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Abstract

In many practical situations in supervised learning, it is often expected to further
improve the generalization capability after the learning process has been completed.
One of the common approaches to improving the generalization capability is to add
training examples. In view of the learning methods of human beings, it seems
natural to build posterior learning results upon prior results, which is generally re-
ferred to as incremental learning. In this paper, a method of incremental projection
learning (IPL) is presented. IPL provides exactly the same learning result as that
obtained by batch projection learning. The effectiveness of the presented method is
demonstrated through computer simulations.
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Nomenclature

Cm m-dimensional unitary space
H Hilbert space
〈·, ·〉 inner product in H or Cm

‖ · ‖ norm in H or Cm

· ⊗ · Neumann-Schatten product
K(·, ·) reproducing kernel of H
xi input of neural networks
yi output of neural networks
(xi, yi) training examples
y(m) m-dimensional vector consisting of {yi}mi=1

ni additive noise
n(m) m-dimensional vector consisting of {ni}mi=1

wi weight of neural networks
ui basis function in neural networks
f function of learning target
fm learning result from a set of m training examples
Am sampling operator for a set of m training examples
Xm learning operator for a set of m training examples
ψi sampling function of the i-th training example
Qm noise correlation matrix of a set of m training examples
qm+1 noise covariance of the (m+ 1)-st training example
σm+1 noise variance of the (m+ 1)-st training example
Im identity matrix on Cm

e
(m)
i i-th vector of the standard basis in Cm

En ensemble average over noise
A∗ adjoint operator of A
A† Moore-Penrose generalized inverse of A
R(A) range of A
N (A) null space of A
PS orthogonal projection operator onto a subspace S
αm+1, βm+1 scalars

ψ̃m+1, ξm+1, ξ̃m+1, ζm+1 functions in H
sm+1, tm+1 elements in Cm

Um operator from Cm to Cm

Vm operator from H to H
Ym operator from Cm to H
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1 Introduction

Supervised learning is obtaining an underlying rule by using training examples sampled
from the environment. Neural networks (NNs) are expected not only to memorize the
training examples, but also to acquire the generalization capability.

In many practical situations in neural network learning, it is often expected to further
improve the generalization capability after the learning process has been completed. One
of the common approaches to improving the generalization capability is to add training
examples to the neural network. In view of the learning methods of human beings, it
seems natural to build posterior learning results upon prior results. This learning method
is generally called incremental learning. Incremental learning also plays an important role
when we work on active learning, which has been extensively studied recently (MacKay,
1992b; Cohn, 1996; Fukumizu, 1996; Vijayakumar et al., 1998; Sugiyama & Ogawa, 2000).
In these methods, the choice of training examples to be learned next is determined by an-
alyzing the intermediate learning result. Incremental learning is, therefore, indispensable
for performing active learning.

Many incremental learning methods have been devised so far. Many of them are based
on the idea of allocating novel hidden units when new training examples are added, and
adjusting weights on the connections to the novel units. In this approach, the number
of hidden units tends to increase with a gain in the total number of training examples.
In order to prevent too many hidden units being allocated, Platt (1991) introduced the
novelty criteria and proposed an incremental learning algorithm. Briefly, the algorithm
can be described as follows: First, learning starts with no hidden units. The NN grows by
allocating a new hidden unit whose input-output relation is a radial basis function based
on the novelty of the training example given sequentially. If the training example has no
novelty, then the existing parameters of the NN are adjusted by the least mean squares
algorithm to fit the additional training example without adding novel units. If the training
example satisfies the novelty criteria, then a new hidden unit is added and the weights
on the connections to the unit are adjusted. A neural network trained by the algorithm
is called the resource allocating network (RAN). Kadirkamanathan and Niranjan (1993)
gave an interpretation of RAN from the functional analytic point of view and showed
that better approximations can be obtained by using the extended Kalman filter instead
of the least mean squares algorithm. Moreover, Molina and Niranjan (1996) improved
the algorithm by making it applicable to neural networks whose number of hidden units
is limited. Yingwei et al. (1997, 1998) combined RAN with a procedure for pruning
redundant hidden units.

In RAN and its derivatives, however, there is a crucial problem: Old training examples
tend to be forgotten as the sequential process progress. In order to avoid the forgetfulness,
the idea of storing some of the learned training examples in temporary memory has arisen
(Yoneda et al., 1992; Yamakawa et al., 1993). But, it is difficult to store training examples
sampled from a wide region into a limited memory space with these methods. Yamauchi
and Ishii (1995) took an interesting approach to deal with the problem: First, a region
which will be interfered with by incremental learning is inferred, and artificial training
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examples which will prevent the interference is created. Then, incremental learning takes
place by using both newly added and created training examples.

Although RAN, its derivatives, and other incremental learning methods (Zhang, 1994;
Vyšniauskas et al., 1995; Jutten & Chentouf, 1995; Vijayakumar & Schaal, 1998) improve
the efficiency in computation, the optimal generalization capability is not theoretically
guaranteed. Recently, Amari (1998) proposed the natural gradient method for training
stochastic neural networks. He proved that the generalization capability obtained by
the on-line version of the natural gradient method is asymptotically the same as that
obtained by the batch version. A similar method is also given in Murata (1999). Even
in these methods, however, the optimal generalization capability is not guaranteed in the
non-asymptotic case. In practice, the number of training examples is always finite.

Ogawa (1989, 1992) formulated the NN learning problem as an inverse problem from
the functional analytic point of view. In his papers, it has been shown that optimal
image restoration filters such as the projection filter (Ogawa, 1987) and the Wiener filter
(Ogawa & Oja, 1986) can be applied to the NN learning problem. These filters are called
projection learning, Wiener learning etc. in the learning case. Within his framework,
incremental Wiener learning in the absence of noise has been devised (Vijayakumar &
Ogawa, 1998), in which the generalization capability is proved to be exactly the same as
that obtained by batch Wiener learning even in the non-asymptotic case.

In this paper, we present a method of incremental projection learning in the presence
of noise. This method provides exactly the same generalization capability as that obtained
by batch projection learning. This paper is organized as follows: Section 2 formulates the
NN learning problem. In Section 3 and Section 4, a method of incremental projection
learning is proposed. Finally, Section 5 is devoted to computer simulations, demonstrating
the effectiveness of the proposed incremental learning method. Properties of the proposed
method will be studied in a separate paper (Sugiyama & Ogawa, 2000a).

2 Formulation of NN learning problem

In this section, the NN learning problem is formulated (see Ogawa, 1992).
Let us consider a learning problem of a three-layer feedforward NN whose numbers

of input and output units are L and 1, respectively. The relationship between input
x = (η1, · · · , ηL)� and output y of the network can be expressed by using a function f0(x)
of L variables as

y = f0(x). (1)

The NN learning problem is to obtain the optimal approximation to a target function f
from a set of m training examples made up of inputs xi ∈ RL and corresponding outputs
yi ∈ C:

{(xi, yi)|yi = f(xi) + ni}mi=1, (2)

where yi is degraded by additive noise ni.
In many NN learning methods devised so far, learning algorithms are built upon a

certain architecture of NNs, i.e., a fixed number of hidden units, each with a prespecified
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sigmoidal or Gaussian function. However, the restrictions sometimes prevent us from
obtaining the optimal approximation. Therefore, we may divide our NN learning problem
into two steps: The first step performs a function approximation from training examples,
and a NN representing the approximated function is constructed in the second step.

To begin with, we explain the function approximation problem corresponding to the
first step. Let n(m) and y(m) denote m-dimensional vectors whose i-th elements are ni and
yi, respectively. y (m) is called a sample value vector, and a space to which y(m) belongs
is called a sample value space. In this paper, the underlying function f(x) is assumed to
belong to a reproducing kernel Hilbert space H (Aronszajn, 1950; Bergman, 1970; Saitoh,
1988, 1997). If H is unknown, then it can be estimated by model selection methods
(Akaike, 1974; MacKay, 1992a; Murata et al., 1994; Sugiyama & Ogawa, 2001b, 2001c).
Let D be the domain of f . The reproducing kernelK(x, x′) is a bivariate function defined
on D ×D which satisfies the following conditions:

• For any fixed x′ in D, K(x, x′) is a function of x in H.

• For any function f in H and for any x′ in D, it holds that

〈f(·),K(·, x′)〉 = f(x′), (3)

where 〈·, ·〉 denotes the inner product in H.

Note that the reproducing kernel is unique if it exists. In the theory of the Hilbert space,
arguments are developed by regarding a function as a point in that space. Thus, the value
of a function at a point can not be discussed within the general framework of the Hilbert
space. However, if the Hilbert space has the reproducing kernel, then it is possible to deal
with the value of a function at a point. Indeed, if a function ψi(x) is defined as

ψi(x) = K(x, xi), (4)

then the value of f at a sample point xi can be expressed as

f(xi) = 〈f, ψi〉. (5)

For this reason, ψi is called a sampling function. Let Am be an operator mapping f to
an m-dimensional vector whose i-th element is f(xi). Am is called a sampling operator.
Note that Am is always a linear operator even when we are concerned with a non-linear
function f . Indeed, Am can be expressed by using the Neumann-Schatten product1 as

Am =
m∑

i=1

(
e
(m)
i ⊗ ψi

)
, (6)

1For any fixed g in a Hilbert space H1 and any fixed f in a Hilbert space H2, the Neumann-Schatten
product (f ⊗ g) is an operator from H1 to H2 defined by using any h ∈ H1 as (Schatten, 1970)

(f ⊗ g)h = 〈h, g〉f.
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Figure 1: NN learning as an inverse problem.

where e
(m)
i is the i-th vector of the so-called standard basis in Cm, i.e., e

(m)
i is the m-

dimensional vector where all elements are zero except the i-th element which is equal to
one. Then, the relationship between f and y(m) can be expressed as

y(m) = Amf + n(m). (7)

Let us denote a learning result obtained from m training examples by fm, and the rela-
tionship between y(m) and fm as

fm = Xmy
(m), (8)

where Xm is called a learning operator. Consequently, the first step of the NN learning
problem can be reformulated as an inverse problem of obtaining Xm which provides the
best approximation fm to f under a certain criterion (Fig.1). Since image and signal
restoration problems discussed in Ogawa (1987) and Ogawa et al. (1989) are also formu-
lated as the same form of inverse problems, the criteria for optimal restoration discussed
in these papers, e.g. the Wiener filter criterion and the projection filter criterion, can be
applied to our function approximation problem.

Now we go on to the second step, i.e., the construction of a NN representing fm. In
this step, the number N of hidden units, basis functions {ui(x)}Ni=1, and weights {wi}Ni=1

on hidden-output connections are determined (Fig.2). In conventional neural networks,
the following basis function is commonly used:

ui(x) = σ(
L∑

j=1

wijηj), (9)
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Figure 2: Optimally generalizing neural network (OGNN).

where σ(·) is a sigmoidal activation function and wij is a weight on the connection between
the j-th input unit and the i-th hidden unit. A NN representing a function obtained in the
first step is called an optimally generalizing NN (OGNN). A general construction method
of OGNNs was given in Ogawa (1992, 1995). The method shows that there exist infinite
degrees of freedom in OGNNs. Utilizing these degrees of freedom effectively, Nakazawa
and Ogawa (1996) gave a robust construction method of OGNNs. NNs constructed by the
method are specifically resistant to noise on the output of hidden units and connection
faults.

In this paper, we focus on the function approximation problem corresponding to the
first step and devise an incremental learning method.

3 Exact incremental learning

In this section, a method of incremental projection learning (IPL) is derived.

3.1 Learning criterion

As mentioned in the previous section, function approximation is performed on the basis
of a learning criterion. In this paper, we adopt the projection learning criterion. Here,
the definition of projection learning is reviewed.
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Let us restrict our discussion within the case where the learning operator Xm is linear.
In this case, it follows from eqs.(8) and (7) that the learning result fm can be decomposed
as

fm = XmAmf +Xmn
(m). (10)

The first and second terms of eq.(10) are called the signal and noise components of fm,
respectively. Let En be the ensemble average over noise. Then, it follows from eq.(10)
that

Enfm = XmAmf, (11)

and hence the average of fm belongs to R(XmAm), where R(·) denotes the range of an
operator. Let PS be the orthogonal projection operator onto a subspace S. In order to
minimize the bias of fm, XmAmf should agree with the orthogonal projection of f onto
R(XmAm):

XmAmf = PR(XmAm)f. (12)

From Albert (1972), the operator equation

XmAm = PS (13)

has a solution if and only if S ⊂ R(A∗
m), where A∗

m denotes the adjoint operator of Am.
Since bigger R(XmAm) provides better approximation, we adopt the largest one:

R(XmAm) = R(A∗
m). (14)

For this reason, R(A∗
m) is called the approximation space. In order to reduce the gener-

alization error, the variance of fm should be minimized under the constraint of eq.(13)
with S = R(A∗

m). This learning method is called projection learning:

Definition 1 (Projection learning) (Ogawa, 1987) An operator Xm is called the pro-
jection learning operator if Xm minimizes the functional

JP [Xm] = En‖Xmn
(m)‖2 (15)

under the constraint
XmAm = PR(A∗

m). (16)

Let Im and Ym be the identity matrix on Cm and an arbitrary operator from Cm to
H, respectively, and

Qm = En

(
n(m) ⊗ n(m)

)
, (17)

Um = AmA
∗
m +Qm, (18)

Vm = A∗
mU

†
mAm, (19)

where † stands for the Moore-Penrose generalized inverse2. Then, the following proposi-
tion holds.

2An operator X is called the Moore-Penrose generalized inverse of an operator A if X satisfies the
following four conditions (Albert, 1972).

AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA.

Note that the Moore-Penrose generalized inverse is unique and denoted as A†.
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Proposition 1 (Ogawa, 1987) A general form of the projection learning operator is given
as

Xm = V †
mA

∗
mU

†
m + Ym(Im − UmU

†
m). (20)

There are various methods of calculating the projection learning operator Xm and the
projection learning result fm by matrix operation. Here, we show one of the simplest
methods valid for a finite dimensional Hilbert space H.

When the dimension of H, denoted by µ, is finite, functions in H can be expressed in
the form of

f(x) =
µ∑

j=1

ajϕj(x), (21)

where {ϕj}µj=1 is an orthonormal basis in H and {aj}µj=1 is its coefficients. Let us consider
a µ-dimensional parameter space in which functions in H are expressed as

f = (a1, a2, · · · , aµ)
�. (22)

If we regard this parameter space as H, then the sampling function ψi is expressed as

ψi = (ϕ1(xi), ϕ2(xi), · · · , ϕµ(xi))
∗, (23)

where (a1, a2, · · · , aµ)
∗ denotes the complex conjugate of the transpose of (a1, a2, · · · , aµ).

Hence, the sampling operator Am becomes an m× µ matrix whose (i, j)-element is

[Am]ij = ϕj(xi). (24)

In practice, the calculation of the Moore-Penrose generalized inverse is sometimes un-
stable. To overcome the unstableness, we recommend to use Tikhonov’s regularization
(Tikhonov & Arsenin, 1997):

A†
m ←− A∗

m(AmA
∗
m + εI)−1, (25)

where ε is a small constant, say ε = 10−4.
Under the projection learning criterion, we devise an incremental learning method in

the presence of noise. We call the method incremental projection learning (IPL). It has
been shown that learning results obtained by projection learning are invariant under the
inner product used in the sample value space (Yamashita & Ogawa, 1992). Hence, the
Euclidean inner product is adopted without loss of generality.

3.2 Incremental projection learning

Let us consider the case where the (m+ 1)-st training example (xm+1, ym+1) is added to
fm. It follows from eq.(8) that a learning result fm+1 obtained from (m + 1) training
examples {(xi, yi)}m+1

i=1 in a batch manner can be expressed as

fm+1 = Xm+1y
(m+1). (26)
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Figure 3: Exact incremental learning and batch learning.

The suffix m+ 1 indicates the total number of training examples. In order to devise an
exact incremental learning method, let us calculate fm+1 by using fm and (xm+1, ym+1),
as illustrated in Fig.3.

Let the noise characteristics of an additional training example (xm+1, ym+1) be

qm+1 = En(nm+1n
(m)), (27)

σm+1 = En|nm+1|2, (28)

where nm+1 denotes the complex conjugate of nm+1. Note that qm+1 is an m-dimensional
vector while σm+1 is a scalar. Let an (m + 1) ×m matrix Γm+1, m-dimensional vectors
sm+1, tm+1, and a scalar αm+1 be

Γm+1 =
m∑

i=1

(
e
(m+1)
i ⊗ e(m)

i

)
, (29)

sm+1 = Amψm+1 + qm+1, (30)

tm+1 = U †
msm+1, (31)

αm+1 = ψm+1(xm+1) + σm+1 − 〈tm+1, sm+1〉. (32)

Γm+1 expands an m-dimensional vector h into an (m+1)-dimensional vector, while Γ∗
m+1
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removes the (m+ 1)-th element as follows:

(
h
0

)
= Γm+1h, h = Γ∗

m+1

(
h
c

)
, (33)

where c is a scalar. From eq.(5), ψm+1(xm+1) in eq.(32) agrees with ‖ψm+1‖2. Then, we
have the following lemmas.

Lemma 1 Am+1 can be expressed by using Am as

Am+1 = Γm+1Am + e
(m+1)
m+1 ⊗ ψm+1. (34)

Lemma 2 Um+1 can be expressed by using Um as

Um+1 =

(
Um sm+1

s∗m+1 ψm+1(xm+1) + σm+1

)
, (35)

where s∗m+1 is the complex conjugate of the transpose of sm+1.

Lemma 3 It holds that

sm+1 ∈ R(Um), (36)

αm+1 ≥ 0. (37)

Proofs of all lemmas are given in Appendix. In these proofs, the following proposition
plays an important role.

Proposition 2 (Albert, 1972) Let Sm, s, and ν be a non-negative3 m-dimensional matrix,
an m-dimensional vector, and a scalar, respectively. Let Sm+1 be an (m+ 1)-dimensional
matrix defined as

Sm+1 =

(
Sm s
s∗ ν

)
. (38)

Then, it holds that

s ∈ R(Sm), (39)

ν − 〈S†
ms, s〉 ≥ 0, (40)

if and only if Sm+1 is non-negative.

From Albert (1972), it is easily confirmed that rank(Um+1) = rank(Um) if and only if
αm+1 = 0. Whether αm+1 is zero or not is crucial in the derivation of IPL. First, we shall
discuss the case where αm+1 = 0.

3An operator T is said to be non-negative if 〈Tf, f〉 ≥ 0 for any f . If 〈Tf, f〉 > 0 for any f 	= 0, T is
said to be positive definite.
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Theorem 1 If αm+1 = 0, then
fm+1 = fm. (41)

A proof of Theorem 1 is given in Section 4. Theorem 1 says that the learning result
does not change at all by adding (xm+1, ym+1) if αm+1 = 0. Generally, the training
examples which cause fm+1 = fm are regarded as redundant. However, as shown in
Sugiyama and Ogawa (2001a), the redundancy of training examples can not be judged by
simply comparing fm+1 with fm.

Now, we shall discuss the case where αm+1 > 0. Let N (Am) and PN (Am) be the
null space of Am and the orthogonal projection operator onto N (Am), respectively. Let
functions ψ̃m+1, ξm+1, ξ̃m+1, and a scalar βm+1 be defined as

ψ̃m+1 = PN (Am)ψm+1 (= ψm+1 − A†
mAmψm+1), (42)

ξm+1 = ψm+1 −A∗
mtm+1, (43)

ξ̃m+1 = V †
mξm+1, (44)

βm+1 = ym+1 − fm(xm+1)− 〈y(m) −Amfm, tm+1〉. (45)

Then, we have the following theorem.

Theorem 2 (Incremental projection learning) When αm+1 > 0, a posterior projec-
tion learning result fm+1 can be obtained by using prior results fm, Am, U †

m, V †
m, and y(m)

as
fm+1 = fm + βm+1ζm+1, (46)

where ζm+1 is given as follows:

(a) When ψm+1 	∈ R(A∗
m),

ζm+1 =
ψ̃m+1

ψ̃m+1 (xm+1)
. (47)

(b) When ψm+1 ∈ R(A∗
m),

ζm+1 =
ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
. (48)

A proof of Theorem 2 is also given in Section 4. Note that learning results obtained by
IPL in Theorem 2 are exactly the same as those obtained by batch projection learning. In
the second term of the right-hand side of eq.(46), βm+1 depends on the value of ym+1 while
ζm+1 does not. ψ̃m+1 (xm+1) in eq.(47) is equivalent to ‖ψ̃m+1‖2 (see eqs.(5) and (42)).
The condition ψm+1 	∈ R(A∗

m) means that ψm+1 is linearly independent of {ψi}mi=1, i.e., the
approximation space R(A∗

m+1) becomes wider than R(A∗
m). In contrast, ψm+1 ∈ R(A∗

m)
means that ψm+1 is linearly dependent of {ψi}mi=1, and hence the approximation space
R(A∗

m+1) is equal to R(A∗
m). Whether ψm+1 ∈ R(A∗

m) or not can be easily checked since
ψm+1 ∈ R(A∗

m) if and only if

PN (Am)ψm+1 = ψ̃m+1 = 0. (49)
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In practice, we recommend to use the following criterion.

if ‖ψ̃m+1‖2 < ε then ψm+1 ∈ R(A∗
m),

where ε is a small constant, say ε = 10−4. Properties of IPL are studied in detail in a
separated paper (Sugiyama & Ogawa, 2001a).

4 Proofs of Theorem 1 and Theorem 2

This section is devoted to proving Theorem 1 and Theorem 2.
Let an (m+1)-dimensional vector hm+1, a scalar γm+1, and an m-dimensional matrix

Tm+1 be defined as

hm+1 = e
(m+1)
m+1 − Γm+1(tm+1 +X∗

mξm+1), (50)

γm+1 = 1 + ‖tm+1‖2, (51)

Tm+1 = Im − tm+1 ⊗ tm+1

γm+1
. (52)

The following lemmas are prepared for proving the theorems.

Lemma 4 U †
m+1 can be expressed by using U†

m as follows:

(i) When αm+1 > 0,

U †
m+1 =


 U †

m +
tm+1 ⊗ tm+1

αm+1
− tm+1
αm+1

− t
∗
m+1
αm+1

1
αm+1


 . (53)

(ii) When αm+1 = 0,

U †
m+1 =




Tm+1U
†
mTm+1

Tm+1U
†
mtm+1

γm+1

(Tm+1U
†
mtm+1)

∗
γm+1

〈U†
mtm+1, tm+1〉
γ2

m+1


 . (54)

Lemma 5 αm+1 = 0 if and only if the following three conditions hold.

ξm+1 = 0, (55)

qm+1 = Qmtm+1, (56)

σm+1 = 〈Q†
mqm+1, qm+1〉. (57)

Lemma 6 Vm+1 can be expressed by using Vm as follows:

(i) When αm+1 > 0,

Vm+1 = Vm +
ξm+1 ⊗ ξm+1

αm+1
. (58)
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(ii) When αm+1 = 0,
Vm+1 = Vm. (59)

Lemma 7 V †
m+1 can be expressed by using V †

m as follows:

(i) When αm+1 > 0 and ψm+1 	∈ R(A∗
m),

V †
m+1 = V †

m +
αm+1 + 〈ξ̃m+1, ξm+1〉

ψ̃m+1 (xm+1)
2 ψ̃m+1 ⊗ ψ̃m+1

− ξ̃m+1 ⊗ ψ̃m+1 + ψ̃m+1 ⊗ ξ̃m+1

ψ̃m+1 (xm+1)
. (60)

(ii) When αm+1 > 0 and ψm+1 ∈ R(A∗
m),

V †
m+1 = V †

m −
ξ̃m+1 ⊗ ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
. (61)

(iii) When αm+1 = 0,
V †

m+1 = V †
m. (62)

Lemma 8 Xm+1 can be expressed by using Xm as

Xm+1 = XmΓ∗
m+1 +

(
ζm+1 ⊗ hm+1

)
+ Ym+1Γm+1(Im − UmU

†
m)Γ∗

m+1, (63)

where Ym+1 is an arbitrary operator from Cm+1 to H and ζm+1 is given as follows:

(i) When αm+1 > 0 and ψm+1 	∈ R(A∗
m), ζm+1 is given as eq.(47).

(ii) When αm+1 > 0 and ψm+1 ∈ R(A∗
m), ζm+1 is given as eq.(48).

(iii) When αm+1 = 0, ζm+1 is given as

ζm+1 =
Xmtm+1

γm+1
+ Ym+1hm+1. (64)

Lemma 9 It holds that
〈y(m+1), hm+1〉 = βm+1. (65)

Lemma 10 If αm+1 = 0, then
βm+1 = 0. (66)

Based on the above arrangements, we shall prove Theorem 1 and Theorem 2.

(Proof of Theorem 1) A learning result fm+1 obtained from (m+1) training examples
in a batch manner is given as eq.(26). Since y(m) belongs to R(Um), it follows from
eqs.(26), and (63) that fm+1 is expressed as

fm+1 = fm + 〈y(m+1), hm+1〉ζm+1. (67)

When αm+1 = 0, eqs.(65)–(67) yield eq.(41).

(Proof of Theorem 2) Theorem 2 is clear from eq.(26), Lemma 8, and Lemma 9.
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5 Computer simulations

In this section, two kinds of computer simulations are performed to demonstrate the
effectiveness of the proposed incremental learning method. In Section 5.1, IPL is compared
with usual incremental learning methods. In Section 5.2, IPL is applied to a real world
problem such as learning of the sensorimotor map of two-joint robot arms.

5.1 Performance comparison: IPL vs. RAN and on-line BP

We shall compare IPL with the resource allocating network (RAN) proposed by Platt
(1991) and so-called on-line back propagation (on-line BP). In RAN, radial basis functions
(RBFs) are adopted as basis functions. Briefly, the algorithm of RAN can be described
as follows: Learning starts with no hidden units and the NN grows by allocating a new
hidden unit based on the novelty in the additional training example. If the training
example has no novelty, then the existing parameters of the NN are adjusted by the
least mean squares algorithm to fit the additional example without adding novel units.
Otherwise, a new hidden unit is added and the weights on the connections to the unit
are adjusted. On the other hand, sigmoidal functions are adopted as hidden activation
functions in on-line BP.

Let us consider the problem of approximating the following function.

f(x) = 2x− 14e−3(x−2.5)2 − 5e−6(x−0.5)2 + 3e−3x2

+ 12e−(x+2.5)2, (68)

whose domain is [−π, π]. Learning simulations are carried out in the following conditions:

(a) IPL: H is spanned by {1,√2 cos kx,
√

2 sin kx}4k=1 and the inner product is defined
as

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x)dx. (69)

(b) RAN: Parameters are assigned as δmax = 1, κ = 0.87, δmin = 0.05, and ε = 0.01.

(c) on-line BP: The number of hidden units is fixed to 30 throughout the learning
process.

Note that the target function f does not belong to H in (a), and it is not realizable in
(b) and (c). In this simulation, we measure the generalization error of a learning result
f0(x) by

Gen.err =
1

126

125∑
k=0

[f(−π + 0.05k)− f0(−π + 0.05k)]2 . (70)

Forty training examples {(xi, yi)}40
i=1 is randomly sampled from the domain.

Learning results in the case Qm = Im are shown in Fig.4. The solid and dashed
lines denote the target function f and a learning result of each method, respectively. ◦
indicates a training example. The generalization errors of IPL, RAN, and on-line BP
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(a) IPL: Gen.err = 0.32

−3 −2 −1 0 1 2 3

−10

−8

−6

−4

−2

0

2

4

6

8

10

−3 −2 −1 0 1 2 3

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) RAN: Gen.err = 0.86 (c) on-line BP: Gen.err = 3.25

Figure 4: Learning simulation 1 (Qm = Im). The solid and dotted lines denote the target
function f(x) and a learning result, respectively. ◦ indicates a training example.

measured by eq.(70) are 0.32, 0.86, and 3.25, respectively. The results show that IPL
provides better generalization capability than RAN and on-line BP. Note that the result
of RAN is also good enough. Learning results in the case Qm = 3Im are shown in
Fig.5. The generalization errors of IPL, RAN, and on-line BP are 1.23, 8.61, and 3.89,
respectively. In the second simulation, IPL also provides better generalization capability
than RAN and on-line BP. The generalization errors of RAN and on-line BP are very
large, which implies that RAN and on-line BP may not sufficiently suppress the effect of
noise.

From the point of view of learning criteria, the reason why IPL works well can be ex-
plained as follows: For the signal component of the learning result, the projection learning



Incremental Projection Learning for Optimal Generalization 17

−3 −2 −1 0 1 2 3

−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) IPL: Gen.err = 1.23
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(b) RAN: Gen.err = 8.61 (c) on-line BP: Gen.err = 3.89

Figure 5: Learning simulation 2 (Qm = 3Im). The solid and dotted lines denote the target
function f(x) and a learning result, respectively. ◦ indicates a training example.

criterion is aimed at minimizing the generalization error (Ogawa, 1987) while the crite-
ria of RAN and on-line BP are aimed at fitting an additional example. For the noise
component of the learning result, the projection learning criterion requires the effect of
noise to be systematically suppressed. On the other hand, RAN and on-line BP avoid
over-fitting the noisy data by smoothing the learning results, which is attained by appro-
priately determining the width of RBFs, the number of hidden units, etc. Furthermore,
since learning results obtained by IPL are exactly the same as those obtained by batch
projection learning, IPL provides better generalization capability than RAN and on-line
BP.
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Figure 6: A two-joint robot arm.

5.2 Sensorimotor map learning

Let us consider learning of sensorimotor maps of a two-joint robot arm shown in Fig.6.
A sensorimotor map is a mapping from joint angle θi, angular velocity θ̇i, and angular
acceleration θ̈i to torque τi which should be applied to each joint:

τi = f (i)(θ1, θ2, θ̇1, θ̇2, θ̈1, θ̈2) for i = 1, 2, (71)

where −π ≤ θ1, θ2 ≤ π, −a ≤ θ̇1 ≤ a, −b ≤ θ̇2 ≤ b, −c ≤ θ̈1 ≤ c, and −d ≤ θ̈2 ≤ d.
Function spaces Hi to which f (i) belong are given as follows (Vijayakumar, 1998):

H1 = L{θ̈1, θ̈2, θ̈1 cos θ2, θ̈2 cos θ2,

θ̇2
2
sin θ2, θ̇1θ̇2 sin θ2, sin θ1, sin θ1 cos θ2, sin θ2 cos θ1}, (72)

H2 = L{θ̈1, θ̈2, θ̈1 cos θ2, θ̇2 sin θ2, sin θ1 cos θ2, sin θ2 cos θ1}, (73)

where H = L(ϕ1, ϕ2, · · · , ϕk) means that H is spanned by ϕ1, ϕ2, · · · , ϕk. The inner
product in Hi is defined as

〈f, g〉 =
1

64π2abcd

∫ d

−d

∫ c

−c

∫ b

−b

∫ a

−a

∫ π

−π

∫ π

−π
f(x)g(x) dθ1dθ2dθ̇1dθ̇2dθ̈1dθ̈2. (74)

We shall perform a learning simulation of the sensorimotor map f (1). From eqs.(72)

and (74), an orthonormal basis {ϕ(1)
i }9i=1 in H1 is given as follows:

ϕ
(1)
1 =

√
3

c
θ̈1, (75)
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ϕ
(1)
2 =

√
3

d
θ̈2, (76)

ϕ
(1)
3 =

√
6

c
θ̈1 cos θ2, (77)

ϕ
(1)
4 =

√
6

d
θ̈2 cos θ2, (78)

ϕ
(1)
5 =

√
10

b2
θ̇2

2
sin θ2, (79)

ϕ
(1)
6 =

√
18

ab
θ̇1θ̇2 sin θ2, (80)

ϕ
(1)
7 =

√
2 sin θ1, (81)

ϕ
(1)
8 = 2 sin θ1 cos θ2, (82)

ϕ
(1)
9 = 2 sin θ2 cos θ1. (83)

Hence, the reproducing kernel of H1 is given as

K1(x, x
′) =

9∑
i=1

ϕ
(1)
i (x)ϕ

(1)
i (x′). (84)

Suppose sample values are degraded by additive noise.
In Fig.7, the change in the generalization error is shown by the solid line. In this

simulation, the generalization error of a learning result f0 is measured by ‖f − f0‖2.
The generalization error tends to decrease as the number of training examples increases,
and it becomes sufficiently small with 20–30 training examples. In contrast, if we use
LASS (Vijayakumar & Schaal, 1998), which is a non-parametric learning method, around
15,000 training examples in total is required for obtaining a sufficiently good result. Con-
sequently, IPL provides much faster convergence to the target function than LASS.

6 Conclusion

A method of incremental projection learning (IPL) was presented. IPL provides ex-
actly the same learning result as that obtained by batch projection learning even in the
non-asymptotic case. It has been demonstrated through computer simulations that IPL
provides better generalization capability than RAN and on-line BP, and IPL shows con-
siderably faster convergence to the target function. Properties of IPL will be studied in
detail in a separate paper (Sugiyama & Ogawa, 2001a).
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Figure 7: Learning simulation 3. Sensorimotor map learning. The change in the gen-
eralization error with respect to the number of training examples is shown by the solid
line.

Appendix

A Proof of lemma 1

Since e
(m+1)
i = Γm+1e

(m)
i for 1 ≤ i ≤ m, it follows from eqs.(6) and (29) that

Am+1 =
m+1∑
i=1

(
e
(m+1)
i ⊗ ψi

)
= Γm+1Am + e

(m+1)
m+1 ⊗ ψm+1, (85)

which implies the lemma.

B Proof of lemma 2

Eqs.(17), (27), and (28) yield

Qm+1 =

(
Qm qm+1

q∗m+1 σm+1

)
. (86)

It follows from eq.(18) that

Um+1 = Am+1A
∗
m+1 +Qm+1. (87)

Substituting eqs.(34) and (86) into eq.(87), we have eq.(35).
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C Proof of lemma 3

It follows from eqs.(18) and (17) that Um+1 is always non-negative. Then, Lemma 3 is
clear from Lemma 2 and Proposition 2.

D Proof of lemma 4

Lemma 4 is clear from eq.(35) and Theorem 3 in Albert (1969).

E Proof of lemma 5

Since Qm+1 is non-negative, it follows from eq.(86) and Proposition 2 that

qm+1 = QmQ
†
mqm+1, (88)

σm+1 ≥ 〈Q†
mqm+1, qm+1〉. (89)

From eqs.(31) and (36), it holds that

Umtm+1 = UmU
†
msm+1 = PR(Um)sm+1 = sm+1. (90)

It follows from eqs.(30) and (88) that

〈tm+1, sm+1〉 = 〈tm+1, Amψm+1〉 + 〈tm+1, qm+1〉
= 〈A∗

mtm+1, ψm+1〉 + 〈tm+1, QmQ
†
mqm+1〉. (91)

Similarly, it follows from eqs.(90) and (18) that

〈tm+1, sm+1〉 = 〈tm+1, Umtm+1〉
= 〈tm+1, AmA

∗
mtm+1〉+ 〈tm+1, Qmtm+1〉

= ‖A∗
mtm+1‖2 + 〈tm+1, QmQ

†
mQmtm+1〉. (92)

Let an m-dimensional vector bm+1 be defined as

bm+1 = qm+1 −Qmtm+1. (93)

Then, it follows from eqs.(32), (89), (91), (92), (43), and (93) that

αm+1 = ‖ψm+1‖2 + σm+1 − 〈tm+1, sm+1〉
≥ ‖ψm+1‖2 + 〈Q†

mqm+1, qm+1〉 − 〈tm+1, sm+1〉 (94)

= ‖ψm+1‖2 + 〈Q†
mqm+1, qm+1〉 − 〈tm+1, sm+1〉 − 〈sm+1, tm+1〉+ 〈tm+1, sm+1〉

= ‖ψm+1‖2 − 〈A∗
mtm+1, ψm+1〉 − 〈ψm+1, A

∗
mtm+1〉+ ‖A∗

mtm+1‖2
+〈Q†

mqm+1, qm+1〉 − 〈Q†
mQmtm+1, qm+1〉

−〈qm+1, Q
†
mQmtm+1〉 + 〈Q†

mQmtm+1, Qmtm+1〉
= ‖ψm+1 −A∗

mtm+1‖2 + 〈Q†
m(qm+1 −Qmtm+1), qm+1 −Qmtm+1〉

= ‖ξm+1‖2 + 〈Q†
mbm+1, bm+1〉, (95)
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and hence
αm+1 ≥ ‖ξm+1‖2 + 〈Q†

mbm+1, bm+1〉. (96)

Since Q†
m is non-negative, the second term in the right-hand side of eq.(96) is always

non-negative. Hence, eqs.(96) and (89) yield that αm+1 = 0 if and only if the following
three conditions hold:

ξm+1 = 0, (97)

bm+1 ∈ N (Q†
m), (98)

σm+1 = 〈Q†
mqm+1, qm+1〉. (99)

Since it follows from eq.(88) that

bm+1 = (qm+1 −Qmtm+1) ∈ R(Qm) ⊥ N (Q†
m), (100)

eq.(98) is equivalent to
bm+1 = 0, (101)

which concludes the proof.

F Proof of lemma 6

It follows from eq.(19) that
Vm+1 = A∗

m+1U
†
m+1Am+1. (102)

Eqs.(102), (34), (53), and (43) yield eq.(58). Similarly, eqs.(102), (34), (54), and (55)
yield eq.(59).

G Proof of lemma 7

Eqs.(60) and (61) are clear from eq.(58) and Theorem 4.6 in Albert (1972). Eq.(62) is
clear from eq.(59).

H Proof of lemma 8

It follows from eq.(20) that

Xm+1 = V †
m+1A

∗
m+1U

†
m+1 + Ym+1(Im+1 − Um+1U

†
m+1). (103)

When αm+1 > 0, eqs.(103), (34), (53), (35), and (43) yield

Xm+1 = V †
m+1A

∗
mU

†
mΓ∗

m+1 +
V †

m+1ξm+1 ⊗ (e
(m+1)
m+1 − Γm+1tm+1)

αm+1

+Ym+1Γm+1(Im − UmU
†
m)Γ∗

m+1. (104)
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If ψm+1 	∈ R(A∗
m), it follows from eqs.(60), (44), and (20) that

V †
m+1A

∗
mU

†
m = V †

mA
∗
mU

†
m −

ψ̃m+1 ⊗X∗
mξm+1

ψ̃m+1 (xm+1)
, (105)

since R(V †
m) = R(A∗

m) (see Ogawa, 1987). Eqs.(43), (42), and (5) yield

〈ξm+1, ψ̃m+1〉 = 〈ψm+1 − A∗
mtm+1, ψ̃m+1〉 = ψ̃m+1 (xm+1) . (106)

It follows from eqs.(60), (106), and (43) that

V †
m+1ξm+1 =

αm+1ψ̃m+1

ψ̃m+1 (xm+1)
. (107)

Substituting eqs.(105) and (107) into eq.(104), we have eqs.(63) and (47). If ψm+1 ∈
R(A∗

m), it follows from eq.(61), (44), and (20) that

V †
m+1A

∗
mU

†
m = V †

mA
∗
mU

†
m −

ξ̃m+1 ⊗X∗
mξm+1

αm+1 + 〈ξ̃m+1, ξm+1〉
. (108)

Eqs.(61) and (44) yield

V †
m+1ξm+1 = ξ̃m+1 − ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
=

αm+1ξ̃m+1

αm+1 + 〈ξ̃m+1, ξm+1〉
. (109)

Substituting eqs.(108) and (109) into eq.(104), we have eqs.(63) and (48). Finally when
αm+1 = 0, eqs.(103), (62), (34), (54), (35), and (55) yield eqs.(63) and (64).

I Proof of lemma 9

It follows from eqs.(50), (43), (8), (5), and (45) that

〈y(m+1), hm+1〉 = 〈y(m+1), e
(m+1)
m+1 − Γm+1(tm+1 +X∗

mξm+1)〉
= ym+1 − 〈y(m), tm+1〉 − 〈y(m),X∗

mξm+1〉
= ym+1 − 〈y(m), tm+1〉 − 〈y(m),X∗

m(ψm+1 − A∗
mtm+1)〉

= ym+1 − 〈y(m), tm+1〉 − 〈Xmy
(m), ψm+1〉 + 〈AmXmy

(m), tm+1)〉
= ym+1 − 〈y(m), tm+1〉 − 〈fm, ψm+1〉 + 〈Amfm, tm+1)〉
= ym+1 − fm (xm+1)− 〈y(m) − Amfm, tm+1〉
= βm+1, (110)

which implies eq.(65).
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J Proof of lemma 10

Since y(m+1) ∈ R(Um+1), it holds that

Um+1U
†
m+1y

(m+1) = PR(Um+1)y
(m+1) = y(m+1). (111)

When αm+1 = 0, it follows from eqs.(35), (54), and (111) that

ym+1 = 〈y(m), tm+1〉. (112)

Therefore, it follows from eqs.(45), (112), (5), (43), and (55) that

βm+1 = ym+1 − fm (xm+1)− 〈y(m) − Amfm, tm+1〉
= −fm (xm+1) + 〈Amfm, tm+1〉
= −〈fm, ψm+1〉 + 〈fm, A

∗
mtm+1〉

= −〈fm, ψm+1 −A∗
mtm+1〉

= −〈fm, ξm+1〉
= 0, (113)

which implies eq.(66).

References

[1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transac-
tions on Automatic Control, AC-19(6), 716–723.

[2] Albert, A. (1969). Conditions for positive and nonnegative definiteness in terms of
pseudoinverses. SIAM Journal on Applied Mathematics, 17, 434–440.

[3] Albert, A. (1972). Regression and the Moore-Penrose pseudoinverse. New York and
London: Academic Press.

[4] Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation,
10(2), 251–276.

[5] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68, 337–404.

[6] Bergman, S. (1970). The kernel function and conformal mapping. Providence, Rhode
Island: The American Mathematical Society.

[7] Cohn, D. A. (1996). Neural network exploration using optimal experiment design.
Neural Networks, 9(6), 1071–1083.



Incremental Projection Learning for Optimal Generalization 25

[8] Fukumizu, K. (1996). Active learning in multilayer perceptrons. In D. Touretzky
et al. (Eds.), Advances in Neural Information Processing Systems 8 (pp. 295–301).
Cambridge: MIT Press.

[9] Jutten, C., & Chentouf, R. (1995). A new scheme for incremental learning. Neural
Processing Letters, 2(1), 1–4.

[10] Kadirkamanathan, V., & Niranjan, M. (1993). A function estimation approach to
sequential learning with neural networks. Neural Computation, 5(6), 954–975.

[11] MacKay, D. J. C. (1992a). Bayesian interpolation. Neural Computation, 4(3), 415–
447.

[12] MacKay, D. J. C. (1992b). Information-based objective functions for active data
selection. Neural Computation, 4(4), 590–604.

[13] Molina, C., & Niranjan, M. (1996). Pruning with replacement on limited resource
allocating networks by F-projections. Neural Computation, 8(4), 855–868.

[14] Murata, N. (1999). Statistical study on on-line learning. In D. Saad (Ed.), On-line
Learning in Neural Networks (pp. 63–92). Cambridge University Press.

[15] Murata, N, Yoshizawa, S., & Amari, S. (1994). Network information criterion—
determining the number of hidden units for an artificial neural network model. IEEE
Transactions on Neural Networks, 5(6), 865–872.

[16] Nakazawa, S., & Ogawa, H. (1996). Optimal realization of optimally generalizing
neural networks. IEICE Technical Report, NC96-60, 17–24. (in Japanese)

[17] Ogawa, H. (1987). Projection filter regularization of ill-conditioned problem. Pro-
ceedings of SPIE, Inverse Problems in Optics, 808 (pp. 189–196).

[18] Ogawa, H. (1989). Inverse problem and neural networks. Proceedings of IEICE 2nd
Karuizawa Workshop on Circuits and Systems (pp. 262–268). Karuizawa, Japan. (in
Japanese)

[19] Ogawa, H. (1992). Neural network learning, generalization and over-learning. Pro-
ceedings of the ICIIPS’92, International Conference on Intelligent Information Pro-
cessing & System, 2 (pp. 1–6). Beijing, China.

[20] Ogawa, H. (1995). Neural networks and generalization ability, IEICE Technical Re-
port, NC95-8, 57–64. (in Japanese)

[21] Ogawa, H., & Oja, E. (1986). Projection filter, Wiener filter, and Karhunen-Loève
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