e.g., the window size and weight pattern in the moving-
average filter [5], the band-width in the band-pass filter [5], the threshold in the wavelet
thresholding filter [4, 3, 13], and the regularization factors in the regularization filters [8,
9, 12, 6]. The restoration properties of the filters depend heavily on the values of these
parameters.

The quality of the restored images is generally evaluated by the mean squared error
(MSE) between the restored image and original image. If the parameter values are deter-
mined so that MSE is minimized, then the optimal restoration performance is expected.
However, this is not generally possible since the unknown original image itself is required
for evaluating MSE. A general approach to the parameter optimization problem is to
derive an estimator of MSE and determine the parameter values so that the estimator
is minimized. So far, research based on this approach has been conducted, e.g., for the
wavelet thresholding filters [4, 3, 13] and the regularization filters [9, 12, 6].

In this paper, we derive an estimator of MSE called the subspace information criterion
(SIC) for linear filters, which is originated in the statistical model selection criterion [10,
11]. The quality of SIC as an approximation to MSE is theoretically substantiated by
the fact that SIC gives an unbiased estimate of the expected MSE over the noise. We
apply SIC to the moving-average filter, to which the existing methods described above
can not be applied. Computer simulations demonstrate that SIC gives a very accurate
estimate of MSE in various situations, and the proposed procedure actually gives the
optimal parameter values that minimize MSE.

2 Problem formulation

In this section, we formulate the problem of image restoration.
Let f(x, y) be an unknown original image in a real functional Hilbert space H1. Let

g(x, y) be an observed image in a real functional Hilbert space H2. Note that the domain
of f(x, y) or g(x, y) can be continuous or discrete, and H2 can be different from H1. We
assume that the dimension of H2 is finite, and the observed image g is given by

g = Af + n, (1)

where A is an operator from H1 to H2, and n(x, y) is an additive noise in H2. A is called
the observation operator. Let f̂(x, y) be a restored image in H1. If a restoration filter is
denoted by X, then f̂ is expressed by

f̂ = Xg. (2)

We evaluate the goodness of the restored image f̂ by the mean squared error (MSE):

MSE[X] = ‖f̂ − f‖2, (3)
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Figure 1: Formulation of image restoration problem. f is the unknown original image.
A is the observation operator. g is the observed image. n is the additive noise. X is a
restoration filter. f̂ is a restored image.

where ‖ · ‖ denotes the norm in H1. Then the problem of image restoration considered
in this paper is formulated as the problem of obtaining the optimally restored image f̂
that minimizes MSE from the observed image g. The above formulation is summarized
in Fig. 1.

3 Subspace information criterion for image restora-

tion

Since MSE includes the unknown original image f , it can not be directly evaluated. In
this section, we derive an estimator of MSE called the subspace information criterion
(SIC), which can be calculated without the original image f .

In the derivation of SIC, the following conditions are assumed.

1. A filter X is linear.

2. The mean noise is zero:
Enn = 0, (4)

where En denotes the expectation over the noise.

3. A linear filter Xu that gives an unbiased estimate f̂u of the original image f is
available:

f̂u = Xug, (5)

where f̂u satisfies
Enf̂u = f. (6)

A basic idea of SIC is that the unbiased estimate f̂u is used for estimating MSE (Fig. 2).
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Figure 2: Basic idea of SIC. The solid line denotes the bias of f̂ . It can be roughly
estimated by the dotted line, which can be calculated. (see the text for detail).

It follows from Eq.(3) that the expectation of MSE over the noise is decomposed as

EnMSE[X] = En‖f̂ − Enf̂ + Enf̂ − f‖2

= En‖f̂ − Enf̂‖2 + 2En〈f̂ − Enf̂ , Enf̂ − f〉 + En‖Enf̂ − f‖2

= En‖f̂ − Enf̂‖2 + ‖Enf̂ − f‖2, (7)

where 〈·, ·〉 denotes the inner product in H1. The first and second terms in Eq.(7) are
called the variance and bias of f̂ , respectively.

Let Q be the noise covariance operator. Then it follows from Eqs.(2), (1), and (4)
that the variance of f̂ is expressed by

En‖f̂ − Enf̂‖2 = En‖Xg − EnXg‖2

= En‖X(Af + n) − EnX(Af + n)‖2

= En‖Xn‖2

= tr (XQX∗) , (8)

where X∗ denotes the adjoint of X, and tr (·) denotes the trace of an operator. It follows
from Eqs.(6), (2), and (5) that the bias of f̂ is expressed by

‖Enf̂ − f‖2 = ‖f̂ − f̂u‖2 − ‖f̂ − f̂u‖2 + ‖Enf̂ − f‖2

= ‖f̂ − f̂u‖2 − ‖En(f̂ − f̂u) − En(f̂ − f̂u) + f̂ − f̂u‖2 + ‖Enf̂ − Enf̂u‖2

= ‖Xg − Xug‖2 − ‖En(f̂ − f̂u)‖2 + 2〈En(f̂ − f̂u), En(f̂ − f̂u) − (f̂ − f̂u)〉
− ‖En(f̂ − f̂u) − (f̂ − f̂u)‖2 + ‖En(f̂ − f̂u)‖2

= ‖(X − Xu)g‖2 + 2〈En(f̂ − f̂u), En(f̂ − f̂u) − (f̂ − f̂u)〉
− ‖En(f̂ − f̂u) − (f̂ − f̂u)‖2. (9)

The second and third terms in Eq.(9) can not be directly evaluated since they include an
inaccessible term En(f̂ − f̂u), so we will average out the second and third terms in Eq.(9)
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over the noise. Then the second term vanishes and it follows from Eqs.(2), (5), (1), and
(4) that the third term yields

En(−‖En(f̂ − f̂u) − (f̂ − f̂u)‖2) = −En‖En(X − Xu)g − (X − Xu)g‖2

= −En‖En(X − Xu)(Af + n) − (X − Xu)(Af + n)‖2

= −En‖(X − Xu)n‖2

= −tr ((X − Xu)Q(X − Xu)
∗) . (10)

Then we have the following criterion.

Definition 1 (Subspace information criterion) The following functional SIC is
called the subspace information criterion for a linear filter X:

SIC[X] = ‖(X − Xu)g‖2 − tr ((X − Xu)Q(X − Xu)
∗) + tr (XQX∗) . (11)

The goodness of SIC as an approximation to MSE is theoretically substantiated by
the following theorem.

Theorem 1 For any linear filter X, SIC gives an unbiased estimate of the expected MSE
over the noise:

EnSIC[X] = EnMSE[X]. (12)

Proof: It follows from Eqs.(1), (4), (2), (5), and (6) that

En‖(X − Xu)g‖2 = En‖(X − Xu)(Af + n)‖2

= ‖(X − Xu)Af‖2 + 2En〈(X − Xu)Af, (X − Xu)n〉
+ En‖(X − Xu)n‖2

= ‖(X − Xu)Eng‖2 + tr ((X − Xu)Q(X − Xu)
∗)

= ‖Enf̂ − f‖2 + tr ((X − Xu)Q(X − Xu)
∗) . (13)

It follows from Eqs.(11), (13), (8), and (7) that

EnSIC[X] = ‖Enf̂ − f‖2 + tr (XQX∗)

= EnMSE[X], (14)

which concludes the proof.
Based on Theorem 1, we will use SIC as a substitute for MSE in the following sections.

4 Optimization of moving-average filter by subspace

information criterion

In this section, we give a method for optimizing the parameters of the moving-average
filter [5], which is one of the classic but effective filters.
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4.1 Setting

Let H1 and H2 be sets of discrete images of size D×D, i.e., f(x, y) and g(x, y) are defined
on

{1, 2, . . . , D} × {1, 2, . . . , D}. (15)

Let us define the inner product in H1 by

〈f, g〉 =
D∑

x,y=1

f(x, y)g(x, y). (16)

We adopt a typical definition of MSE in the discrete case:

MSE[X] =
1

D2

D∑
x,y=1

(
f̂(x, y) − f(x, y)

)2

=
1

D2
‖f̂ − f‖2. (17)

Let us assume that the observation operator A is non-singular. Then the filter Xu

that gives an unbiased estimate of the original image f is given by

Xu = A−1, (18)

since it follows from Eqs.(1) and (4) that

EnA−1g = EnA−1(Af + n) = f. (19)

4.2 Moving-average filter

The moving-average filter restores the image by the weighted average over nearby pixels:

f̂(x, y) =
1

C

W∑
i,j=−W

wi,jh(x − i, y − j), (20)

where W is a non-negative integer called the window size, and {wi,j}W
i,j=−W is a set of

scalars called the weight pattern. C is a normalizing constant defined by

C =
W∑

i,j=−W

wi,j, (21)

which is assumed to be non-zero. h(x, y) in Eq.(20) is the same image as g(x, y) but
surrounded by mirrored images, i.e., h(x, y) is defined on

{−W + 1,−W + 2, . . . , D + W} × {−W + 1,−W + 2, . . . , D + W}, (22)

and it is defined by
h(x, y) = g(x′, y′), (23)
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(i) Lena (ii) Peppers (iii) Girl

Figure 3: Original images.

where x′ and y′ are given by

x′ =




2 − x : −W + 1 ≤ x ≤ 0,
x : 1 ≤ x ≤ D,

2D − x : D + 1 ≤ x ≤ D + W,
(24)

y′ =




2 − y : −W + 1 ≤ y ≤ 0,
y : 1 ≤ y ≤ D,

2D − y : D + 1 ≤ y ≤ D + W.
(25)

In the case of the moving-average filter, the window size W and weight pattern
{wi,j}W

i,j=−W are the parameters to be determined.

4.3 Parameter optimization by subspace information criterion

By using SIC given by Eq.(11), the filter parameters can be optimized as follows. First,
a set M of filters with different parameter values is prepared. Then SIC is calculated for
each filter X in the set M, and the filter X̂ that minimizes SIC is selected:

X̂ = argmin
X∈M

SIC[X], (26)

where SIC in the current setting is given by

SIC[X] =
1

D2

D∑
x,y=1

(
f̂(x, y) − f̂u(x, y)

)2

+
2

D2
tr
(
XQ(A−1)∗

)

− 1

D2
tr
(
A−1Q(A−1)∗

)
. (27)
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Figure 4: Normalized weight patterns for the window size W = 2.

Note that SIC given by Eq.(11) is an estimator of ‖f̂ − f‖2 while the right-hand side of
Eq.(27) is divided by D2 since MSE defined by Eq.(17) is also divided by D2. The param-
eter values in the selected filter X̂ are expected to be the best. Indeed, the expectation
is theoretically supported by Theorem 1, and experimentally demonstrated in Section 5.

Let I be the identity operator on H1 and σ2 be a positive scalar. When A = I and
Q = σ2I, SIC is reduced to a simpler expression:

1

D2

D∑
x,y=1

(
f̂(x, y) − g(x, y)

)2
+

2σ2w0,0

C
− σ2. (28)

In this case, SIC agrees with the traditional CL-statistics [7].

5 Computer simulations

In this section, the effectiveness of SIC for the moving-average filter is demonstrated
through computer simulations.

Let us employ (i) Lena, (ii) Peppers, and (iii) Girl displayed in Fig. 3 as the original
image. The size D of the images is 256 and the pixel values {f(x, y)}256

x,y=1 are integers in
[0, 255]. Let A be an operator that multiplies the x-th column pixels by ax:

[Af ](x, y) = axf(x, y). (29)

The multipliers {ax}256
x=1 are independently drawn from the uniform distribution on (1, 2).

Since such an operator A is non-singular, the filter Xu that gives an unbiased estimate f̂u

of the original image f is given by Eq.(18). The noises {n(x, y)}256
x,y=1 are independently

drawn from the same normal distribution with mean zero and variance σ2. In this case,
the noise covariance operator Q is given by Q = σ2I. We attempt σ2 = 900 and 2500.

Let us employ the restoration filter of the form X = X ′A−1, where X ′ is the moving-
average filter. As candidates of the parameter values in the moving-average filter, we
attempt the following window size W :

W = 0, 1, . . . , 5. (30)
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For each W , we consider the following three weight patterns.

(a) Rhombus pattern:

w
(a)
i,j = max(0, W + 1 − |i| − |j|). (31)

(b) Pyramid pattern:

w
(b)
i,j = W + 1 − max(|i|, |j|). (32)

(c) Gauss pattern:

w
(c)
i,j =

1

2π(W+1
2

)2
exp

(
− i2 + j2

2(W+1
2

)2

)
. (33)

The above weight patterns for W = 2 are illustrated in Fig. 4. We calculate the value
of SIC for each window size and each weight pattern, and select the parameters that
minimize SIC.

Figs. 5 and 6 display the simulation results when the noise variance σ2 is 900 and
2500, respectively. The top rows show the degraded images {g(x, y)}256

x,y=1. Their MSEs
measured by Eq.(17) are described below the images. The middle rows show the values of
MSE and SIC corresponding to each window size W and each weight pattern {wi,j}W

i,j=−W .
The horizontal axis denotes the window size W . The bottom rows show the restored
images {f̂(x, y)}256

x,y=1 obtained by SIC. Below the images, selected filter parameters and
MSEs of the restored images are described. ‘OPT’ indicates the optimal parameters that
minimize MSE.

The graphs in the middle rows show that SIC gives a very accurate estimate of MSE
irrespective of the original image, noise variance, window size, and weight pattern. The
restored images in the bottom rows show that the filter parameters that minimize SIC
actually minimize MSE, i.e., the optimal filter parameters can be obtained by SIC.

We also performed the same simulation with the noise drawn from the uniform distri-
bution with mean zero and variance σ2. The simulation results were the same, i.e., the
optimal filter parameters can be obtained by SIC. This implies that the performance of
SIC does not depend on the shape of the noise distribution.

6 Conclusions

We derived an unbiased estimator of the expected mean squared error for linear filters,
which is named the subspace information criterion (SIC). We proposed determining the
parameter values of the image restoration filters so that SIC is minimized. Computer
simulations with the moving-average filter showed that SIC gives a very accurate estimate
of MSE in various situations, and the optimal parameters that minimize MSE can be
obtained by the proposed method.

SIC is valid for any linear filter. Applying SIC to other effective filters is prospective
future work.
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Figure 5: Simulation results when σ2 = 900. The top row shows the degraded images.
Their MSEs are described below. The middle row shows the values of SIC and MSE
corresponding to each filter. The horizontal axis denotes the window size W . The bottom
row shows the restored images by SIC. Selected filter parameters and MSEs of the restored
images are described below. ‘OPT’ indicates the optimal parameters that minimizes MSE.
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Figure 6: Simulation results when σ2 = 2500. The top row shows the degraded images.
Their MSEs are described below. The middle row shows the values of SIC and MSE
corresponding to each filter. The horizontal axis denotes the window size W . The bottom
row shows the restored images by SIC. Selected filter parameters and MSEs of the restored
images are described below. ‘OPT’ indicates the optimal parameters that minimizes MSE.
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