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Abstract

We proposed a method of incremental projection learning which provides exactly
the same generalization capability as that obtained by batch projection learning in
the previous paper. However, properties of the method have not yet been investi-
gated. In this paper, we analyze its properties from the following aspects: First, it
is shown that some of the training examples regarded as redundant in most incre-
mental learning methods have potential effectiveness, i.e., they will contribute to
better generalization capability in the future learning process. Based on this fact,
an improved criterion for the redundancy of additional training examples is derived.
Second, the relationship between prior and posterior learning results is investigated
where effective training examples are classified into two categories from the view-
point of improving generalization capability. Finally, a simpler form of incremental
projection learning under certain conditions is given. The size of memory required
for storing prior results in the simple form is fixed and independent of the total
number of training examples.
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Nomenclature

Cm m-dimensional unitary space
H Hilbert space
〈·, ·〉 inner product in H or Cm

‖ · ‖ norm in H or Cm

· ⊗ · Neumann-Schatten product
K(·, ·) reproducing kernel of H
xi input of neural networks
yi output of neural networks
(xi, yi) training example
y(m) m-dimensional vector consisting of {yi}m

i=1

ni additive noise
n(m) m-dimensional vector consisting of {ni}m

i=1

f function of learning target
fm learning result from a set of m training examples
Am sampling operator for a set of m training examples
Xm learning operator for a set of m training examples
ψi sampling function of the i-th training example
Qm noise correlation matrix of a set of m training examples
qm+1 noise covariance of the (m+ 1)-st training example
σm+1 noise variance of the (m+ 1)-st training example
Im identity matrix on Cm

e
(m)
i i-th vector of the standard basis in Cm

En ensemble average over noise
A∗ adjoint operator of A
A† Moore-Penrose generalized inverse of A
R(A) range of A
N (A) null space of A
PS orthogonal projection operator onto a subspace S
αm+1, βm+1, β

′
m+1 scalars

ψ̃m+1, ξm+1, ξ̃m+1, ζm+1, ζ
′
m+1 functions in H

sm+1, tm+1 elements in Cm

Um operator from Cm to Cm

Vm, V ′
m operators from H to H

Ym operator from Cm to H
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1 Introduction

Incremental learning has practically extensive importance in many applications. How-
ever, the optimality of the generalization capability is not guaranteed in many incremen-
tal learning methods (Platt, 1991; Kadirkamanathan & Niranjan, 1993; Zhang, 1994;
Vyšniauskas et al., 1995; Yamauchi & Ishii, 1995; Jutten & Chentouf, 1995; Molina &
Niranjan, 1996; Yingwei et al., 1997, 1998; Vijayakumar & Schaal, 1998). Amari (1998)
proposed an incremental learning method which gives asymptotically the same general-
ization capability as that obtained by batch learning (see also Murata, 1999). Still, the
optimal generalization capability in the non-asymptotic case is not guaranteed in the
method. In practice, the number of training examples is always finite. Sugiyama and
Ogawa (2001) proposed a method of incremental projection learning (IPL). The learning
result obtained by IPL exactly agrees with that obtained by batch projection learning
(Ogawa, 1987) even in the non-asymptotic case. Thus, the optimal generalization capa-
bility can be acquired by IPL. Properties of IPL, however, have not been investigated
yet.

In this paper, IPL is analyzed from the following aspects: First, we discuss the re-
dundancy of additional training examples. In usual incremental learning methods, the
additional training example is regarded as redundant if the posterior learning result of
incremental learning is exactly the same as the prior learning result, Against the claim,
we show that some of such training examples have potential effectiveness, i.e., they will
contribute to better generalization capability in the future learning process. Based on
the fact, an improved criterion for the redundancy of additional training examples is de-
rived. Second, the relationship between prior and posterior learning results is studied
where effective training examples are classified into two categories from the viewpoint of
improving generalization capability: One category consists of training examples which
contribute to reducing the bias of the learning results. The other category consists of
training examples which reduce the variance of the learning results. Finally, a simpler
form of IPL under certain conditions is given. The size of memory required for storing
prior results in the simple form is fixed and independent of the number total of training
examples.

2 Formulation of supervised learning problem

In the following sections, we show properties of IPL. As arrangements, the supervised
learning problem is first formulated (see Ogawa, 1992). Then, the projection learning
criterion (Ogawa, 1987) and a method of IPL (Sugiyama & Ogawa, 2001) are reviewed.

2.1 Supervised learning as an inverse problem

Let us consider a function approximation problem of obtaining the optimal approximation
to a target function f(x) of L variables from a set of m training examples. Training
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examples are made up of inputs xi ∈ RL and corresponding outputs yi ∈ C:

{(xi, yi)|yi = f(xi) + ni}m
i=1, (1)

where yi is degraded by additive noise ni. Let n(m) and y(m) be m-dimensional vectors
whose i-th elements are ni and yi, respectively. y (m) is called a sample value vector, and a
space to which y(m) belongs is called a sample value space. In this paper, the underlying
function f(x) is assumed to belong to a reproducing kernel Hilbert space H (Aronszajn,
1950; Bergman, 1970; Saitoh, 1988, 1997). Let K(x, x′) be the reproducing kernel of H.
If a function ψi(x) is defined as

ψi(x) = K(x, xi), (2)

then the value of f at a sample point xi is expressed as

f(xi) = 〈f, ψi〉. (3)

For this reason, ψi is called a sampling function. Let Am be an operator mapping f to an
m-dimensional vector whose i-th element is f(xi). Am is called a sampling operator, and
it is expressed by using the Neumann-Schatten product 1 as

Am =
m∑

i=1

(
e
(m)
i ⊗ ψi

)
, (4)

where e
(m)
i is an m-dimensional vector where all elements are zero except the i-th element

which is equal to one. Then, the relationship between f and y (m) can be expressed as

y(m) = Amf + n(m). (5)

Let us denote a learning result obtained from m training examples by fm, and the rela-
tionship between y(m) and fm as

fm = Xmy
(m), (6)

where Xm is called a learning operator. Consequently, the supervised learning problem
can be reformulated as an inverse problem of obtaining Xm which provides the best
approximation fm to f under a certain learning criterion.

1For any g in a Hilbert space H1 and f in a Hilbert space H2, the Neumann-Schatten product (f ⊗ g)
is an operator from H1 to H2 defined by using any h ∈ H1 as (Schatten, 1970)

(f ⊗ g)h = 〈h, g〉f.
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2.2 Incremental projection learning

As mentioned above, function approximation is performed on the basis of a learning
criterion. In this paper, we adopt the projection learning criterion. We shall start from
reviewing the definition of projection learning and a general form of the projection learning
operator obtained in a batch manner.

Let En, A∗
m, R(A∗

m), and PR(A∗
m) be the ensemble average over noise, the adjoint

operator of Am, the range of A∗
m, and the orthogonal projection operator onto R(A∗

m),
respectively. Then, projection learning is defined as follows:

Definition 1 (Projection learning) (Ogawa, 1987) An operator Xm is called the pro-
jection learning operator if Xm minimizes the functional

JP [Xm] = En‖Xmn
(m)‖2 (7)

under the constraint
XmAm = PR(A∗

m). (8)

Let Im and Ym be the identity matrix on Cm and an arbitrary operator from Cm to
H, respectively, and

Qm = En

(
n(m) ⊗ n(m)

)
, (9)

Um = AmA
∗
m +Qm, (10)

Vm = A∗
mU

†
mAm, (11)

where † stands for the Moore-Penrose generalized inverse2. Then, we have the following
proposition.

Proposition 1 (Ogawa, 1987) A general form of the projection learning operator is ex-
pressed as

Xm = V †
mA

∗
mU

†
m + Ym(Im − UmU

†
m). (12)

Since the projection learning operator is linear, it follows from eqs.(6) and (5) that
the learning result fm can be decomposed as

fm = XmAmf +Xmn
(m). (13)

The first and second terms of eq.(13) are called the signal and noise components of fm,
respectively. The projection learning criterion requires the signal component to coincide

2An operator X is called the Moore-Penrose generalized inverse of an operator A if X satisfies the
following four conditions (Albert, 1972).

AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA.

Note that the Moore-Penrose generalized inverse is unique and denoted as A†.
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with the orthogonal projection of f onto R(A∗
m) and the noise component to minimize its

variance.
It has been shown that learning results obtained by projection learning are invariant

under the inner product in the sample value space (Yamashita & Ogawa, 1992). Hence,
the Euclidean inner product is adopted without loss of generality.

Now let us consider the case where the (m + 1)-st training example (xm+1, ym+1)
is added to a projection learning result fm obtained from {(xi, yi)}m

i=1. Let the noise
characteristics of (xm+1, ym+1) be

qm+1 = En(nm+1n
(m)), (14)

σm+1 = En|nm+1|2, (15)

where nm+1 denotes the complex conjugate of n(m). Let N (Am) be the null space of Am

and the following notation is defined for introducing a method of incremental projection
learning (IPL).

Matrix:

Γm+1 =
m∑

i=1

(
e
(m+1)
i ⊗ e

(m)
i

)
. (16)

Vectors:

sm+1 = Amψm+1 + qm+1, (17)

tm+1 = U †
msm+1. (18)

Scalars:

αm+1 = ψm+1(xm+1) + σm+1 − 〈tm+1, sm+1〉, (19)

βm+1 = ym+1 − fm(xm+1) − 〈y(m) − Amfm, tm+1〉. (20)

Functions:

ψ̃m+1 = PN (Am)ψm+1, (21)

ξm+1 = ψm+1 − A∗
mtm+1, (22)

ξ̃m+1 = V †
mξm+1. (23)

Γm+1 expands an m-dimensional vector s into an (m+ 1)-dimensional vector, while Γ∗
m+1

removes the (m+ 1)-th element as follows:(
s
0

)
= Γm+1s, s = Γ∗

m+1

(
s
a

)
, (24)

where a is a scalar.
It has been shown in Sugiyama and Ogawa (2001) that αm+1 is always non-negative.

Based on the fact, IPL is given as follows:

Proposition 2 (Incremental projection learning) (Sugiyama & Ogawa, 2001) When
αm+1 > 0, a posterior projection learning result fm+1 can be obtained by using prior results
fm, Am, U †

m, V †
m, and y(m) as

fm+1 = fm + βm+1ζm+1, (25)



Properties of Incremental Projection Learning 7

where ζm+1 is given as follows:

(a) When ψm+1 �∈ R(A∗
m),

ζm+1 =
ψ̃m+1

ψ̃m+1 (xm+1)
. (26)

(b) When ψm+1 ∈ R(A∗
m),

ζm+1 =
ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
. (27)

When αm+1 = 0, it holds that
fm+1 = fm. (28)

Note that fm+1 incrementally obtained by eq.(25) exactly agrees with the learning
result obtained in a batch manner as

fm+1 = Xm+1y
(m+1) (29)

where Xm+1 is given in the form of eq.(12).
The purpose of this paper is to clarify properties of IPL given in Proposition 2.

3 Effectiveness of additional training examples

In this section, it is pointed out that some of the training examples regarded as redundant
in most incremental learning methods have, as a matter of fact, potential effectiveness.
Based on this fact, an improved criterion for the redundancy of additional training exam-
ples is derived.

3.1 Potentially effective training examples

In many incremental learning methods such as the resource allocating network (RAN)
(Platt, 1991), its derivatives (Kadirkamanathan & Niranjan, 1993; Molina & Niranjan,
1996; Yingwei et al., 1997, 1998), and natural gradient on-line learning (Amari, 1998),
their learning criteria are aimed at minimizing the training error at xm+1, i.e.,

ym+1 − fm(xm+1). (30)

If the training error at xm+1 is zero before adding (xm+1, ym+1), then the above methods do
not extract any information from the training example and yield fm+1 = fm. Therefore,
such training examples are regarded as redundant and rejected. In contrast, we can
extract valuable information from such training examples in some cases. Here, we show
a simple example:
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Let the function space H be spanned by

{sin 6x, sin 10x, sin 15x}, (31)

and the inner product in H be defined as

〈f, g〉 =
2

π

∫ π
2

0
f(x)g(x) dx. (32)

Let the target function be f(x) = 9 sin 6x + 5 sin 15x. For the sake of simplicity, the
learning takes place in the absence of noise in this example. The target function f
and the learning result f1 obtained by using (x1, y1) = (π

5
, f(π

5
)) are shown as the solid

and dotted lines, respectively, in Fig.1 (a). The second training example is sampled as
(x2, y2) = (π

3
, f(π

3
)). Note that the training error at x2 is zero, i.e.,

y2 − f1(x2) = 0. (33)

Now let us consider two cases: One is adding (x2, y2) to f1 without rejection and the
other is complying with the usual criterion for the redundancy, i.e., reject (x 2, y2) since
the training error at x2 is zero. If (x2, y2) is added to f1 without rejection, we obtain the
learning result f2 which agrees with f1. Then, we shall add (x3, y3) = (π

9
, f(π

9
)) to both

f1 and f2. The learning results f ′
2 and f3 obtained by adding (x3, y3) to f1 and f2 are

shown as the dotted and solid lines, respectively, in Fig.1 (b). f3 agrees with the target
function f while f ′

2 does not. This example shows that f3 acquires higher generalization
capability than f ′

2, which implies that (x2, y2) is effective.
The reason why (x2, y2) had potential effectiveness can be understood from the func-

tional analytic point of view. The geometrical relations between the target function f ,
learning results f1, f2, f

′
2, and f3 in the function space H are shown in Fig.2. In the

absence of noise, the projection learning result fm is coincident with the orthogonal pro-
jection of f onto R(A∗

m). R(A∗
m) is called the approximation space for fm. Since f belongs

to R(A∗
1) + N (A2) in this example, we have

f2 = PR(A∗
2)f = PR(A∗

1)f = f1. (34)

This implies that f2 agrees with f1 though R(A∗
2) properly includes R(A∗

1) as shown in
Fig.2 (a). Rejecting (x2, y2) and adding (x3, y3) to f1, we obtain f ′

2 (see Fig.2 (b)). In
this case, the approximation space R(A′∗

2 ) for f ′
2 becomes a two-dimensional subspace.

Since f does not belong to R(A′∗
2 ), f ′

2 does not agree with f . On the other hand, if we
use (x2, y2) without rejection and add (x3, y3) to f2, we obtain f3. In this case, R(A∗

3)
becomes a three-dimensional subspace which coincides with H. Since f belongs to R(A∗

3),
f3 agrees with f . After all, the difference between f3 and f ′2 is caused by the difference
in approximation spaces, which can not be judged by simply comparing learning results.

3.2 Identification of redundant training examples

As mentioned in the previous subsection, the redundancy of additional training examples
can not be simply judged by the training error at the location of the additional examples.
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Figure 1: Example of the training example regarded as redundant in usual incremental
learning methods but it is effective. Bullets denote training examples. (a) The target
function f is shown as the solid line. The learning result f1 obtained by using (x1, y1)
is shown as the dotted line. The learning result f2 obtained by adding (x2, y2) to f1 is
exactly the same as f1. (b) The learning result f ′

2 obtained by adding (x3, y3) to f1 is
shown as the dotted line. The learning result f3 obtained by adding (x3, y3) to f2 is shown
as the solid line, which is exactly the same as the target function f .
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H

f

f2 = f1

R(A∗
1)

R(A∗
2)

N (A2)

N (A1)

(a)

H = R(A∗
3)

f = f3

N (A1)

f ′2

f2 = f1
N (A′

2)

R(A′∗
2 )

R(A∗
1)

(b)

Figure 2: Geometrical interpretation of the example in Fig.1. (a) f2 agrees with f1

though R(A∗
2) properly includes R(A∗

1). (b) f3 agrees with f while f ′
2 does not. Namely,

f3 acquires higher generalization capability than f ′
2. This is caused by the difference in

approximation spaces, i.e., R(A∗
3) properly includes R(A′∗

2 ).
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(x̂, ŷ)

{(xj , yj)}m
j=1

(xm+1, ym+1)

{(xm+j , ym+j)}i
j=2

fm

fm+1

fm+i

f̂m+1

f̂m+2

f̂m+i+1

(xm+1, ym+1)

{(xm+j, ym+j)}i
j=2

...
...

Figure 3: Definition of the effective training examples. Let fm be a learning result obtained
by using {(xi, yi)}m

i=1, and f̂m+1 be a learning result obtained by adding (x̂, ŷ) to fm. Let
fm+i and f̂m+i+1 be learning results obtained by adding {(xm+j, ym+j)}i

j=1 to fm and f̂m+1,
respectively.

Here, we give proper definitions of the effectiveness and redundancy of additional training
examples. Let fm be a learning result obtained from {(xj, yj)}m

j=1, and f̂m+1 be a learning

result obtained by adding (x̂, ŷ) to fm. Let fm+i and f̂m+i+1 be learning results obtained
by adding i training examples {(xm+j, ym+j)}i

j=1 to fm and f̂m+1, respectively (Fig.3).

Definition 2 (x̂, ŷ) is said to be effective if there exists at least one set of training ex-
amples which yield fm+i �= f̂m+i+1 for a non-negative integer i. Conversely, (x̂, ŷ) is said
to be redundant if it is not effective.

Note that the above definition depends on f , fm, Am, and U †
m. Based on the definition,

a criterion for the redundancy of additional training examples is given as follows:

Theorem 1 (Redundancy criterion) (xm+1, ym+1) is redundant if ξm+1 = 0, where
ξm+1 is the function defined by eq.(22)
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A proof of the theorem is given in Appendix A. As we mentioned above, additional
training examples are rejected in usual redundancy criterion if fm+1 = fm. In IPL,
fm+1 = fm holds if and only if one of the following four conditions holds.

(a) αm+1 = 0,

(b) αm+1 > 0, ψm+1 �∈ R(A∗
m), and βm+1 = 0,

(c) αm+1 > 0, ψm+1 ∈ R(A∗
m), ζm+1 �= 0, and βm+1 = 0,

(d) αm+1 > 0, ψm+1 ∈ R(A∗
m), and ζm+1 = 0,

where αm+1, ψm+1, βm+1, and ζm+1 are given by eqs.(19), (2), (20), and (27), respectively.
Among these conditions, ξm+1 = 0 if and only if (a) or (d) holds. The conditions (a) and
(d) do not depend on the value of ym+1 while (b) and (c) do, which implies that additional
training examples are judged to be redundant if it causes fm+1 = fm independently of
ym+1. Note that the additional training example (x2, y2) in Fig.1 corresponds to the
condition (b).

4 Improving generalization capability through IPL

The previous section discussed the redundancy of additional training examples. In this
section, the properties of effective additional examples are studied from the viewpoint of
improving generalization capability. The mean noise is assumed to be zero through this
section.

Let us measure the generalization error of a learning result fm by

JG = En‖fm − f‖2. (35)

Eq.(35) can be decomposed as follows:

Proposition 3 (Takemura, 1991) It holds that

JG = ‖Enfm − f‖2 + En‖fm − Enfm‖2. (36)

The first and second terms of eq.(36) are called the bias and variance of fm, respec-
tively. Substituting eqs.(13) and (8) into eq.(36), we have

JG = ‖PR(A∗
m)f − f‖2 + En‖Xmn

(m)‖2. (37)

Eq.(37) implies that the projection learning criterion reduces the bias of fm to a certain
level and minimizes the variance of fm.

Let Jb and Jv be the changes in the bias and variance of the learning results through
the addition of a training example, respectively, i.e.,

Jb = ‖Enfm+1 − f‖2 − ‖Enfm − f‖2, (38)

Jv = En‖fm+1 − Enfm+1‖2 − En‖fm − Enfm‖2. (39)

Then, we have the following theorem.
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Theorem 2 For any additional training example (xm+1, ym+1) such that ξm+1 �= 0, the
following relations hold.

(a) When ψm+1 �∈ R(A∗
m),

Jb ≤ 0 and Jv ≥ 0. (40)

(b) When ψm+1 ∈ R(A∗
m),

Jb = 0 and Jv < 0. (41)

A proof of the theorem is given in Appendix B. Theorem 2 states that additional
training examples such that ψm+1 �∈ R(A∗

m) reduce or maintain the bias of the learning
results while they increase or maintain the variance. On the other hand, additional
training examples such that ψm+1 ∈ R(A∗

m) maintain the bias while they reduce the
variance. It seems that training examples which satisfy ψm+1 �∈ R(A∗

m) and yield Jb = 0
and Jv = 0 is redundant. However, it is not true since such training examples yield ξm+1 �=
0, and hence they are not always redundant as shown in Theorem 1. The additional
training example (x2, y2) in Fig.1 is an example of such a training example.

Theorem 2 plays an important role when we work on active learning (Sugiyama &
Ogawa, 2000). Generally, the bias of the learning results can not be evaluated, so that
it is common to assume that the bias is zero or small enough to be neglected (MacKay,
1992; Cohn, 1996; Fukumizu, 1996). However, thanks to this theorem, the bias can be
explicitly reduced by adding training examples such that ψm+1 �∈ R(A∗

m) though the bias
is unknown.

5 Simple representation of IPL

In this section, a simple form of IPL under certain conditions is given.
Let an operator V ′

m from H to H be

V ′
m = A∗

mQ
†
mAm. (42)

Then, we have the following proposition.

Proposition 4 (Ogawa, 1987) If R(Qm) ⊃ R(Am), then the projection learning operator
is expressed as

Xm = V ′†
mA

∗
mQ

†
m. (43)

Now, let us consider the case where the noise correlation matrix Qm+1 is positive
definite and diagonal, i.e.,

Qm+1 = diag(σ1, σ2, · · · , σm+1), (44)

where σi > 0 for all i. In this case, V ′
m becomes

V ′
m = A∗

mQ
−1
m Am. (45)

Then, IPL can be reduced to as follows:
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Theorem 3 If Qm+1 is given by eq.(44) with σi > 0 for all i, a posterior projection
learning result fm+1 can be obtained by using prior results fm and V ′†

m as

fm+1 = fm + β ′
m+1ζ

′
m+1, (46)

where
β ′

m+1 = ym+1 − fm(xm+1), (47)

and ζ ′m+1 are given as follows:

(a) When ψm+1 �∈ R(A∗
m),

ζ ′m+1 =
ψ̃m+1

ψ̃m+1(xm+1)
. (48)

(b) When ψm+1 ∈ R(A∗
m),

ζ ′m+1 =
V ′†

mψm+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

. (49)

A proof of the theorem is given in Appendix C.
Compared with Proposition 2, eq.(20) is replaced with eq.(47) in Theorem 3. In the

case ψm+1 �∈ R(A∗
m), eq.(26) is the same as eq.(48). On the other hand, in the case

ψm+1 ∈ R(A∗
m), eq.(27) is replaced with eq.(49) where αm+1 does not appear. Although

αm+1 played an important role in the derivation of Proposition 2 (see Sugiyama & Ogawa,
2001), it is not required in Theorem 3 since it is always positive when the noise correlation
matrix is positive definite.

It is notable that Theorem 3 does not require {yi}m
i=1 for calculating fm+1. Generally,

the storage capacity for V ′†
m is O(µ2) where µ is the dimension of H. In many practical

situations, the number m of training examples is larger than µ. In such cases, the size of
memory required for storing V ′†

m is independent of m.
Yoneda et al. (1992) and Yamakawa et al. (1993) used a temporary memory of fixed

size to store some of the learned training examples in order to avoid forgetting the old
training examples through the sequential process. However, the optimal generalization
capability is not theoretically guaranteed in these methods. In contrast, Theorem 3
provides exactly the same generalization capability as that obtained by batch projection
learning despite the fact that it also uses a memory of fixed size.

6 Conclusion

In this paper, incremental projection learning was analyzed from the following aspects:
First, it was shown that some of the training examples regarded as redundant in most
incremental learning methods have potential effectiveness, and an improved criterion for
the redundancy of additional training examples was derived. Second, effective training
examples were classified into two categories from the viewpoint of improving generalization
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capability: One category consists of training examples which contribute to reducing the
bias of the learning results. The other category consists of training examples which
reduce the variance of the learning results. Finally, a simpler form of IPL under certain
conditions was given in which the size of memory required for storing prior results is fixed
and independent of the number total of training examples.

Appendices

A Proof of Theorem 1

We employ the notation used in Definition 2. Namely, let us consider the case where
(x̂, ŷ) is added to fm (see Fig.3). The following proof is also valid for the general case
where (xm+1, ym+1) is added to fm. The noise characteristics of (x̂, ŷ) are denoted as

q̂m+1 = En(n̂n(m)), (50)

σ̂ = En(n̂2), (51)

where n̂ is an additive noise in ŷ. All variables related to (x̂, ŷ) are denoted by ·̂, i.e.,

ψ̂ = K(x, x̂), (52)

ŝm+1 = Amψ̂ + q̂m+1, (53)

t̂m+1 = U †
mŝm+1, (54)

α̂m+1 = ψ̂(x̂) + σ̂ − 〈t̂m+1, ŝm+1〉, (55)

ξ̂m+1 = ψ̂ − A∗
mt̂m+1. (56)

Since learning results obtained by IPL and batch projection learning are always co-
incident with each other, learning results obtained by IPL do not depend on the order
of training examples. This implies that f̂m+i+1 can also be obtained by adding (x̂, ŷ) to
fm+i. By using this fact, we have the following lemma.

Lemma 1 If α̂m+1 = 0, then α̂m+i+1 = 0 for any positive integer i.

Proofs of all lemmas are given in Appendix D. Based on the above arrangements, we
shall proof Theorem 1.

(Proof of Theorem 1) Suppose ξ̂m+1 = 0. Since α̂m+1 ≥ 0, we shall start from the
case where α̂m+1 = 0. In this case, it follows from Proposition 2 that f̂m+1 = fm. Hence,
Lemma 1 implies f̂m+i+1 = fm+i for any positive integer i, which proves that (x̂, ŷ) is
redundant. Now, we show the case where α̂m+1 > 0. Let X̂m+1 be the projection learning
operator obtained from {(xi, yi)}m

i=1 ∪ {(x̂, ŷ)}. Since ξ̂m+1 = 0, it follows from eq.(56)
that

ψ̂ = A∗
mt̂m+1, (57)
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which implies ψ̂ ∈ R(A∗
m). In this case, it follows from Lemma 8 in Sugiyama and Ogawa

(2001) that
X̂m+1 = XmΓ∗

m+1 + Ym+1Γm+1(Im − UmU
†
m)Γ∗

m+1. (58)

Since the second term of the right-hand side of eq.(58) has no effect on learning results,
(x̂, ŷ) is clearly redundant.

B Proof of Theorem 2

For proving Theorem 2, the following lemma is used:

Lemma 2 It holds that

Jb = ‖PN (Am+1)f‖2 − ‖PN (Am)f‖2, (59)

Jv = tr(Xm+1Qm+1X
∗
m+1) − tr(XmQmX

∗
m), (60)

where tr(·) stands for the trace of an operator.

(Proof of Theorem 2) Assume that ψm+1 �∈ R(A∗
m). It follows from Lemma 1 in

Sugiyama and Ogawa (2001) that

Am+1 = Γm+1Am + e
(m+1)
m+1 ⊗ ψm+1, (61)

which implies R(A∗
m+1) ⊃ R(A∗

m). Hence, from eq.(59), we immediately have J b ≤ 0.
Since n(m) ∈ R(Um), it follows from Lemma 8 in Sugiyama and Ogawa (2001) that

tr(Xm+1Qm+1X
∗
m+1) = En‖Xm+1n

(m+1)‖2

= En‖Xmn
(m) +

〈n(m+1), hm+1〉
ψ̃m+1 (xm+1)

ψ̃m+1‖2, (62)

where hm+1 is an (m+ 1)-dimensional vector. defined as

hm+1 = e
(m+1)
m+1 − Γm+1(tm+1 +X∗

mξm+1). (63)

From Ogawa (1987), it holds that

R(XmUm) = R(A∗
m). (64)

Since n(m) ∈ R(Um) because of eqs.(10) and (9), if follows from eq.(21) that

〈Xmn
(m), ψ̃m+1〉 = 〈PN (Am)Xmn

(m), ψm+1〉 = 0. (65)

Hence, it follows from eq.(62) that

tr(Xm+1Qm+1X
∗
m+1) = En‖Xmn

(m)‖2 +
En|〈n(m+1), hm+1〉|2

‖ψ̃m+1‖2

= tr(XmQmX
∗
m) +

En|〈n(m+1), hm+1〉|2
‖ψ̃m+1‖2

, (66)
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which yields

Jv =
En|〈n(m+1), hm+1〉|2

‖ψ̃m+1‖2
≥ 0. (67)

Now, we shall prove the latter half. Assume that ψm+1 ∈ R(A∗
m). From eq.(61), it

holds that
R(A∗

m+1) = R(A∗
m). (68)

Hence, from eq.(59), we have Jb = 0. It follows from eqs.(10), (12), (8), and (11) that

Xm+1Qm+1X
∗
m+1 = Xm+1Um+1X

∗
m+1 −Xm+1Am+1A

∗
m+1X

∗
m+1

= V †
m+1A

∗
m+1U

†
m+1Um+1U

†
m+1Am+1V

†
m+1 − PR(A∗

m+1)P
∗
R(A∗

m+1)

= V †
m+1A

∗
m+1U

†
m+1Am+1V

†
m+1 − PR(A∗

m+1)

= V †
m+1Vm+1V

†
m+1 − PR(A∗

m+1)

= V †
m+1 − PR(A∗

m+1). (69)

From Lemma 5 in Sugiyama and Ogawa (2001), it holds that αm+1 > 0 since αm+1 ≥ 0
and ξm+1 �= 0. Hence, it follows from Lemma 7 in Sugiyama and Ogawa (2001) that

V †
m+1 = V †

m − ξ̃m+1 ⊗ ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
. (70)

Substituting eqs.(70) and (68) into eq.(69), we have

Xm+1Qm+1X
∗
m+1 = V †

m − ξ̃m+1 ⊗ ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
− PR(A∗

m)

= XmQmX
∗
m − ξ̃m+1 ⊗ ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
. (71)

Eqs.(60) and (71) yield

Jv = −tr(
ξ̃m+1 ⊗ ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
) = − ‖ξ̃m+1‖2

αm+1 + 〈ξ̃m+1, ξm+1〉
. (72)

Since V †
m is a non-negative operator from eq.(11), it follows from eq.(23) that

〈ξ̃m+1, ξm+1〉 ≥ 0. Since ψm+1 ∈ R(A∗
m), it follows from eq.(22) that ξm+1 ∈ R(A∗

m).
Hence, ξm+1 �= 0 yields ‖ξ̃m+1‖2 > 0 because R(V †

m) = R(A∗
m) (Ogawa, 1987). Since it

follows from Lemma 5 in Sugiyama and Ogawa (2001) that αm+1 > 0 if ξm+1 �= 0, eq.(72)
yields Jv < 0.
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C Proof of Theorem 3

For proving Theorem 3, the following lemmas are prepared.

Lemma 3 If Qm+1 is given by eq.(44) with σi > 0 for all i, then V ′
m+1 can be expressed

by using V ′
m as

V ′
m+1 = V ′

m +
ψm+1 ⊗ ψm+1

σm+1

. (73)

Lemma 4 If Qm+1 is given by eq.(44) with σi > 0 for all i, then V ′†
m+1 can be expressed

by using V ′†
m as follows:

(a) When ψm+1 �∈ R(A∗
m),

V ′†
m+1 = V ′†

m +
σm+1 + 〈V ′†

mψm+1, ψm+1〉
ψ̃m+1 (xm+1)

2 ψ̃m+1 ⊗ ψ̃m+1

−V
′†
mψm+1 ⊗ ψ̃m+1 + ψ̃m+1 ⊗ V ′†

mψm+1

ψ̃m+1 (xm+1)
. (74)

(b) When ψm+1 ∈ R(A∗
m),

V ′†
m+1 = V ′†

m − V ′†
mψm+1 ⊗ V ′†

mψm+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

. (75)

Lemma 5 If Qm+1 is given by eq.(44) with σi > 0 for all i, then Xm+1 can be expressed
by using Xm as

Xm+1 = XmΓ∗
m+1 + ζ ′m+1 ⊗ h′m+1, (76)

where h′m+1 is the (m+ 1)-dimensional vector defined as

h′m+1 = e
(m+1)
m+1 − Γm+1X

∗
mψm+1, (77)

and ζ ′m+1 is given as shown in Theorem 3.

(Proof of Theorem 3) It follows from eq.(6) that

fm+1 = Xm+1y
(m+1). (78)

From eqs.(78), (76), (6), (77), (3), and (47), we have

fm+1 = fm + 〈y(m+1), h′m+1〉ζ ′m+1

= fm + 〈y(m+1), e
(m+1)
m+1 − Γm+1X

∗
mψm+1〉ζ ′m+1

= fm + (ym+1 − 〈Xmy
(m), ψm+1〉)ζ ′m+1

= fm + (ym+1 − fm(xm+1))ζ
′
m+1

= fm + β ′
m+1ζ

′
m+1, (79)

which implies the theorem.
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D Proofs of lemmas

(Proof of Lemma 1)
To begin with, we prepare some relations. It follows from eqs.(50) and (16) that

q̂m+i+1 = Γm+iq̂m+i + En(n̂nm+i)e
(m+i)
m+i . (80)

From eqs.(53), (80), and (61), it holds that

ŝm+i+1 = (Γm+iAm+i−1 + e
(m+i)
m+i ⊗ ψm+i)ψ̂ + Γm+iq̂m+i + En(n̂nm+i)e

(m+i)
m+i

= Γm+i(Am+i−1ψ̂ + q̂m+i) + (〈ψ̂, ψm+i〉 + En(n̂nm+i))e
(m+i)
m+i

= Γm+iŝm+i + cm+ie
(m+i)
m+i , (81)

where cm+i is a scalar defined as

cm+i = 〈ψ̂, ψm+i〉 + En(n̂nm+i). (82)

Based on the arrangements, we show that α̂m+i+2 = 0 if α̂m+i+1 = 0 for any fixed integer
i > 0.

Since αm+i+1 ≥ 0, we shall start from the case where αm+i+1 > 0. It follows from
Lemma 4 in Sugiyama and Ogawa (2001) that

U †
m+i+1 =


 U †

m+i +
tm+i+1 ⊗ tm+i+1

αm+i+1
− tm+i+1
αm+i+1

− t∗m+i+1
αm+i+1

1
αm+i+1


 , (83)

where t∗m+i+1 is the complex conjugate of the transpose of tm+i+1. From eqs.(55), (54),
(83), and (81), it holds that

α̂m+i+2 = ψ̂(x̂) + σ̂ − 〈t̂m+i+2, ŝm+i+2〉
= ψ̂(x̂) + σ̂ − 〈U †

m+i+1ŝm+i+2, ŝm+i+2〉
= ψ̂(x̂) + σ̂ − 〈t̂m+i+1, ŝm+i+1〉 − (〈tm+i+1, ŝm+i+1〉 − cm+i+1)

2

αm+i+1

= α̂m+i+1 − (〈tm+i+1, ŝm+i+1〉 − cm+i+1)
2

αm+i+1

= −(〈tm+i+1, ŝm+i+1〉 − cm+i+1)
2

αm+i+1

. (84)

Since α̂m+i+2 ≥ 0, eq.(84) implies
α̂m+i+2 = 0. (85)

Next, we show the case where αm+i+1 = 0. Let a scalar γm+i+1 and an (m + i)-
dimensional matrix Tm+i+1 be

γm+i+1 = 1 + ‖tm+i+1‖2, (86)

Tm+i+1 = Im+i − tm+i+1 ⊗ tm+i+1

γm+i+1
. (87)
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It follows from Lemmas 2–4 in Sugiyama and Ogawa (2001) that

Um+i+1U
†
m+i+1ŝm+i+2 = ŝm+i+2, (88)

Um+i+1 =

(
Um+i sm+i+1

s∗m+i+1 ψm+i+1(xm+i+1) + σm+i+1

)
, (89)

U †
m+i+1 =




Tm+i+1U
†
m+iTm+i+1

Tm+i+1U
†
m+itm+i+1

γm+i+1

(Tm+i+1U
†
m+itm+i+1)

∗
γm+i+1

〈U†
m+itm+i+1, tm+i+1〉

γ2
m+i+1


 . (90)

From eqs.(88)–(90), and (81), we have

cm+i+1 = 〈tm+i+1, ŝm+i+1〉. (91)

Hence, it follows from eqs.(54), (90), and (81) that

〈t̂m+i+2, ŝm+i+2〉 = 〈t̂m+i+1, ŝm+i+1〉. (92)

Substituting eq.(92) into eq.(55), we have

α̂m+i+2 = 〈ψ̂, ψ̂〉 + σ̂ − 〈t̂m+i+1, ŝm+i+1〉 = α̂m+i+1 = 0. (93)

Eqs.(85) and (93) prove that α̂m+i+2 = 0 if α̂m+i+1 = 0, and hence α̂m+i+1 = 0 for any
positive integer i.

(Proof of Lemma 2)
It holds from eqs.(13) and (8) that

‖Enfm − f‖2 = ‖EnXmAmf + EnXmn
(m) − f‖2

= ‖PR(A∗
m)f − f‖2

= ‖PN (Am)f‖2, (94)

which implies eq.(59). Similarly, it holds from eqs.(13) and (9) that

En‖fm −Enfm‖2 = En‖XmAmf +Xmn
(m) − EnXmAmf −EnXmn

(m)‖2

= En‖Xmn
(m)‖2

= Entr(Xm

(
n(m) ⊗ n(m)

)
X∗

m)

= tr(XmQmX
∗
m), (95)

which implies eq.(60).

(Proof of Lemma 3)
It follows from eq.(45) that

V ′
m+1 = A∗

m+1Q
−1
m+1Am+1. (96)
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From eq.(44), we have

Q−1
m+1 = Γm+1Q

−1
m Γ∗

m+1 +
e
(m+1)
m+1 ⊗ e

(m+1)
m+1

σm+1

. (97)

Since Γ∗
m+1e

(m+1)
m+1 = 0, eqs.(96), (97), and (61) yield eq.(73).

(Proof of Lemma 4)
Eqs.(74) and (75) hold from eq.(73) and Theorem 4.6 in Albert (1972).

(Proof of Lemma 5)
Since Qm+1 is positive definite, it holds that

R(Qm+1) ⊃ R(Am+1). (98)

Hence, it follows from eq.(43) that

Xm+1 = V ′†
m+1A

∗
m+1Q

−1
m+1. (99)

Since Γ∗
m+1e

(m+1)
m+1 = 0, eqs.(99), (61), and (97) yield

Xm+1 = V ′†
m+1A

∗
mQ

−1
m Γ∗

m+1 +
V ′†

m+1ψm+1 ⊗ e
(m+1)
m+1

σm+1
. (100)

When ψm+1 �∈ R(A∗
m), it follows from eqs.(74) and (43) that

V ′†
m+1A

∗
mQ

−1
m = V ′†

mA
∗
mQ

−1
m − ψ̃m+1 ⊗Q−1

m AmV
′†

mψm+1

ψ̃m+1 (xm+1)

= Xm − ψ̃m+1 ⊗X∗
mψm+1

ψ̃m+1 (xm+1)
, (101)

V ′†
m+1ψm+1 = V ′†

mψm+1 +
σm+1 + 〈V ′†

mψm+1, ψm+1〉
ψ̃m+1(xm+1)

ψ̃m+1 − V ′†
mψm+1

−〈V ′†
mψm+1, ψm+1〉
ψ̃m+1(xm+1)

ψ̃m+1

=
σm+1

ψ̃m+1(xm+1)
ψ̃m+1, (102)

since eq.(21) yields Amψ̃m+1 = 0, From eqs.(100), (101), (102), and (77), we have

Xm+1 = XmΓ∗
m+1 −

ψ̃m+1 ⊗ Γm+1X∗
mψm+1

ψ̃m+1(xm+1)
+
ψ̃m+1 ⊗ e

(m+1)
m+1

ψ̃m+1(xm+1)

= XmΓ∗
m+1 +

ψ̃m+1 ⊗ h′m+1

ψ̃m+1 (xm+1)
. (103)
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Similarly when ψm+1 ∈ R(A∗
m), it follows from eqs.(75) and (43) that

V ′†
m+1A

∗
mQ

−1
m = V ′†

mA
∗
mQ

−1
m − V ′†

mψm+1 ⊗Q−1
m AmV

′†
mψm+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

= Xm − V ′†
mψm+1 ⊗X∗

mψm+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

, (104)

V ′†
m+1ψm+1 = V ′†

mψm+1 − 〈V ′†
mψm+1, ψm+1〉V ′†

mψm+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

=
σm+1V

′†
mψm+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

. (105)

From eqs.(100), (104), (105), and (77), we have

Xm+1 = XmΓ∗
m+1 −

V ′†
mψm+1 ⊗ Γm+1X∗

mψm+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

+
V ′†

mψm+1 ⊗ e
(m+1)
m+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

= XmΓ∗
m+1 +

V ′†
mψm+1 ⊗ h′m+1

σm+1 + 〈V ′†
mψm+1, ψm+1〉

.

(106)

Eqs.(103) and (106) prove Lemma 5.
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