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Abstract

In this paper, we consider the problem of active learning, and give a necessary
and sufficient condition of sample points for the optimal generalization capability.
By utilizing the properties of pseudo orthogonal bases, we clarify the mechanism
of achieving the optimal generalization capability. We also show that the condi-
tion does not only provide the optimal generalization capability but also reduces
the computational complexity and memory required for calculating learning result
functions. Based on the optimality condition, we give design methods of optimal
sample points for trigonometric polynomial models. Finally, the effectiveness of the
proposed active learning method is demonstrated through computer simulations.
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1 Introduction

Supervised learning is obtaining an underlying rule from training examples made up of
input points and corresponding output values. If the input-output rule is successfully
acquired, then we can estimate appropriate output values corresponding to unknown input
points. This ability is called the generalization capability. It is known that higher levels
of the generalization capability can be acquired if we actively design sample points [10].
In this paper, we discuss the problem of designing sample points, called active learning
[4][25][9], for the optimal generalization capability. Active learning is also referred to as
optimal experiments [12][7][3] or query construction [22].

Active learning has been studied from two stand points depending on the optimality.
One is the global optimality, where a set of all sample points is optimal [7][10][26]. The
other is the greedy optimality, where the next sample point to add is optimal in each step
[14][3][9][24]. In this paper, we focus on the former global optimal case and give an active
learning method especially in trigonometric polynomial models. The present paper is an
extended version of the reference [23] with some new results.

This paper is organized as follows. In Section 2, the supervised learning problem is
formulated as an inverse problem from the functional analytic point of view. Within this
framework, the generalization measure and learning method are described. In Section 3,
our main result, a necessary and sufficient condition for the optimal generalization ca-
pability, is derived. Since no approximation is employed in its derivation, the condition
gives exactly the optimal generalization capability. By utilizing the properties of pseudo
orthogonal bases, we clarify the mechanism of achieving the optimal generalization capa-
bility. Also, an efficient calculation method of learning result functions is provided. In
Section 4, design methods of optimal sample points for trigonometric polynomial models
are given. We also show that one of the designs of sample points further reduces the com-
putational complexity and memory. Finally, Section 5 is devoted to computer simulations
demonstrating the effectiveness of the proposed active learning method.

2 Formulation of supervised learning

In this section, the supervised learning problem is formulated from the functional analytic
point of view [17].

2.1 Supervised learning as an inverse problem

Let us consider the supervised learning problem of obtaining an approximation to a target
function from a set of training examples. Let the learning target function f(x) be a
complex function of L variables defined on a subset D of the L-dimensional Euclidean
space RL. The training examples are made up of sample points xm in D and corresponding
sample values ym in C:

{(xm, ym) | ym = f(xm) + εm, m = 1, 2, . . . ,M}, (1)
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where ym is degraded by additive noise εm with mean zero. Let y and ε be M-dimensional
vectors defined as

y = (y1, y2, . . . , yM)�, (2)

ε = (ε1, ε2, . . . , εM)�, (3)

where � denotes the transpose of a vector. y is called a sample value vector, and the
space to which y belongs is called the sample value space.

In this paper, the learning target function f(x) is assumed to belong to a reproducing
kernel Hilbert space H [2]. The reproducing kernel K(x,x′) is a bivariate function defined
on D ×D that satisfies the following conditions:

• For any fixed x′ in D, K(x,x′) belongs to H as a function of x.

• For any function f in H and for any x′ in D, it holds that

〈f(·), K(·,x′)〉 = f(x′), (4)

where 〈·, ·〉 stands for the inner product in H .

Note that the reproducing kernel is unique if it exists. If a function ψm(x) is defined as

ψm(x) = K(x,xm), (5)

then the value of a function f at a sample point xm is expressed as

f(xm) = 〈f, ψm〉. (6)

For this reason, ψm is called a sampling function.
Let A be a linear operator from H to CM defined as

A =

M∑
m=1

(
em ⊗ ψm

)
, (7)

where em is the m-th vector of the so-called standard basis in CM and (· ⊗ ·) stands for
the Neumann-Schatten product1. The operator A is a mapping from a function f to the
M-dimensional vector with the m-th element being f(xm):

Af = (f(x1), f(x2), . . . , f(xM))�. (8)

For this reason, A is called a sampling operator.

1For any fixed g in a Hilbert space H1 and any fixed f in a Hilbert space H2, the Neumann-Schatten
product (f ⊗ g) is an operator from H1 to H2 defined by using any h ∈ H1 as [21]

(f ⊗ g)h = 〈h, g〉f.
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Then the relationship between f and y can be expressed as

y = Af + ε. (9)

Let us denote a mapping from y to a learning result function f̂ by X:

f̂ = Xy. (10)

X is called a learning operator. Consequently, the supervised learning problem is refor-
mulated as an inverse problem of obtaining X that minimizes a certain generalization
error JG.

2.2 Generalization measure and learning method

We adopt the following JG as the generalization error of the learning result function f̂ :

JG = Eε‖f̂ − f‖2, (11)

where Eε denotes the expectation over the noise ε. It is known that Eq.(11) can be
decomposed into the bias and variance [6]:

JG = ‖Eεf̂ − f‖2 + Eε‖f̂ − Eεf̂‖2. (12)

Substituting Eqs.(10) and (9) into Eq.(12), we have

JG = ‖XAf − f‖2 + Eε‖Xε‖2. (13)

Here, we shall minimize the variance under the constraint of the bias being zero. For
this purpose, we let

X = A†, (14)

where A† denotes the Moore-Penrose generalized inverse2 of A. Note that the learning
result function f̂ given by Eqs.(10) and (14) minimizes the training error [17]:

1

M

M∑
m=1

∣∣∣f̂(xm) − ym

∣∣∣2 . (15)

Then JG is reduced to
JG = ‖PR(A∗)f − f‖2 + Eε‖A†ε‖2, (16)

2An operator X is called the Moore-Penrose generalized inverse of an operator A if X satisfies the
following four conditions [1].

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

The Moore-Penrose generalized inverse is unique and denoted by A†.
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where A∗ denotes the adjoint operator of A, R(·) denotes the range of an operator, and
PS denotes the orthogonal projection operator onto a subspace S. For the bias being zero,
we assume

R(A∗) = H. (17)

Assumption (17) holds only if the dimension µ of H is finite and the number M of training
examples is larger than or equal to µ. Then the generalization measure JG yields

JG = Eε‖A†ε‖2. (18)

3 Active learning for optimal generalization

In this section, we discuss the problem of active learning, i.e., designing a set {xm}M
m=1 of

sample points for the optimal generalization capability.

3.1 Necessary and sufficient condition for optimal generalization
capability

We shall derive a necessary and sufficient condition for minimizing the generalization error
JG in terms of the sampling operator A.

Theorem 1 Let H be a finite dimensional reproducing kernel Hilbert space such that the
reproducing kernel of H satisfies

K(x,x) = r for any x ∈ D, (19)

where r is a non-negative constant. Let the noise covariance matrix Q be given as

Q = Eε (ε ⊗ ε) = σ2IM , (20)

where the noise variance σ2 is a (generally unknown) positive scalar and IM denotes the
M-dimensional identity matrix. Then the generalization error JG defined by Eq.(11) is
minimized with respect to the sampling operator A under the constraint (17) if and only
if

µ

rM
A∗A = I, (21)

where µ is the dimension of H and I denotes the identity operator on H. In this case,
the minimum value of JG is given as

σ2µ2

rM
. (22)

Proofs of all theorems and lemmas are provided in B.
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3.2 Mechanism of achieving optimal generalization capability

Eq.(21) is equivalent to that a set {√ µ
rM
ψm}M

m=1 of sampling functions forms a pseudo
orthonormal basis (PONB) [19][18] in H . The concept of PONBs is an extension of
orthonormal bases to linearly dependent over-complete systems. The rigorous definition
and properties of PONBs are described in A. Using the properties of PONBs, we have
the following lemma.

Lemma 1 When the sampling operator A satisfies Condition (21), it holds that

‖Af‖ =
√

rM
µ
‖f‖ for any f ∈ H, (23)

‖A†u‖ =

{ √
µ

rM
‖u‖ for any u ∈ R(A),

0 for any u ∈ R(A)⊥,
(24)

where R(A)⊥ denotes the orthogonal complement of R(A).

Eqs.(23) and (24) imply that
√

µ
rM
A becomes an isometry and

√
rM
µ
A† becomes a

partial isometry with the initial space R(A).
Lemma 1 gives interpretation of Theorem 1. Let us decompose the noise ε into ε̃ in

R(A) and ε̃⊥ in R(A)⊥:
ε = ε̃ + ε̃⊥. (25)

Then the sample value vector y is rewritten as

y = Af + ε̃ + ε̃⊥. (26)

From Eq.(17), it holds for any f in H that

A†Af = PR(A∗)f = f, (27)

which implies that the signal component Af is transformed to the original function f by
A†. From Eq.(24), A† suppresses the magnitude of the noise ε̃ in R(A) by

√
µ

rM
and

completely removes the noise ε̃⊥ in R(A)⊥:

‖A†ε̃‖ =
√

µ
rM

‖ε̃‖, (28)

A†ε̃⊥ = 0. (29)

The above analysis is summarized in Fig. 1.
In general, it is difficult to suppress the effect of the noise ε̃ in R(A) since it can not

be distinguished from the signal component Af . However, the above analysis suggests
that the effect of the noise ε̃ is minimized if the mean magnification of A† is minimized.
Since minimizing the mean magnification of A† is equivalent to maximizing the mean
magnification of A, the effect of the noise ε̃ is minimized if the norm of Af is maximized
in the average sense. This principle well agrees with our intuition that the sampling
with the highest signal-to-noise ratio in the sample value vector y provides the optimal
generalization capability.
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Figure 1: Mechanism of achieving optimal generalization capability by Theorem 1. If
sampling operator A satisfies µ

rM
A∗A = I, then A†Af = f , ‖A†ε̃‖ =

√
µ

rM
‖ε̃‖, and

A†ε̃⊥ = 0.

3.3 Calculation of learning result functions

Now we discuss the calculation method of the learning result function f̂(x) given by
Eqs.(10) and (14).

Let {ϕp(x)}µ
p=1 be an orthonormal basis in H . Then the following proposition holds.

Proposition 1 [6] For general sample points, the learning result function f̂(x) can be
calculated as

f̂(x) =

µ∑
p=1

(
µ∑

p′=1

[C−1]p,p′

M∑
m=1

ϕp′(xm)ym

)
ϕp(x), (30)

where [ · ]p,p′ denotes the (p, p′)-th element of a matrix and · denotes the complex conju-
gate of a scalar. C is a µ-dimensional matrix defined as

[C]p,p′ =

M∑
m=1

ϕp(xm)ϕp′(xm). (31)

When the sample points satisfy Condition (21), the following theorem holds.

Theorem 2 When Condition (21) holds, the learning result function f̂(x) can be calcu-
lated as

f̂(x) =

µ∑
p=1

(
µ

rM

M∑
m=1

ϕp(xm)ym

)
ϕp(x). (32)

Let us measure the computational complexity by the number of scalar multiplications.
For general sample points, the computational complexity and memory required for cal-
culating f̂(x) by Eq.(30) are O(µ2(M + µ)) and O(M + µ2), respectively. In contrast,
Theorem 2 states that if the sample points satisfy Condition (21), then the computa-
tional complexity and memory can be reduced to O(µM) and O(M + µ), respectively.
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Table 1: Computational complexity and memory required for calculating the learning
result function f̂(x). M is the number of training examples and µ is the dimension of H .
In Corollary 3, H is a trigonometric polynomial space and M = Tµ where T is a positive
integer.

Sample Points
Calculation

Method
Computational

Complexity
Memory

General Proposition 1 O(µ2(M + µ)) O(M + µ2)
Condition (21) Theorem 2 O(µM) O(M + µ)

Theorem 4
with Eq.(54)

Corollary 3 O(µ2) O(µ)

This shows that Theorems 1 and 2 do not only provide the optimal generalization ca-
pability but also reduce the computational complexity and memory. These results are
summarized in Table 1.

4 Optimal design of sample points in trigonometric

polynomial space

We have given the optimality condition of sample points for a finite dimensional re-
producing kernel Hilbert space such that Eq.(19) holds. In this section, we introduce
the trigonometric polynomial space that meets the above requirements, and give design
methods of optimal sample points.

4.1 Trigonometric polynomial space

Let us denote the L-dimensional input vector x by

x = (ξ(1), ξ(2), . . . , ξ(L))�. (33)

Then the trigonometric polynomial space is defined as follows.

Definition 1 For l = 1, 2, . . . , L, let Nl be a non-negative integer and Dl = [−π, π]. Then
a function space H is called a trigonometric polynomial space of order (N1, N2, . . . , NL)
if H is spanned by the functions{ L∏

l=1

exp(inlξ
(l))

∣∣∣∣ nl = −Nl,−Nl + 1, . . . , Nl for l = 1, 2, . . . , L

}
(34)

defined on D = D1 ×D2 × · · · × DL, and the inner product in H is defined as

〈f, g〉 =
1

(2π)L

∫
D
f(x)g(x)dx. (35)
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The dimension µ of a trigonometric polynomial space of order (N1, N2, . . . , NL) is

µ =

L∏
l=1

(2Nl + 1), (36)

and the reproducing kernel of this space is expressed as

K(x,x′) =

L∏
l=1

Kl(ξ
(l), ξ(l)′), (37)

where

Kl(ξ
(l), ξ(l)′) =




sin
(
(2Nl + 1)(ξ(l) − ξ(l)′)/2

)
sin
(
(ξ(l) − ξ(l)′)/2

) if ξ(l) �= ξ(l)′ ,

2Nl + 1 if ξ(l) = ξ(l)′ .

(38)

When the dimension L of the input vector x is 1, a trigonometric polynomial space
of order N is spanned by{

exp(inx)
∣∣∣ n = −N,−N + 1, . . . , N

}
(39)

defined on D = [−π, π], and the inner product is defined as

〈f, g〉 =
1

2π

∫ π

−π

f(x)g(x)dx. (40)

The dimension µ of a trigonometric polynomial space of order N is

µ = 2N + 1, (41)

and the reproducing kernel of this space is expressed as

K(x, x′) =




sin ((2N + 1)(x− x′)/2)
sin ((x− x′)/2)

if x �= x′,

2N + 1 if x = x′.
(42)

In the case of the trigonometric polynomial space, the generalization error JG defined
by Eq.(11) is expressed as

JG = Eε
1

(2π)L

∫
D

∣∣∣f̂(x) − f(x)
∣∣∣2 dx. (43)

In many statistical learning theories [3][4][10][9], the generalization measure is defined as

Eε

∫
D

∣∣∣f̂(x) − f(x)
∣∣∣2 p(x)dx, (44)
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where p(x) is the (generally unknown) probability density function of test input points x.
In our setting, we assume that p(x) in Eq.(44) is the uniform distribution on the domain
D. Note that, in many active learning methods, the assumption that p(x) is known in
advance is made [3][4][26][25][24].

When H is a trigonometric polynomial space, the constant r in Eq.(19) is µ:

r = µ, (45)

where µ is the dimension of H . Therefore, Eq.(22) is reduce to

σ2µ

M
, (46)

which is equivalent to the asymptotic generalization error by passive learning [10]. This
means that Eq.(46) can be attained with a finite number of training examples if Condition
(21) holds.

4.2 Optimal design of sample points

For the trigonometric polynomial space, we shall give design methods of sample points
{xm}M

m=1 that satisfy the optimality condition (21).

Theorem 3 For l = 1, 2, . . . , L, let Ml be a positive integer such that Ml ≥ 2Nl + 1 and
cl be an arbitrary constant such that −π ≤ cl ≤ −π + 2π

Ml
. Let the number M of training

examples be

M =

L∏
l=1

Ml. (47)

If a set

{
xm

∣∣∣∣ m =

L∑
l=2

(
(ml − 1)

l−1∏
l′=1

Ml′

)
+m1, ml = 1, 2, . . . ,Ml for l = 1, 2, . . . , L

}
(48)

of M sample points is fixed to

xm = (ξ(1)
m , ξ(2)

m , . . . , ξ(L)
m )�, (49)

where

ξ(l)
m = cl +

2π

Ml

(ml − 1) for l = 1, 2, . . . , L, (50)

then Condition (21) holds.
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Theorem 4 Let M = Tµ where T is a positive integer and µ is the dimension of H. For
t = 1, 2, . . . , T and l = 1, 2, . . . , L, let ct,l be an arbitrary constant such that −π ≤ ct,l ≤
−π + 2π

2Nl+1
. If a set

{
xm

∣∣∣∣ m = (t− 1)µ+

L∑
l=2

(
(nl − 1)

l−1∏
l′=1

(2Nl′ + 1)
)

+ n1,

t = 1, 2, . . . , T, nl = 1, 2, . . . , 2Nl + 1 for l = 1, 2, . . . , L

}
(51)

of M sample points is fixed to

xm = (ξ(1)
m , ξ(2)

m , . . . , ξ(L)
m )�, (52)

where

ξ(l)
m = ct,l +

2π

2Nl + 1
(nl − 1) for l = 1, 2, . . . , L, (53)

then Condition (21) holds.

Theorem 3 means that M sample points are fixed to regular intervals in the domain
D (Fig. 2). In contrast, Theorem 4 means that for each t, µ sample points are fixed to
regular intervals in the domain D (Fig. 3). Especially when

c1,l = c2,l = · · · = cT,l = cl for l = 1, 2, . . . , L, (54)

µ sample points are fixed to regular intervals in the domain D and sample values are
gathered T times at each point (Fig. 4). Note that the design of sample points shown in
Theorem 3 is also D-optimal [7].

When the dimension L of the input vector x is 1, the above theorems are reduced to
simpler forms.

Corollary 1 Let M ≥ µ and c be an arbitrary constant such that −π ≤ c ≤ −π + 2π
M

. If
a set {xm}M

m=1 of M sample points as fixed to

xm = c+
2π

M
(m− 1), (55)

then Condition (21) holds.

Corollary 2 Let M = Tµ where T is a positive integer. For t = 1, 2, . . . , T , let ct be an
arbitrary constant such that −π ≤ ct ≤ −π + 2π

µ
. If a set

{xm | m = (t− 1)µ+ p, t = 1, 2, . . . , T, p = 1, 2, . . . , µ} (56)

of M sample points is fixed to

xm = ct +
2π

µ
(p− 1), (57)

then Condition (21) holds.
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}

}

x1

(c1, c2)
�

2π
M2

x2 · · ·
2π
M1

x35· · ·

ξ(1)

ξ(2)

Figure 2: Example of optimal sample points (Theorem 3). H is a trigonometric polynomial
space of order (2, 1). The number M of training examples is M = M1 ×M2 = 7× 5 = 35.

}

}

ξ(1)

(c1,1, c1,2)
� 2π

2N1+1(c2,1, c2,2)
�

x1 x2 · · ·
ξ(2)

x30· · ·2π
2N2+1

x15

x16 x17 · · ·

Figure 3: Example of optimal sample points (Theorem 4). H is a trigonometric polynomial
space of order (2, 1). The number M of training examples is M = T × µ = 2 × 15 = 30.

}

}
x1

(c1, c2)
�

2π
2N2+1

x2 · · ·
2π

2N1+1

x15· · ·

ξ(1)

ξ(2)
x16 x17 · · ·

x30· · ·

Figure 4: Example of optimal sample points (Theorem 4 with Eq.(54)). H is a
trigonometric polynomial space of order (2, 1). The number M of training examples
is M = T × µ = 2 × 15 = 30.
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4.3 Calculation of learning result functions

As shown in Theorem 2, the learning result function can be efficiently calculated if Con-
dition (21) holds. In the case of the trigonometric polynomial space, the efficiency can be
further improved. Let {ϕp(x)}µ

p=1 be an orthonormal basis in the trigonometric polyno-
mial space H , e.g., it is given by Eq.(34). Then we have the following corollary.

Corollary 3 When sample points are designed following Theorem 4 with Eq.(54), the
learning result function f̂(x) can be calculated as

f̂(x) =

µ∑
p=1

(
1

µ

µ∑
p′=1

ϕp(xp′)ỹp′

)
ϕp(x), (58)

where ỹp′ is the mean sample value at xp′:

ỹp′ =
1

T

T∑
t=1

yp′+(t−1)µ. (59)

Corollary 3 is clear from Theorem 2, so the proof is omitted.
If sample points are designed following Theorem 4 with Eq.(54) and the learning result

function f̂(x) is calculated following Corollary 3, then the computational complexity and
memory can be further reduced to O(µ2) and O(µ), respectively (Table 1). This is
extremely efficient since the dimension µ of H does not depend on the number M of
training examples.

5 Simulations

In this section, the effectiveness of the proposed active learning method is demonstrated
through computer simulations.

Let the dimension L of the input vector x be 1 and H be a trigonometric polynomial
space of order 100. Let the noise covariance matrix Q be Q = IM , i.e., the noise variance
σ2 be 1. Let us consider the following sampling schemes.

(A) Optimal sampling: Sample points are determined following Theorem 3.

(B) Two-stage active learning: Eqs.(5.6) and (5.7) in the reference [24] are adopted
as the active learning criteria. Sample points are determined by multi-point search
with 3 randomly created candidates.

(C) Experiment design: Eq.(10) in the reference [3] is adopted as the active learning
criterion. Sample points are also determined by multi-point search with 3 randomly
created candidates.

(D) Passive learning: Sample points are randomly created.
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Figure 5: Relation between the number of training examples and the generalization error.

Note that the sampling scheme (A) is a global optimal method while the sampling
schemes (B) and (C) are greedy optimal methods. The information that p(x) is the
uniform distribution is utilized in the sampling schemes (A), (B), and (C) (see Eq.(44)).

Fig. 5 displays the relation between the number of training examples and the general-
ization error. The horizontal and vertical axes denote the number of training examples and
the generalization error JG measured by Eq.(43) with L = 1, respectively. The solid curve
shows the generalization error by the sampling scheme (A). The dashed, dash-dotted, and
dotted curves denote the mean generalization errors of 10 trials by the sampling schemes
(B), (C), and (D), respectively. When the number of training examples is 201 (= dimH),
the generalization errors of the sampling schemes (A), (B), (C), and (D) are 1.00, 7.48,
3.18 × 104, and 8.75 × 104, respectively.

The four curves show that the proposed sampling scheme gives much better general-
ization capability than other sampling schemes with a small number of training examples.

The mean computation times of the sampling schemes (A), (B), (C), and (D) are
2.64 × 10−2, 85.2, 84.6, and 80.1 seconds, respectively. Therefore, learning with the
sampling scheme (A) is much faster than learning with other sampling schemes.

The sampling schemes (B) and (C) can be applied to any Hilbert spaces while the
proposed method (Theorems 3 and 4) is restricted to the trigonometric polynomial space.
This simulation suggests that when H is the trigonometric polynomial space, the pro-
posed method is applicable and the optimal generalization capability can be acquired.
Otherwise, the incremental active learning method shown in the reference [24] seems to
work well.
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6 Conclusion

We gave a necessary and sufficient condition of sample points for the optimal general-
ization capability. By utilizing the properties of pseudo orthogonal bases, we clarified
the mechanism of achieving the optimal generalization capability. We showed that the
condition provides exactly the optimal generalization capability and at the same time,
it reduces the computational complexity and memory required for calculating learning
result functions. Based on the optimality condition, we gave design methods of optimal
sample points for trigonometric polynomial models.

A Pseudo orthonormal bases

In Section 3.2, the necessary and sufficient condition for the optimal generalization capa-
bility was characterized by using the properties of pseudo orthonormal bases (PONBs).
PONBs are a special type of pseudo orthogonal bases (POBs). In this section, we briefly
review the concepts of POBs and PONBs, and show their fundamental properties.

Let H be a finite µ-dimensional Hilbert space and M be a finite integer larger than
or equal to µ:

M ≥ µ. (60)

Then POBs are defined as follows.

Definition 2 [19] A set {φm}M
m=1 of elements in H is called a POB if any f in H is

expressed as

f =

M∑
m=1

〈f, φm〉φm. (61)

The concept of POBs is an extension of orthonormal bases (ONBs) to linearly depen-
dent over-complete systems. It is clear that a POB is reduced to an ONB in H if M
is equal to the dimension of H . POBs and their extension, pseudo biorthogonal bases
[15][18], have been successfully applied to various real world problems including signal
restoration [16][18], computerized tomography [20], neural network learning [17], and ro-
bust construction of neural networks [13][11].

The following proposition shows basic characteristics of POBs.

Proposition 2 [19] The following conditions are mutually equivalent.

1. A set {φm}M
m=1 is a POB in H.

2. ‖f‖2 =

M∑
m=1

|〈f, φm〉|2 for any f ∈ H.

3. 〈f, g〉 =
M∑

m=1

〈f, φm〉〈g, φm〉 for any f, g ∈ H.
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Condition 2 implies that a POB is a tight frame with frame bound one [5] or a nor-
malized tight frame [8] in the frame terminology. When M is equal to the dimension of
H , Conditions 2 and 3 are reduced to Parseval’s equalities.

Now let us consider a finite M-dimensional Hilbert space H ′. Let a set {ϕ′
m}M

m=1 be
an ONB in H ′ and U be an operator defined as

U =

M∑
m=1

(
ϕ′

m ⊗ φm

)
. (62)

Then the following proposition holds.

Proposition 3 [19] The following conditions are mutually equivalent.

1. A set {φm}M
m=1 is a POB in H.

2. U∗U = I, where I is the identity operator on H.

3. ‖Uf‖ = ‖f‖ for any f ∈ H.

4. 〈Uf, Ug〉 = 〈f, g〉 for any f, g ∈ H.

It follows from Condition 2 that
M∑

m=1

‖φm‖2 = tr

(
M∑

m=1

(
φm ⊗ φm

))
= tr (U∗U)

= tr (I) = dim(H) = µ, (63)

where tr (·) denotes the trace of an operator. Condition 3 means that the operator U is
an isometry. From these properties, we have the following construction method of POBs.

Proposition 4 [19] Let U be an isometry from H to H ′ and a set {ϕ′
m}M

m=1 be an ONB
in H ′. If we let

φm = U∗ϕ′
m for m = 1, 2, . . . ,M, (64)

then a set {φm}M
m=1 becomes a POB in H.

Note that all POBs can be constructed by changing U with a fixed ONB {ϕ′
m}M

m=1 or
by changing {ϕ′

m}M
m=1 with a fixed U .

If a set {φm}M
m=1 is a POB and

‖φ1‖ = ‖φ2‖ = · · · = ‖φM‖, (65)

then the set {φm}M
m=1 is called a pseudo orthonormal basis (PONB). In this case, it follows

from Eq.(63) that

‖φm‖ =

√
µ

M
for m = 1, 2, . . . ,M. (66)

Finally, we show a construction method of PONBs that plays an important role in the
proof of Theorem 4.

Theorem 5 Let M = Tµ where T is a positive integer and µ is the dimension of H.
Then a set {φm}M

m=1 becomes a PONB in H if a set {√Tφm}M
m=1 consists of T sets of

ONBs in H.
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B Proofs of theorems and lemmas

B.1 Theorem 1

It follows from Eq.(20) that Eq.(18) is reduced to

JG = Eε‖A†ε‖2 = tr
(
A†Eε (ε ⊗ ε) (A†)∗

)
= σ2tr

(
A†(A†)∗

)
= σ2tr

(
(A∗A)†

)
. (67)

Because of Eq.(17), A∗A is positive definite. Therefore, it has µ positive eigenvalues
{λp}µ

p=1 considering the geometric multiplicity. Then it holds that

tr (A∗A) =

µ∑
p=1

λp, (68)

tr
(
(A∗A)−1

)
=

µ∑
p=1

1

λp
. (69)

It is well-known that the arithmetic and harmonic means have the following relation:∑µ
p=1 λp

µ
≥ µ∑µ

p=1
1
λp

, (70)

where equality holds if and only if

λ1 = λ2 = · · · = λµ. (71)

From Eqs.(67), (69), (70), and (68), we have

JG ≥ σ2µ2

tr (A∗A)
. (72)

Since it follows from Eqs.(7), (6), (5), and (19) that

tr (A∗A) = tr

(
M∑

m=1

(
ψm ⊗ ψm

))
=

M∑
m=1

‖ψm‖2

=
M∑

m=1

〈ψm, ψm〉 =
M∑

m=1

ψm(xm)

=
M∑

m=1

K(xm,xm) =
M∑

m=1

r = rM, (73)

Eq.(72) yields

JG ≥ σ2µ2

rM
. (74)
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From Eqs.(68), (73), and (71), equality in Eq.(74) holds if and only if

λ1 = λ2 = · · · = λµ =
rM

µ
. (75)

Because of Eq.(17), Eq.(75) is equivalent to

A∗A =
rM

µ
I, (76)

which implies Eq.(21). Eq.(22) is clear from Eq.(74) with equality.

B.2 Lemma 1

If we let ϕ′
m = em and φm =

√
µ

rM
ψm in U defined by Eq.(62), then Eq.(23) is clear from

Items 2 and 3 in Proposition 3 in A. It follows from Eq.(21) that

‖A†u‖ =
√

‖A†u‖2 =
√
〈(A†)∗A†u,u〉

=
√

〈(A†)∗(A∗A)−1A∗u,u〉
=

√
〈(A†)∗( rM

µ
I)−1A∗u,u〉

=
√

µ
rM

〈(A∗)†A∗u,u〉 =
√

µ
rM

〈PR(A)u,u〉
=

√
µ

rM
‖PR(A)u‖2 =

√
µ

rM
‖PR(A)u‖, (77)

which implies Eq.(24).

B.3 Theorem 2

Let W be an operator from Cµ to H defined as

W =

µ∑
p=1

(ϕp ⊗ ep) , (78)

where ep is the p-th vector of the so-called standard basis in Cµ. Note that the operator
W is unitary, i.e., it holds that

W ∗ = W−1. (79)

Then it follows from Eqs.(7) and (78) that

[AW ]m,p = ϕp(xm). (80)

Hence, it follows from Eq.(31) that

C = W ∗A∗AW. (81)

When the sample points satisfy Condition (21), it follows from Eqs.(81) and (79) that

C = W ∗(
rM

µ
I)W =

rM

µ
W−1W =

rM

µ
Iµ, (82)

where Iµ is the µ-dimensional identity matrix. Substituting Eq.(82) into Eq.(30), we have
Eq.(32).
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B.4 Theorem 3

Any function f(x) in a trigonometric polynomial space of order (N1, N2, . . . , NL) can be
expressed as

f(x) =

N1∑
n1=−N1

N2∑
n2=−N2

· · ·
NL∑

nL=−NL

an1,n2,...,nL

L∏
l=1

exp
(
inlξ

(l)
)
, (83)

where an1,n2,...,nL
is a coefficient. It follows from Eqs.(6), (83), (49), and (50) that

M1∑
m1=1

M2∑
m2=1

· · ·
ML∑

mL=1

∣∣∣∣〈f, 1√
M
ψm〉

∣∣∣∣
2

=
1

M

M1∑
m1=1

M2∑
m2=1

· · ·
ML∑

mL=1

|f(xm)|2

=
1

M

M1∑
m1=1

M2∑
m2=1

· · ·
ML∑

mL=1

∣∣∣∣
N1∑

n1=−N1

N2∑
n2=−N2

· · ·
NL∑

nL=−NL

an1,n2,...,nL

L∏
l=1

exp(inlξ
(l)
m )

∣∣∣∣
2

=
1

M

M1∑
m1=1

M2∑
m2=1

· · ·
ML∑

mL=1

N1∑
n1=−N1

N2∑
n2=−N2

· · ·
NL∑

nL=−NL

N1∑
n′

1=−N1

N2∑
n′

2=−N2

· · ·
NL∑

n′
L=−NL

an1,n2,...,nL
an′

1,n′
2,...,n′

L

L∏
l=1

exp
(
i(nl − n′

l)ξ
(l)
m

)

=
1

M

N1∑
n1=−N1

N2∑
n2=−N2

· · ·
NL∑

nL=−NL

N1∑
n′

1=−N1

N2∑
n′

2=−N2

· · ·
NL∑

n′
L=−NL

an1,n2,...,nL
an′

1,n′
2,...,n′

L

×
L∏

l=1

[
Ml∑

ml=1

exp

(
i(nl − n′

l)
2πml

Ml

)] L∏
l=1

exp

(
i(nl − n′

l)(cl −
2π

Ml

)

)
. (84)

For any integers nl and n′
l, it generally holds that

Ml∑
ml=1

exp

(
i(nl − n′

l)
2πml

Ml

)
=

{
Ml if nl = n′

l,

0 if nl �= n′
l.

(85)

Therefore, it follows from Eqs.(84), (85), (47), and (83) that

M1∑
m1=1

M2∑
m2=1

· · ·
ML∑

mL=1

∣∣∣∣〈f, 1√
M
ψm〉

∣∣∣∣
2
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=
1

M

N1∑
n1=−N1

N2∑
n2=−N2

· · ·
NL∑

nL=−NL

|an1,n2,...,nL
|2

L∏
l=1

Ml

L∏
l=1

exp(0)

=
N1∑

n1=−N1

N2∑
n2=−N2

· · ·
NL∑

nL=−NL

|an1,n2,...,nL
|2

= ‖f‖2. (86)

According to Items 1 and 2 in Proposition 2 in A with φm = 1√
M
ψm, Eq.(86) is equivalent

to that a set { 1√
M
ψm}M

m=1 forms a POB in H . Therefore, Items 1 and 2 in Proposition 3

with ϕ′
m = em and φm = 1√

M
ψm yield Eq.(21) with r given by Eq.(45).

B.5 Theorem 4

For a set {xm}tµ
m=(t−1)µ+1 of µ sample points with a fixed t, it follows from Eqs.(6), (5),

(52), (53), (37), and (38) that

〈
√

T

M
ψm′ ,

√
T

M
ψm〉 =

1

µ
ψm′(xm)

=
1

µ
K(xm,xm′) =

{
1 if m = m′,

0 if m �= m′.
(87)

Eq.(87) implies that for each t, a set

{
√

T

M
ψm}tµ

m=(t−1)µ+1 (88)

of µ elements in H forms an orthonormal in H . Therefore, a set { 1√
M
ψm}M

m=1 forms a

PONB in H from Theorem 5 in A. This is equivalent to Eq.(21) with r given by Eq.(45)
according to Items 1 and 2 in Proposition 3 in A with ϕ′

m = em and φm = 1√
M
ψm.

B.6 Theorem 5

For any ONB {ϕp}µ
p=1 in H , it holds that

µ∑
p=1

(ϕp ⊗ ϕp) = I. (89)

Hence, if a set {√Tφm}M
m=1 of elements in H consists of T sets of ONBs, it follows from

Eq.(62) that

U∗U =
M∑

m=1

(
φm ⊗ φm

)

=
1

T

M∑
m=1

(√
Tφm ⊗

√
Tφm

)
= I. (90)
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According to Items 1 and 2 in Proposition 3, Eq.(90) is equivalent to that a set {φm}M
m=1

forms a POB in H . In this case, the set {φm}M
m=1 is a PONB in H since ‖φm‖ = 1√

T
for

m = 1, 2, . . . ,M .

Acknowledgement

The authors would like to thank anonymous reviewers for their valuable comments.

References

[1] A. Albert, Regression and the Moore-Penrose Pseudoinverse, Academic Press, New
York and London, 1972.

[2] N. Aronszajn, “Theory of reproducing kernels,” Trans. American Math. Soc., vol. 68,
pp. 337–404, 1950.

[3] D. A. Cohn, “Neural network exploration using optimal experiment design,” Neural
Networks, vol. 9, no. 6, pp. 1071–1083, 1996.

[4] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with statistical
models,” J. Artificial Intelligence Research, vol. 4, pp. 129–145, 1996.

[5] I. Daubechies, Ten Lectures on Wavelets, Soc. for Industrial and Applied Mathemat-
ics, Philadelphia, Pennsylvania, 1992.

[6] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall,
New York, 1993.

[7] V. V. Fedorov, Theory of Optimal Experiments, Academic Press, New York, 1972.

[8] M. Frank and D. R. Larson, “A module frame concept for Hilbert C∗-modules,” Func-
tional and Harmonic Analysis of Wavelets, Contemporary Mathematics, vol. 247,
American Mathematical Soc., San Antonio, TX, 1999.

[9] K. Fukumizu, “Statistical active learning in multilayer perceptrons,” IEEE Trans.
Neural Networks, vol. 11, no. 1, pp. 17–21, 2000.

[10] K. Fukumizu and S. Watanabe, “Optimal Training Data and Predictive Error of
Polynomial Approximation,” IEICE Trans., vol. J79-A, no. 5, pp. 1100–1108, 1996.
(In Japanese)

[11] H. Iwaki, H. Ogawa, and A. Hirabayashi, “Optimally generalizing neural networks
with ability to recover from stuck-at r faults,” IEICE Trans., Vol. J83-D-II, no. 2,
pp. 805–813, 2000. (In Japanese)



Active Learning for Optimal Generalization in Trigonometric Polynomial Models 22

[12] J. Kiefer, “Optimal experimental designs,” J. R. Stat. Soc., series B, vol. 21, pp. 272–
304, 1959.

[13] S. Nakazawa and H. Ogawa, “Optimal realization of optimally generalizing neural
networks,” IEICE Technical Report, NC96-60, pp. 17–24, 1996. (In Japanese)

[14] D. J. C. MacKay, “Information-based objective functions for active data selection,”
Neural Computation, vol. 4, no. 4, pp. 590–604, 1992.

[15] H. Ogawa, “A theory of pseudo biorthogonal bases,” IEICE Trans., vol. J64-D, no. 7,
pp. 555–562, 1981. (In Japanese)

[16] H. Ogawa, “A unified approach to generalized sampling theorems,” Proc. ICASSP’86,
Intl. Conf. Acoustics, Speech, and Signal Processing, pp. 1657–1660, Tokyo, Japan,
1986.

[17] H. Ogawa, “Neural network learning, generalization and over-learning,” Proc. ICI-
IPS’92, Intl. Conf. Intelligent Information Processing & System, vol. 2, pp. 1–6,
Beijing, China, 1992.

[18] H. Ogawa, “Theory of pseudo biorthogonal bases and its application,” Research In-
stitute for Mathematical Science, RIMS Kokyuroku, vol. 1067, Reproducing Kernels
and their Applications, pp. 24–38, 1998.

[19] H. Ogawa and T. Iijima, “A theory of pseudo orthogonal bases,” IECE Trans.,
vol. J58-D, no. 5, pp. 271–278, 1975. (In Japanese)

[20] H. Ogawa and I. Kumazawa, “Radon transform and analog coding.” Mathematical
Methods in Tomography, Lecture Notes in Mathematics, vol. 1497, pp. 229–241,
Springer-Verlag, 1991.

[21] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer-Verlag,
Berlin, 1970.

[22] P. Sollich, “Query construction, entropy and generalization in neural network mod-
els,” Phys. Rev. E, vol. 49, pp. 4637–4651, 1994.

[23] M. Sugiyama and H. Ogawa, “Training data selection for optimal generalization
in trigonometric polynomial networks,” Advances in Neural Information Processing
Systems, vol. 12, pp. 624–630, The MIT Press, Cambridge, 2000.

[24] M. Sugiyama and H. Ogawa, “Incremental active learning for optimal generalization,”
Neural Computation, vol. 12, no. 12, pp. 2909–2940.

[25] S. Vijayakumar and H. Ogawa, “Improving generalization ability through active
learning,” IEICE Trans. Inf. & Syst., vol. E82-D, no. 2, pp. 480–487, 1999.

[26] R. X. Yue and F. J. Hickernell, “Robust designs for fitting linear models with mis-
specification,” Statistica Sinica, vol. 9, pp. 1053–1069, 1999.


